Symmetry, magnetism and phase coexistence in Superconducting Iron Chalcogenides AyFe_{2-x}Se₂ (A=K, Cs, Rb)

> Vladimir Pomjakushin Laboratory for Neutron Scattering, PSI, Switzerland

Ekaterina Pomjakushina, Anna Krzton-Maziopa, Kazimierz Conder Laboratory for Developments and Methods, PSI, Switzerland
Dmitry Chernyshov, Volodymir Svitlyk Swiss-Norwegian Beam Lines at ESRF, France
Alexey Bosak, ESRF, France
Vladimir Pomjakushin Laboratory for Neutron Scattering, Paul Scherrer Institute PSI

Ekaterina Pomjakushina, Anna Krzton-Maziopa, Kazimierz Conder Laboratory

for Developments and Methods, PSI, Switzerland Dmitry Chernyshov, Volodymir Svitlyk Swiss-Norwegian Beam Lines at ESRF, France Alexey Bosak, ESRF, France Vladimir Pomjakushin Laboratory for Neutron Scattering, Paul Scherrer Institute PSI

Ekaterina Pomjakushina, Anna Krzton-Maziopa, Kazimierz Conder Laboratory for Developments and Methods, PSI, Switzerland

Dmitry Chernyshov, Volodymyr Svitlyk Swiss-Norwegian Beam Lines at ESRF, France Alexey Bosak, ESRF, France

Vladimir Pomjakushin Laboratory for Neutron Scattering, Paul Scherrer Institute PSI

Ekaterina Pomjakushina, Anna Krzton-Maziopa, Kazimierz Conder Laboratory for Developments and Methods, PSI, Switzerland
Dmitry Chernyshov, Volodymir Svitlyk Swiss-Norwegian Beam Lines at ESRF, France
Alexey Bosak, ESRF, France
Vladimir Pomjakushin Laboratory for Neutron Scattering, Paul Scherrer Institute PSI

Ekaterina Pomjakushina, Anna Krzton-Maziopa, Kazimierz Conder Laboratory for Developments and Methods, PSI, Switzerland
Dmitry Chernyshov, Volodymir Svitlyk Swiss-Norwegian Beam Lines at ESRF, France
Alexey Bosak, ESRF, France
Vladimir Pomjakushin Laboratory for Neutron Scattering, Paul Scherrer Institute PSI

High temperature iron arsenides and selenides/ telurides superconductors. T_c up to 55K

X-Fe-As pnictides¹ and X-Fe-Se chalcogenides²

where X= Li, LaO, Ba, none, ...

¹ compounds of P, As, Sb, Bi
² compounds of S, Se, Te

High temperature iron arsenides and selenides/ telurides superconductors. T_c up to 55K

X-Fe-As pnictides¹ and X-Fe-Se chalcogenides²

where X= Li, LaO, Ba, none, ...

Iron-based high-temperature superconductors were discovered in January 2008

Towards the end of 2010: the s \pm superconducting pairing

Calculated Fermi surfaces representative of Ba(Fe1.94Co0.06)2As2 Experimentally observed spin excitation with the same wave vector [1/2, 1/2, 0] or (π, π)

¹ compounds of P, As, Sb, Bi ² compounds of S, Se, Te

An unexpected surprise! KyFe_{2-x}Se₂ superconductor Tc=30K

Jiangang Guo et al, (November 2010)

No (π,π)-resonance!
 AFM at room T!

FIG. 3. The temperature dependence of electrical resistance for the $K_{0.8}Fe_2Se_2$ crystal sample. The lower inset shows the details of

Second member CsyFe2-ySe2 had been grown by

A Krzton-Maziopa, E Pomjakushina, K.Conder (December 2010) in Laboratory of Development and Methods at Paul Scherrer institute PSI, Switzerland

The simplest structure "11" FeSe, $T_c=8K$

P4/nmm. T<100K *Cmma*

Nomenclature

 Fe_1 -(SeTe)_1 $(T_c^{max} = 14K)$ 1111 La_1O_1 -Fe_1As_1 $(T_c^{max}=55K)$ 111 Li_1 -Fe_1As_1 $(T_c^{max} = 18K)$ 122 Ba_1 -Fe_2As_2 $(T_c^{max} = 38K)$

Superconducting $A_yFe_{2-x}Se_2$ are fundamentally different from perviously known 122

 Not single phase even in form of single crystal, opposite to all previously known 122 Ba-Fe2As2. From diffraction, uSR, microscopy,...

