A supplementary documentation to the Swiss TIMES Energy System Model (STEM) Updates on transportation module and development of STEM elastic variant

Authors: Ramachandran Kannan Evangelos Panos Tom Kober Sandro Luh

July 2019

Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland

Table of contents

1.	Intro	oduction4
1	.1.	Fuel demand and modes of transportations4
1	.2.	Methodology
2.	Pers	onal transportations7
2	2.1.	Car transportation
	2.1.2	1. Car technologies
	2.1.2	2. Electric mobility
	2.1.3	3. Transport demand patterns10
2	2.2.	Buses
Ź	2.3.	Rails
3.	Frei	ght transportations13
3	8.1.	Light and heavy good vehicle
4.	Elas	tic demand for transportation14
4	1.1.	Methodology14
5.	Refe	erences

List of figures

Figure 1: Transport sector energy consumption by fuels and fleets in 2015	- 5
Figure 2: Share of energy use in personal and freight transportation in 2015	- 5
Figure 3: Simplified RES of the transport module	- 6
Figure 4: Car survival probability curve	- 8
Figure 5: Vehicle to grid in STEM transport module	10
Figure 6: Typical weekly usage pattern of cars	10
Figure 7: Vehicle type in bus fleet in 2015	11
Figure 8: Typical mobility usage pattern of public transport and two wheeler	13
Figure 9: TIMES elastic demand functions	15

List of tables

Table 1: Transport sector energy use by mode and fuel type in 2015	5
Table 2: Characteristics of existing car fleet in 2015	7
Table 3: Characteristics of medium (100-140 kW) size car technologies in STEM	8
Table 4: Characteristics of two wheelers	.11
Table 5: Characteristics of mid-size (140 kW) buses	. 12

Table 6: Status-quo of rail transport for passenger and freights in 2015	13
Table 7: Technical and economic characteristics of trucks	14
Table 8: Personal transport elasticise	17
Table 9: Private car costs and fuel efficiencies	
Table 10: Two wheeler technical and economic characteristics	20
Table 11: Technical and economic characteristics of buses	20

1. Introduction

Original documentation of the Swiss TIMES Energy system Model (STEM) [13] serves as the starting point for this supplementary document. A number of input data in STEM have been updated and some additional structural changes are implemented to generate new insights. Representation of the transportation sector has been reviewed and the model is recalibrated to the year 2015 energy data. Key updates include energy consumption [2], fuel efficiency [1], vehicle stocks [4], future mobility demand developments [9], etc. The number of intra-annual timeslices in STEM is increased from 144 to 288, representing four seasons and three types of days at the hourly level¹. In addition, vehicle technology in personal transportation (e.g. cars, two wheelers, buses, etc.) are updated based on new technology assessments [6][7]. The representation of electric vehicles is extensively enhancement as the storage algorithm in TIMES is well understood. In the current version of STEM, an option for vehicle to grid is enabled. In the personal transportation mode, a new consumer segment for personal transport is introduced based on the 2015 Swiss travel survey data [3]. For the other modes (buses, two wheelers, etc.), vehicle segmentations are introduced based vehicle size, i.e. engine power. This document aimed to highlight the changes in model structure, input data and assumptions and supplements the original STEM documentation [13].

In STEM, demands for mobility services are fixed (i.e. inelastic); and therefore the exogenously defined demands must be supplied at any cost. Within in the scope of the Joint Activity on SCCER CREST-Mobility, we extended the scope of STEM and implemented TIMES elastic variant [14] for the private mobility demands. With the elastic variant, the mobility demand becomes elastic. For a given policy, the demand can asymmetrically change (increase or decrease) depending on price elasticity. The development of the elastic variant is described in section 4.

1.1. Fuel demand and modes of transportations

This Swiss transport sector accounts for one-third of final energy demand. Three-fourth of the transport fuel is used for personal transportation (Figure 1). The private car fleet alone consumes one half of the fuel used in the personal transportation (Figure 2). STEM covers two broad transportation service demand, *viz.* personal and freight transports, which are exogenously defined in vehicle kilometre (*vkm*) and tonne kilometre (*t-km*) respectively. The model includes ten modes of transport as elucidated in Figure 2. The model is calibrated for year 2015 in terms of final energy use², vehicle fuel efficiency, vehicle stocks, annual driven vehicle kilometres, etc. Aviation (national and international) and other transport fuels (military application) are not explicitly modelled, but they are included to balance the Swiss final energy balance. To meet the transport demands, a wide range of existing and future vehicle technologies (e.g. cars, buses, and trucks) and fuel supply options are depicted in STEM. A high level of detail is included for personal transportation with a wide range of alternative drivetrains and fuels (see Table 3). Figure 3 shows an overarching reference energy system (RES) of the transport module and its link to other modules in STEM.

¹ Weekday, Saturdays and Sundays in Summer, Fall, Winter and Spring.

² It should be noted that the transport fuel consumption in the Swiss energy statistics includes tank tourism [1], i.e. cross-border tanking to benefit from fuel price/tax differences. The tank tourism is excluded for the estimation of ESDs based on [1]. However, to balance the national energy statistics, the estimated net tank tourism fuel is included as an exogenous demand, which is linearly phased out (i.e. excluded) after 2020.

Figure 1: Transport sector energy consumption by fuels and fleets in 2015

Figure 2: Share of energy use in personal and freight transportation in 2015

Modes/fuel type	Diesel	Gasoline	Kerosene	Gas	Bio-fuels	Electricity	Total
Aviation (D)			3.5				3.5
Cars	62.5	93.1		0.1	1.4	0.1	157.1
Two wheelers	0.0	2.5				0.1	2.5
Rail (Personal)	0.0					7.7	7.7
Trams/Trolley buses						0.7	0.7
Buses	5.1	0.0		0.1	0.1	0.1	5.4
Light goods vehicles	11.9	1.8		0.1	0.2	0.1	13.9
Heavy good vehicles	23.6	0.0		0.1	0.3	0.0	24.0
Rail (Freight)	0.4					2.5	2.9
Shipping	1.6						1.6
Others	12.8	1.7	0.0	0.4	0.3	-0.2	15.1
Total	117.9	99.0	3.5	0.7	2.2	11.4	234.4

-	- ·						0045
Table 1:	Transport	sector	energy use	by mode	and fuel	type in	2015

Source: BFE [1]

LGV—Light good vehicle, HGV—heavy goods vehicle

1.2. Methodology

In STEM, transportation demands are exogenously defined in vkm or tkm. For a given demand, the model finds the least cost mobility supply in terms of vehicles type and fuel demand by accounting for energy supply side and environmental constraints, i.e. STEM is a cost optimization model. As the energy system model, it account for full supply chain of energy and emission steams in Switzerland. We included vehicle stocks from 2010 to 2016 and their retirement trajectory based on historical survival curves. The gap arises from the withdrawal (retirement) of vehicles stock is replaced by new vehicles. A range of new/emerging vehicle technologies of different drivetrain and fuels are included in the model (e.g. see Table 9). The investment decision of new vehicles is based on capital cost of new vehicles, its operational cost, and fuel cost. The latter is endogenously determined in the model by considering the fuel production chain, i.e. from primarily energy supply through conversion and distribution to the vehicles. Consequently, the transport module has interlinks to other demand and supply sectors in STEM (see Figure 3). Direct CO₂ emissions from the vehicles (on road) are tracked at vehicle level based on fuel consumption and carbon content of fuels. Emission associated with fuel production and conversion are traced back from other modules so that energy system wide CO₂ emissions are fully accounted. Energy and environmental policy measures/targets (e.g. vehicle CO₂ emission standards or mitigation targets) are implemented via constraints, which must be fulfilled in the optimisation. The model outputs relevant to the transport sector include, but not limited to, vehicles stock turnover, their fuel consumption, CO₂ emission, investment and operational

cost, etc. As an energy system model, STEM also generates insights on electricity supply and emissions from other endues and energy conversion sectors.

In the standard version of STEM, all demands are inelastic, i.e., demands must be met by fulfilling supply side constraint. However, in real world, demands are elastic and response to price (and other behaviour). Therefore elastic demand feature of TIMES framework is enabled in STEM. With the elastic version, the demand can raise or fall in response to price triggered by any policy measures and targets. The methodology of STEM elastic variant is described in section 4.

2. **Personal transportations**

In this section, modelling of car fleet is described in details while a similar method is used for the other transportation modes. Thus, for other transportation modes, model structural variation (with respect to the car mode) and input data are explained. For the national and international aviation and other transport demand, fuels (e.g. kerosene, gasoline and diesel) are used as demands, i.e. there is no alternative vehicle options modelled.

2.1. Car transportation

In Swiss car fleet, annual vkm in 2015 was 56 billion vehicle kilometre (BVkm) which is driven with 4.49 million cars. For the calibration, these existing car stock is modelled in five aggregated vehicle categories by fuel type and drivetrain *viz*. gasoline (ICE and hybrid), diesel (IEE), battery electric car and compressed natural gas (ICE) (see Table 2). The aggregated³ fuel efficiencies for the existing car fleet is adopted from the Swiss national greenhouse gas inventory and BFE [1]. All the existing vehicle stocks are assumed to be retired linearly over the next 18 years⁴ based on survival probability curve (see Figure 4).

At the demand side, the whole car fleet is modelled as a single demand (in vkm), without distinguishing between different usage patterns.⁵ This means that STEM does not seek to optimise the choice between a large and small car (since a cost optimisation framework is less suited for this purpose)⁶, but rather the choice of vehicle drivetrain or fuel type are optimised. We assumed, within a size category, cars has similar performance characteristics and therefore substitutable in terms of performance. Nevertheless, changes to the size distribution of the car fleet over the model horizon can be specified as scenario variable.

Table 2.	Characteristics of	evisting car	fleet in 2015
I a D C Z.	Characteristics Of	EXISTING Car	

Total vehicle kilometres	(million vkm)	56,62
--------------------------	---------------	-------

³ The fuel efficiency is the Swiss national average that could also include efficient hybrid- and inefficient old cars.

⁴ Though some vehicles are used for longer than 18 years, for computation and numerical reason, we cut-off in 18 years.

⁵ In Joint Activity on SCCER Mobility-CREST, the private car transportation demands are being segmented by different consumer groups, e.g. by household type and prominent usage patterns (long vs short distance commuting).