- Not single phase even in form of single crystal, opposite to all previously known 122 Ba-Fe2As2. From diffraction, uSR, microscopy,...
- Symmetry is lower than I4/mmm

- Not single phase even in form of single crystal, opposite to all previously known 122 Ba-Fe2As2. From diffraction, uSR, microscopy,...
- Symmetry is lower than I4/mmm
- It possesses bulk AFM. Up to $3\mu_B$ /Fe

- Not single phase even in form of single crystal, opposite to all previously known 122 Ba-Fe2As2. From diffraction, uSR, microscopy,...
- Symmetry is lower than I4/mmm
- It possesses bulk AFM. Up to $3\mu_B$ /Fe
- There is a strong temptation to assign SC to one of the phases with "I4/mmm I22"-structure

- Not single phase even in form of single crystal, opposite to all previously known 122 Ba-Fe2As2. From diffraction, uSR, microscopy,...
- Symmetry is lower than I4/mmm
- It possesses bulk AFM. Up to $3\mu_B$ /Fe
- There is a strong temptation to assign SC to one of the phases with "I4/mmm I22"-structure
- Single phase I22 material AyFe2-xSe2 (A=K,Rb,Cs) does not exist at room temperature and below.

Single crystal diffraction @ ESRF, France

beamline ID29 PILATUS 6M

SNBL beamline BM1A with a MAR345 detector

Powder neutron diffraction @ HRPT/SINQ, Paul Scherre Institute, Switzerland

A diffraction view on phase separation: I. Main (90%) phase (A)

Reciprocal space reconstruction from single crystal x-ray @ SNBL/ESRF

the mesh is for the parent I4/mmm cell T=300K, (hk0) plane of Cs_yFe_{2-x}Se₂

Reciprocal space reconstruction from single crystal x-ray @ SNBL/ESRF

the mesh is for the parent I4/mmm cell T=300K, (hk0) plane of Cs_yFe_{2-x}Se₂

(hk0) slice of reciprocal space. indexing in average I4/mmm structure

the mesh is for the parent I4/mmm cell T=300K, (hk0) plane of $Cs_yFe_{2-x}Se_2$

4-arms k-vector stars

superstructure satellites

Note: the k-vectors are shown in projection. Their origin is at L=+/-1

(hk0) slice of reciprocal space. indexing in average 14/mmm structure

the mesh is for the parent I4/mmm cell T=300K, (hk0) plane of $Cs_yFe_{2-x}Se_2$

4-arms k-vector stars

superstructure satellites

Note: the k-vectors are shown in projection. Their origin is at L=+/-1

(hk0) slice of reciprocal space. indexing in average I4/mmm structure

the mesh is for the parent I4/mmm cell T=300K, (hk0) plane of $Cs_yFe_{2-x}Se_2$

4-arms k-vector stars

superstructure satellites

Note: the k-vectors are shown in projection. Their origin is at L=+/-1

I4/mmm -> I4/m Structure details "245"

Position splitting

A diffraction view on phase separation: II. Second minority (10%) phase (B) or (MCP)
High resolution synchrotron x-ray, Slices of reciprocal space

High resolution synchrotron x-ray, Slices of reciprocal space

No vacancy ordered satellites from the second phase

No vacancy ordered satellites from the second phase

No vacancy ordered satellites from the second phase

(1/2,1/2,L) rods from phase (B)