⁶ In a cost optimization framework, small cars will be attractive due to their lower fuel consumption and lower purchase price. That is, the choice of a larger car is driven by behaviour factors and preferences unrelated to cost.

Total number of cars	(million)	4.49
Assumed (remaining) lifetime	(years)	18*
Cars by fuel type	Fuel efficiency (<i>MJ/km</i>)	No. of cars (million)
Gasoline ICE	2.77	3.17
Gasoline (hybrid)	2.44*	0.02
Diesel	2.80	1.21
Natural gas (and others)	2.58	0.003
BEV	1.53	0.007

Source: BFS [3][1][4]

Source: BFS [3]

Figure 4: Car survival probability curve

2.1.1. Car technologies

In addition to the existing vehicle technologies, a range of new and future vehicle technologies are represented with alternative fuels and drivetrain options. Table 3 shows the characterisation of medium size cars while the details for the other car sizes are included in the Appendix. New vehicle technologies are depicted with two vintages (current and future) reflecting improvements in fuel efficiency and/or cost reductions over future time periods. The technical characterization and capital cost of cars are based on [6][7] and shown in Table 3. An annual driving distance of 9300 – 15000 km per year⁷ and operational lifetime of 16 years are assumed for all car technologies. However, the annual driving distance is reduced over the lifetime of the car based on Swiss travel survey data [3], i.e. aged cars are driven lesser compared to new cars.

Table 3: Characteristics of medium ((100-140 k\W	size car technologies in STEM
	(100-140 KVV)	

Vintage year	Drivetrain and fuel type*	Car size**	Battery size or tank size	Fuel effi- ciency (tank to wheel)	Purchase price	Maintenance cost	Range per charge/ fuel- ling
-----------------	---------------------------------	------------	------------------------------------	--	-------------------	---------------------	------------------------------------

⁷ For the four size, annual driven distance is estimated to be 9360 km, 13180 km, 15170 km, 12710 km.

			(kWh)	(MJ / km)	(CHF)	(CHF/year)	(km)
current	BEV	Medium	48	0.76	58387	998	181
current	FCEV	Medium	167	1.37	79837	1114	437
current	HEV-p	Medium	271	1.53	45738	1003	638
current	ICEV-d	Medium	373	2.38	46204	1003	565
current	ICEV-g	Medium	355	2.80	46825	1003	455
current	ICEV-p	Medium	330	2.62	40614	1003	452
current	PHEV	Medium	280 [#]	1.61	50283	1035	37 [#]
future	BEV	Medium	73	0.61	49878	836	344
future	FCEV	Medium	133	1.02	53025	836	470
future	HEV-p	Medium	190	1.22	43540	1003	559
future	ICEV-d	Medium	261	1.59	45587	1003	592
future	ICEV-g	Medium	248	1.66	41315	1003	539
future	ICEV-p	Medium	231	1.62	40881	1003	512
future	PHEV	Medium	210	0.94	47558	1003	99

** Medium – 100-140 kW

* BEV: Battery Vehicle, FCEV: Hydrogen Fuel Cell, ICE: internal combustion engine, PHEV: Plug-in hybrid electric vehicle, -p: petrol, -d: diesel, -g: gas

Maintenance cost does not include fuel costs

Wt. efficiency between petrol drive and electric drive. Battery size in PHEV

(Source file: M:\STEM\Input Databases\TransportData\STEM_TRA_VehicleData_v1.xlsx)

Source: Cox, 2019 [10][11]

2.1.2. Electric mobility

For the car fleet, two types of electric vehicle—viz. pure battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs)—are represented in STEM. For the PHEV, separate electric- and gasoline/diesel-mode efficiencies are implemented. The model has flexibility to choose pure gasoline/diesel, if the electricity cost is prohibitively expensive in a season or period. However, the electric drive is limited to battery size (Table 3). For the both types of electric car (i.e. BEV, PHEV), the time of charging is unconstrained (except on road time in Figure 6), but constraints are included to control the rate of charging based on typical household fuse of 220/440 volt and 16 ampere. In additional, a fast (or super-fast) charging option is included in STEM with additional infrastructure cost. Though cost of charging infrastructure is not fully implemented, need for energy and power for fast charging is fully accounted, i.e. electricity sector module account for the need electricity generation capacity for e-mobility.

Batteries in e-mobility is foreseen as electricity storage technology for energy system with high share of renewable; and therefore we include an option for vehicle to grid (V2G), i.e. electricity from car batteries can be fed into electricity grid [15]. Figure 5 shows the grid to vehicle and V2G flows in the model. In the V2G option, neither the batteries' cyclic lifetime nor potentiation degradation of battery due to erupted operation is accounted. Nevertheless, the model is constrained to draw only one-third of the stored electricity from car batteries and 10% of the annual storage.

Figure 5: Vehicle to grid in STEM transport module

2.1.3. Transport demand patterns

For the e-mobility, it is important to know the charging timings. For this purpose, we have to define car usage profile, i.e. on road timings. For cars, typical usage patterns are estimated based on Swiss travel survey (micro-census data) from 2015 [3]. Figure 8 shows car usage pattern (i.e. on road time) on weekdays and weekends. We have normalized total annual car demand to follow this pattern and do not differentiate across the four seasons. The inverse curve of the on-road time is used for possible battery charging time for the BEV and PHEV, i.e. charging is possible when the car is not being used.

Figure 6: Typical weekly usage pattern of cars

Similar to the car technologies, new and alternative vehicles are represented for other transport demands. Table 4 and Table 5 show vehicle technology characteristics of other transportation modes. Most of these technical and cost data are adopted from PSI's analysis on transport vehicle technology assessment and other data sources [10][11][6][7].

Year	Drivetrain and fuel	Size	Battery size	Fuel effi- ciency	Purchase cost	Maintenance cost	Driving range	Life
			kWh	KJ/km	CHF	CHF/year	km	years
2015	BEV	<4kW	2	91	5376	73	60	10
2015	BEV	4-11kW	4	161	9203	114	80	16
2030	FCEV	<4kW		216	5338	67	100	10
2030	FCEV	4-11kW		370	8037	106	150	16
2050	ICEV	<4kW		457	2536	61	100	10
2050	ICEV	4-11kW		795	4240	96	150	16

Table 4: Characteristics of two wheelers

Source: Cox, 2016 [6]

2.2. Buses

For the bus fleet, number of buses in the public transport (5410 in 2015) and private buses (2896 in 2015) are included in the model. However, total number of buses (8303 in 2015) is not comparable with BFS's personal transportation vehicles⁸. Nevertheless, we stuck to these data for consistency. Based on the total vehicle kilometre, annual millage was calculated to be about 50,000 km and 45,000 km for public and private buses, respectively. For the estimation of buses by fuel type, BFS data for articulated buses (i.e. Glenkbus) and coach buses (i.e. Gesellschaftswagen) are adopted, respectively. Figure 7 shows the estimated bus type in year 2015. To account for the peak hours, the public transport usage pattern is implemented as in Figure 8. In addition to the existing bus fleet, a range of new and future buses are included. Their techno-economic performances are shown in Table 5.

Figure 7: Vehicle type in bus fleet in 2015

⁸ BFS personal transport vehicle statistics has about 62436 vehicles in 2015 in five categories, viz., Leichter Motorwagen, Schwerer Motorwagen, Gesellschaftswagen, Kleinbus and Gelenkbus.

Year	Drivetrain and fuel	Battery size	Fuel effi- ciency (tank to wheel)	Purchase cost	Maintenance cost	Driving range	Life
		kWh	KJ/km	CHF	CHF/year	km	years
2015	BEV-LR	252	3634	437594	81888	200	10
2015	BEV-SR	57	3414	307688	36517	12	10
2015	FCEV		7298	518654	86671	500	10
2015	HEV-D		8882	211664	49306	500	10
2015	ICEV-CNG		12188	155462	32592	500	10
2015	ICEV-D		11433	145030	32592	500	10
2030	BEV-LR	214	3083	181533	21634	200	10
2030	BEV-SR	49	2952	146259	21634	12	10
2030	FCEV		5914	208701	21634	500	10
2030	HEV-D		7569	179288	31507	500	10
2030	ICEV-CNG		10331	153286	32964	500	10
2030	ICEV-D		9718	145564	32964	500	10
2050	BEV-LR	177	2548	154919	21469	200	10
2050	BEV-SR	41	2481	139144	21469	12	10
2050	FCEV		4570	173149	21469	500	10
2050	HEV-D		6203	177687	31953	500	10
2050	ICEV-CNG		8546	151666	33499	500	10
2050	ICEV-D		8066	146331	33499	500	10

Table 5: Characteristics of mid-size (140 kW) buses

Source: BFS, 2005 [3]

Figure 8: Typical mobility usage pattern of public transport and two wheeler

In the public transportation mode, tram and trolley buses are modelled separately to account for total personal transportation demands. Since these two fleets are electric driven, no alternative fuel or power train is included. To account for electricity demand for these mode of transportation, mobility usage pattern of train is applied (Figure 8).

2.3. **Rails**

Rail transportation for passenger and freight are included in STEM. For calibration, based on total rail kilometre [8], no of trains [8], total electricity/diesel used in railways [1], average annual vkm per train and fuel efficiency are estimated. For the break up between diesel and electric train, fuel efficiency of diesel driven is fixed (by assuming xx% high fuel use per km) and thereby diesel driven vkm is also fixed based on diesel use. The remaining vkm is assumed to be met with electric trains.

 Table 6: Status-quo of rail transport for passenger and freights in 2015

3. Freight transportations

The freight transport comprises of road and rail freights. For the former, a range of vehicle options are included in STEM, while the latter is not fully modelled.

3.1. Light and heavy good vehicle

The existing vehicle stock of light duty and heavy good trucks are included in the model. For the future year, three new vehicles option driven on diesel, hydrogen and electricity. We have not fully completed the assessment of trucks. Thus, we adopted technology performance from IEA and adjusted to Swiss condition in terms of fuel efficiency.