(a*b*)-plane

Mesh: Main AFMI phase A

Mesh: Minority compressed phase B

A specific four fold twinning of minority phase B

(h,k,10)-plane: best resolution

A specific four fold twinning of minority phase B

(h,k,10)-plane: best resolution

 $\begin{array}{l} \text{Origin: in plane 2D ordering of} \\ \text{alkali-earth in } A_y Fe_x Se_2 \end{array} \end{array}$

twinning of minority phase B

V. Pomjakushin, Phase separation in AFeSe JEMS '13

twinning of minority phase B

Looks like a penguin

V. Pomjakushin, Phase separation in AFeSe JEMS '13

Powder neutron diffraction. Minority phase is shown by red line.

Structure model for minority compressed phase B.

parent average vacancy disordered structure (*I4/mmm* space group)^{*} with the refined stoichiometry $Rb_{0.60(5)}(Fe_{1.10(5)}Se)_2$. The minority phase amounts to 8–10% mass fraction. The unit cell volume of the minority phase is 3.2% smaller.

*we can not afford a better model for 10% of phase & powder diffraction data

Differential scanning calorimetry

T-dependence of structure

T-dependence of structure

T-dependence of structure

I4/m ->I4/mmm

T dependence of phase separation. Single crystal synchrotron

T dependence of phase separation. Single crystal synchrotron

last frame

V. Pomjakushin, Phase separation in AFeSe JEMS '13

Summary on superconducting A_{0.8}Fe_{1.7}Se₂, X=K, Rb, Cs

- The ground state of the crystal is an intrinsically phaseseparated state with two distinct-by-symmetry phases.
- The main phase has the iron vacancy ordered $\sqrt{5} \times \sqrt{5}$ I4/M-superstructure Rb_{0.8}Fe_{1.5}Se₂.
- The minority phase can be well approximated by I4/ mmm-disordered structure with the refined stoichiometry $Rb_{0.60(5)}(Fe_{1.10(5)}Se)_2$. True symmetry is lower with 2D (ab)-plane ordering $\sqrt{2} \times \sqrt{2}$
- The minority phase merges with the main vacancy ordered phase on heating above the phase separation temperature $T_P \simeq 475K < T_S \simeq 530K$ (to average *l/mmm*)

Thank you!

Neutron diffraction patterns Rb, K, Cs

Magnetic contribution is in red

Magnetic representation. Symmetry adapted solutions.

I4/m, k=0 has 8 1D irreps τ₁,... τ₈.
4 real irreps <--> Shubnikov groups of *I4/m*4 complex irreps

One unit cell with Fe

Magnetic structure of $X_{0.8}Fe_{1.6}Se_{2}$, X=K, Rb, Cs

I4/m cell shown by red square. One *(ab)* layer of Fe-atoms is shown. Fe spins are parallel (+) or antiparallel (-) to c-axis

Metric(T)

V. Pomjakushin, Phase separation in AFeSe JEMS '13

Yet another phase

Higher resolution: third phase (C) identification

HK0 plane: logarithmic intensity

each reflection of main phase A is surrounded by weaker spots, corresponding to orthorhombic distortion in the basis a' = (a+b), b' = (a-b)

- the symmetry of minority phase C is not higher than orthorhombic

 $a_c \sim 1.02a_0 2^{1/2}$, $b_c \sim 0.98a_0 2^{1/2}$, $c_c \sim c_0$

- vacancies ordering is similar to that of main phase

- no disorder-related component is present
- component C is more pronounced in Rb system

twinning motif recovery from 2D images is difficult

Different choice of equivalent propagation k-vectors in I4/mmm

No visible anomaly at T_c

Parent compounds. FeSe/Tly(Fe_{2-x}Se₂)

Fe₁Se_{0.974(5)}

FIG. 5. Relative intensity of the magnetic main component as a function of temperature.

H. Sabrowsky et al (1986)

Mossbauer and x-ray studies on a mosaic of single crystals of TIFe_2-xSe2

E. Pomjakushina et al (2009)

12

L. HÄGGSTRÖM, et al (1986)