Year	Drivetrain and fuel	Fuel efficiency (tank to wheel)	Purchase cost					
	Heavy duty trucks	MJ/km	000' CHF					
2020	TFHGV-ICEDSL	11	145					
	TFHGV-ICENGA	12	155					
	TFHGV-HYBDSL	8	212					
	TFHGV-BEVELC	<mark>??</mark>	<mark>??</mark>					
	TFHGV-FCLH2O	7	519					
2030	TFHGV-ICEDSL	9	146					
	TFHGV-ICENGA	10	153					
	TFHGV-HYBDSL	7	179					
	TFHGV-BEVELC	<mark>??</mark>	<mark>??</mark>					
	TFHGV-FCLH2O	6	209					
2050	TFHGV-ICEDSL	8	146					
	TFHGV-ICENGA	8	152					
	TFHGV-HYBDSL	6	178					
	TFHGV-BEVELC	<mark>??</mark>	<mark>??</mark>					
	TFHGV-FCLH2O	4	173					
Note: TFHGV – F	reight transportation heavy du	uty trucks; -ICEDS	L – Internal combus-					
tion engine-diesel HYBDSL – hybrid cell electric	fuel; -ICENGA – Internal con Diesel engine, BEV-ELC – E	nbustion engine w Battery electric, -FC	ith gas fuels, - CLH2O – hydrogen fuel					
Learning rates are	<u>e based on large size </u> SUV ca	rs and IEA [17]						

Table 7: Technical and economic characteristics of trucks

Source: IEA [17] and own estimates

For the other transport modes only an annual demand is specified without a detailed demand curve at this stage.

4. Elastic demand for transportation

In the earlier version of STEM, energy service demands in the transport (and other) sector are inelastic, i.e. the exogenously defined vkm or tkm must be supplied at any cost. Though the model has many supply side options, such as fuel substitution and alternative vehicle technologies, there is no mechanism to induce demand side changes. Future mobility demand can be influenced by many factors such as behavioural change in response to price or income, societal change due to education, awareness, etc. As a cost optimization model, we focus on price driven behavioural change. Thus, an elastic variant of TIMES framework is implemented. The elastic variant enables demand to be elastic, i.e. demand can raises and fall in response to price change (for a given price elasticities). Since the STEM model is energy service driven, the demand response is not merely related to fuel, but the entire supply chain, including cost of vehicle and infrastructure.

4.1. Methodology

In microeconomics, energy supply curve is represented by their inverse production function, that plots the marginal production cost of an energy commodity (vertical axis) as a function of the quantity supplied (horizontal axis). In TIMES, supply curve of a commodity is entirely determined endogenously by the model. The commodity is produced by a certain technology or set of technologies in a strictly linear fashion (Figure 9). As the quantity produced increases, one or more resources in the supply mix (either a technological potential or some resource's availability) is exhausted, and therefore the system must start using a different (more expensive) technology or set of technologies in order to produce additional units of the commodity, albeit at higher unit cost. Thus, each change in production mix generates one step of the staircase production function with a value higher than the preceding step. In a similar analogy, TIMES model defines a series of inverse demand functions. In the case of demands, two cases are distinguished. First, if the commodity in question is an energy carrier whose production and consumption are endogenous to the model, then its demand function is implicitly constructed within TIMES, and is a step-wise constant, decreasing function of the quantity demanded, as illustrated in Figure 9.

In TIMES elastic, demand (for an energy service) is defined by the user via the specification of the own price elasticity. The demand curve is a smoothly decreasing curve as illustrated in Figure 9. The supply-demand equilibrium is at the intersection (point E_0) of the supply function and the demand function, and corresponds to an equilibrium quantity D_0 and an equilibrium price P_0 . At price P_0 , suppliers are willing to supply the quantity D_0 and consumers are willing to buy exactly that same quantity D_0 . Of course, the TIMES equilibrium concerns a large number of commodities simultaneously, and thus the equilibrium is a multi-dimensional analog of the above, where D_0 and P_0 are now vectors rather than scalars.

As already mentioned, the demand curves of most TIMES energy commodities are implicitly constructed endogenously as an integral part of the solution of the LP. For each demand, user explicitly defines its own price elasticity, i.e. each energy service demand is assumed to have a constant own price elasticity *E* function of the form (see eq.1).

$$(D_1/D_0) = (P_1/P_0)^E$$

Where, D_0 and P_0 are reference pair of demand and price of energy service demand and *E* is the price elasticity of that demand. D_0 is the demand projection estimated by the user in the reference scenario and P_0 is the shadow price of that energy service demand in the dual solution of the reference case scenario, i.e. the parameters, D_0 , P_0 are obtained by solving a reference scenario in STEM. When demands are elastic, TIMES computes a new supply/demand equilibrium, where the new demand adjusts to changes in price. The prevailing demand prices are the marginal costs of the demand categories (i.e. P_1 in Figure 9). A priori this seems to be a difficult task, because the demand prices are computed as part of the dual solution to that optimization problem.

The elastic variant of TIMES has a non-linear objective function which is piece-wise linearized, which approximate the integrals. This is the same as saying that the inverse demand curves are approximated by staircase functions, as illustrated in Figure 9. By so doing, the resulting optimization problem becomes linear again. The precise manner in which the demand functions are discretized and incorporated in the TIMES objective function is explained in TIMES documentation [14]. The linearization proceeds as follows.

- For each demand category D_i, and each time period *t*, the user selects a range R(t)_i, i.e. the distance between some values D_i(t)_{min} and D_i(t)_{max}. The user estimates that the demand value D_i(t) will always remain within such a range, even after adjustment for price effects (for instance the range could be equal to the reference demand D_i(t) plus or minus 10%).
- Select a grid that divides each range into a number n of equal width intervals. Let ßi(t) be the resulting common width of the grid, ßi(t)= Ri(t)/n. See Figure 9 for a sketch of the non-linear expression and of its step-wise constant approximation. The number of steps, n, should be chosen so that the step-wise constant approximation remains close to the exact value of the function.
- For each demand segment D_i(t) define n step-variables (one per grid interval).

Besides selecting elasticities (see Table 8) for the various demand categories, one needs to know price at each demand function in each time period. To determine such a price, we perform a reference scenario of the inelastic TIMES model (with exogenous D_0 , and use the resulting shadow prices⁹ P_0 for all demand constraints, in all time periods).

It is important to note that, instead of maximizing the net total surplus, TIMES minimizes its cost. For this and other reasons, it is inappropriate to pay too much attention to the meaning of the absolute objective function values. Rather, examining the difference between the objective function values of two scenarios is a far more useful exercise. That difference is of course, the negative of the difference between the net total surpluses of the two scenario runs. With elastic demands, the model shed insights on a cost resulting from the loss of welfare due to the reduction (or increase) of demands in a given policy scenario compared to the base/reference scenario.

⁹ The conventional interpretation of shadow prices as the marginal costs of commodity is inaccurate. Rather, the shadow price is, by definition, the marginal system value of a resource, rather than the marginal cost of procuring that commodity.

We have complied mobility related price elasticities from literature and summarised in Table 8.

	Long-term	Short-term	Comment
Price elasticity (gasoline de- mand)	-0.34 ¹⁰		
Price elasticity in Swiss border regions	-1.5 ¹¹		Higher elasticity due to tank tourism
Price elasticity (gasoline de- mand)	-0.34 ¹² ("weakly sensitive")	-0.09	International comparison: In Switzerland, consumers could be less sensitive to price
Price elasticity (fuel demand)	-0.27 ¹² ("weakly sensitive")	-0.08	because their income is relatively high and fuel prices relatively low.
Income elasticity (gasoline de- mand)	0.67 ¹²		First necessity good (increase in income implies a less than proportional increase in
Income elasticity (fuel demand)	0.76 ¹²		quantity)
GDP/capita		no sign. impact	consumers need time before reacting to income variations
1% increase of #gasoline- powered cars per driver	0.8% in- crease of gasoline consumption		smaller than 1 due to increasing technical efficiency: new vehicles are more efficient than older ones
1% increase of overall vehicle stock per driver	0.6% in- crease of fuel con- sumption		 smaller in comparison to gasoline cars, maybe due to higher efficiency of diesel- powered vehicles smaller than 1 due to increasing technical efficiency: new vehicles are more efficient than older ones

Table 8: Personal transport elasticise

Application of STEM for various scenario analysis will be discussed in separate report.

5. **References**

- [1] BFE (2017) Analyse des schweizerischen Energieverbrauchs 2000–2017 nach Verwendungszwecken, Bundesamt für Energie, Bern
- [2] BFE (2018) Schweizerische Gesamtenergiestatistik, Bundesamt für Energie, Bern
- [3] BFS (2016) Mobilität in der Schweiz Ergebnisse des Mikrozensus zum Verkehrsverhalten, Bundesamt für Statistik.
- [4] BFS (2018) Strassenfahrzeugbestand: Personentransportfahrzeuge nach Fahrzeugart, Treibstoff, Leistung (kW) und Jahr <u>https://www.pxweb.bfs.admin.ch/pxweb/de/px-x-1103020100_122/-/px-x-1103020100_122.px/table/tableViewLayout2/?rxid=6d9a2cc0-7ccd-450a-b6fa-98812da2489d</u>

¹⁰ Erat and Axhausen, 2010. Long term fuel price elasticity

¹¹ Banfi et al., 2010. Fuel tourism in border regions: The case of Switzerland. Energy Economics

¹² Branzini and Weber, 2013. Elasticities of gasoline demand in Switzerland. Energy Policy.

- [5] FOEN (2017) Switzerland's Greenhouse Gas Inventory 1990–2016 National Inventory Report 2011, Federal Office for the Environment, Bern, Switzerland
- [6] Cox, B. and Mutel, C. (2018). The environmental and cost performance of current and future motorcycles, Applied Energy, Vol. 212, pp. 1013–1024, doi:10.1016/j.apenergy.2017.12.100
- [7] Cox, B., Mutel, C., Bauer, C., Mendoza Beltran, A. and van Vuuren, D. (2018). The uncertain environmental footprint of current and future battery electric vehicles, Environmental Science & Technology, doi:10.1021/acs.est.8b00261
- [8] BFS (2018) Öffentlicher Verkehr (inkl. Schienengüterverkehr), Bundesamt für Statistik
- [9] ARE (2018) Perspektiven des Schweizerischen Personenund Güterverkehrs bis 2040 (Projektion 2050), Bundesamt für Raumentwicklung (ARE), Bern
- [10] Cox, B. Christian Bauer, Angelica Mendoza Beltran, Detlef P. van Vuuren, Christopher L Mutel (2019) Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios (under review)
- [11] Cox, B. and Bauer, C. (2018). The environmental burdens of passenger cars: today and tomorrow, Paul Scherrer Institut, Villigen PSI, Switzerland., pp. Link to BFE website
- [12] FCA (2019) Petroleum Tax Federal Customs Administration https://www.ezv.admin.ch/ezv/en/home/information-companies/taxes-and-duties/importation-intoswitzerland/petroleum-tax.html
- [13] R. Kannan and H. Turton (2014). Switzerland energy transition scenarios Development and application of the Swiss TIMES Energy system Model (STEM), Final Report to Swiss Federal Office of Energy, Bern
- [14] R. Loulou, U. Remme, A. Kanudia, A. Lehtila, G. (2016) Goldstein Documentation for the TIMES Model Energy Technology Systems Analysis Programme
- [15] Panos, E., Kober, T., Wokaun, A. (2019). Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system, Applied Energy 252
- [16] Cox, Brian (2018). Mobility and the Energy Transition: A Life Cycle Assessment of Swiss Passenger Transport Technologies including Developments until 2050., ETH Zurich, Vol. 25081
- [17] IEA (2017) The Future of Trucks Implications for energy and the environment https://webstore.iea.org/the-future-of-trucks

Annex

Vintage year	Drivetrain and fuel type*	Car size**	Battery size or tank size	Fuel effi- ciency (tank to wheel)	Purchase cost	Maintenance cost ***	Driving range per charge/fuelling
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		kWh	KJ/km	CHF	CHF/year	km
2015	BEV	Large	54	0.83	76392	1347	187
	BEV	Medium	48	0.76	58387	998	181
	BEV	SUV	30 48	0.02	56520	964	139
	FCEV	Large	200	1.50	105696	1527	480
	FCEV	Medium	167	1.37	79837	1114	437
	FCEV	Small	133	1.13	43719	568	426
	FCEV HEV n	SUV	200	1.69	76187	1055	426
	HEV-p	Medium	271	1.00	45738	1003	638
	HEV-p	Small	153	1.28	24434	514	430
	HEV-p	SUV	330	1.91	43371	963	623
	ICEV-d	Large	440	2.61	60782	1331	608
		Small	3/3	2.38	46204	1003	505
	ICEV-a	Large	432	3.08	61643	1331	504
	ICEV-g	Medium	355	2.80	46825	1003	455
	ICEV-g	Small	200	2.28	24976	514	317
	ICEV-g	SUV	432	3.29	44545	963	473
	ICEV-p	Large	389	2.88	53500	1331	486
	ICEV-p	Small	212	2.02	21575	514	356
	ICEV-p	SUV	389	3.08	38732	963	454
	ICEV-p	SUV	389	3.08	38732	963	454
	PHEV	Large	342	1.71	66499	1383	598
	PHEV	Medium	280	1.61	50283	1035	535
	PHEV	SUV	342	1.30	48906	1003	532
2040	BEV	Large	82	0.66	65455	1109	356
	BEV	Medium	73	0.61	49878	836	344
	BEV	Small	46	0.50	26837	428	262
		Large	160	0.75	70260	1109	518
	FCEV	Medium	133	1.02	53025	836	470
	FCEV	Small	107	0.85	28544	428	453
	FCEV	SUV	160	1.27	50777	802	453
	HEV-p	Large	231	1.32	57303	1331	628
	HEV-p	Small	190	1.22	23238	514	374
	HEV-p	SUV	231	1.54	41376	963	541
	ICEV-d	Large	308	1.73	59965	1331	640
	ICEV-d	Medium	261	1.59	45587	1003	592
	ICEV-d	Small	168	1.33	24380	514	456
	ICEV-g	Medium	248	1.66	41315	1003	539
	ICEV-g	Small	140	1.38	21983	514	366
	ICEV-g	SUV	302	1.99	39465	963	545
	ICEV-p	Large	272	1.77	53843	1331	553
	ICEV-p	Medium	231	1.62	40881	1003	512
	ICEV-p	SUV	272	1.96	38972	963	501
	ICEV-p	SUV	272	1.96	38972	963	501
	PHEV	Large	257	0.97	62929	1331	618
	PHEV	Medium	210	0.94	47558	1003	550
		Small	123	0.82	25998	514	395
Note: All ca	ars are assume	d to have a lif	etime of 16	vears with dec	lining driven k	m over the lifetime	based on survival
probability	curve.			,	5		
* BEV: Bat	tery Vehicle, F	CEV: Hydroge	n Fuel Cell,	ICE: internal c	ombustion en	gine, PHEV: Plug-i	n hybrid electric

Table 9: Private car costs and fuel efficiencies

vehicle, -p: petrol, -d: diesel, -g: gas ** Car size are based on following engine size and annual vkm are given in parenthesis: Small - <60 kW (9360 km), Medium 60-100 kW (13200 km), Large 100-140 kW (15200 km), SUV >140 kW (12700 km). *** Maintenance cost does not include fuel costs

Source: Cox and Bauer [11]

Table	10:	Two	wheeler	technical	and	economic	characteristics
10010					aa	00011011110	0110110101001101100

Year	Drivetrain and fuel	Size	Battery size	Fuel efficiency (tank to wheel)	Purchase cost	Maintenance cost	Driving range	Life
		kW	kWh	KJ/km	CHF	CHF/year	km	years
2015	BEV	<4kW	2	91	5376	73	60	10
2015	BEV	4-11kW	4	161	9203	114	80	16
2030	FCEV	<4kW		216	5338	67	100	10
2030	FCEV	4-11kW		370	8037	106	150	16
2050	ICEV	<4kW2s		457	2536	61	100	10
2050	ICEV	4-11kW2s		795	4240	96	150	16

Source: Cox and Mutel [6]

Table 11: T	echnical and	economic	characteristics	of buses

Vintage year	Drivetrain and fuel	Battery size	Fuel effi- ciency (tank to wheel)	Purchase cost	Maintenance cost	Driving range	Life
		kWh	KJ/km	CHF	CHF/year	km	years
2015	BEV-LR	380	5465	915755	128834	200	12
2015	BEV-LR	569	8198	1628473	203761	200	12
2015	BEV-LR	252	3634	437594	81888	200	10
2015	BEV-LR	183	2641	188899	52248	200	8
2015	BEV-SR	86	5134	720374	64007	12	12
2015	BEV-SR	128	7701	1335412	106523	12	12
2015	BEV-SR	57	3414	307688	36517	12	10
2015	BEV-SR	41	2481	94504	17544	12	8
2015	FCEV	0	10912	981305	117163	500	12
2015	FCEV	0	16257	1644485	159280	500	12
2015	FCEV	0	7298	518654	86671	500	10
2015	FCEV	0	5267	234373	51090	500	8
2015	HEV-D	0	13229	458595	76083	500	12
2015	HEV-D	0	19623	817956	114166	500	12
2015	HEV-D	0	8882	211664	49306	500	10
2015	HEV-D	0	6367	70854	23730	500	8
2015	ICEV-CNG	0	18360	330312	55794	500	12
2015	ICEV-CNG	0	27498	623433	90348	500	12
2015	ICEV-CNG	0	12188	155462	32592	500	10
2015	ICEV-CNG	0	8631	52802	13955	500	8
2015	ICEV-D	0	17256	308000	55794	500	12
2015	ICEV-D	0	25876	602547	90348	500	12
2015	ICEV-D	0	11433	145030	32592	500	10
2015	ICEV-D	0	8070	44177	13955	500	8
2030	BEV-LR	321	4629	397848	43523	200	12
2030	BEV-LR	482	6934	724708	76594	200	12
2030	BEV-LR	214	3083	181533	21634	200	10
2030	BEV-LR	155	2235	74421	5756	200	8
2030	BEV-SR	74	4433	345748	43523	12	12
2030	BEV-SR	111	6639	646672	76594	12	12
2030	BEV-SR	49	2952	146259	21634	12	10
2030	BEV-SR	36	2141	45587	5756	12	8
2030	FCEV	0	8841	429709	43523	500	12
2030	FCEV	0	13176	751184	76594	500	12
2030	FCEV	0	5914	208701	21634	500	10
2030	FCEV	0	4266	91520	5756	500	8

2030			11250	3/9717	54441	500	12
2030		0	16680	648017	88742	500	12
2030		0	7560	170288	31507	500	10
2000		0	5424	67283	13/23	500	8
2030		0	15565	318550	56210	500	12
2030		0	23266	618528	00210	500	12
2030		0	10221	15220	30010	500	12
2030		0	7260	50060	14275	500	0
2030		0	14668	308566	56210	500	12
2030		0	21047	602210	00210	500	12
2030		0	21947	145564	90010	500	12
2030		0	9710	14004	32904	500	10
2030		0	0007	44091	14275	500	0
2050		205	5015	324134	43337	200	12
2050	BEV-LR	390	5699	632217	76391	200	12
2050	BEV-LR	177	2548	154919	21469	200	10
2050	BEV-LR	128	1844	52431	5684	200	8
2050	BEV-SR	62	3714	303162	43337	12	12
2050	BEV-SR	92	5548	599327	76391	12	12
2050	BEV-SR	41	2481	139144	21469	12	10
2050	BEV-SR	30	1795	39563	5684	12	8
2050	FCEV	0	6822	341585	43337	500	12
2050	FCEV	0	10157	648220	76391	500	12
2050	FCEV	0	4570	173149	21469	500	10
2050	FCEV	0	3296	63812	5684	500	8
2050	HEV-D	0	9204	344262	54929	500	12
2050	HEV-D	0	13617	646710	89289	500	12
2050	HEV-D	0	6203	177687	31953	500	10
2050	HEV-D	0	4446	66247	13825	500	8
2050	ICEV-CNG	0	12875	316232	56807	500	12
2050	ICEV-CNG	0	19224	614634	91493	500	12
2050	ICEV-CNG	0	8546	151666	33499	500	10
2050	ICEV-CNG	0	5950	49591	14729	500	8
2050	ICEV-D	0	12171	309380	56807	500	12
2050	ICEV-D	0	18186	604184	91493	500	12
2050	ICEV-D	0	8066	146331	33499	500	10
2050	ICEV-D		5598	45187	14729 D. Uvbrid algetric	(diagol) / D	8
range buses	SR – short range b	uses. CNG – (- myurogen fue	atural das		(ulesel) -LR	- Long
Source: Co	x [16]			and guo			