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Plan

• Introduction to Representational & magnetic 
symmetry ways of description

• Morden trends in magnetic structure 
determination from  neutron diffraction ND.  
Advantages of the combined use of 
Representation Analysis RA and magnetic 
subgroups:  Shubnikov or 3D+1

• Examples: multiferroic TmMnO3,  pyrochlore 
Tm2Mn2O5
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Two ways of description of magnetic 
structures

1. How to make S(r) invariant? Find (new) symmetry elements.                                     
gnew S(r) = S(r) to itself, where gnew ∈ Gsh subgroup of PG 
paramagnetic space group: PG=G⊗1', where 1'=spin/time 
reversal, G (parent space group).                                

     or 

2. How should S(r) be transformed under elements of G ?                          
gS(r) = Snewg(r) to different functions for each    g ∈ G 

1

2

3

4

Magnetic structure is an axial vector function S(r) defined on the discreet 
system of points (atoms), e.g.  S(r) = s(r1) ⊕ s(r2) ⊕ s(r3) ⊕ s(r4)

Crystal with space group G
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1. Magnetic or Shubnikov groups MSG. Historically the first way of 
description (Landau , Lifshitz 1951).   S(r) invariant under the 
Shubnikov subgroup Gsh of G⊗1' (1'=spin/time reversal). 
Identifying those symmetry elements that leave S(r) invariant.  
The MSG symbol looks similar to SG one, e.g.  I4/m' 

Two ways of description of magnetic 
structures

1. How to make S(r) invariant?                          
gS(r) = S(r) to itself, where g ∈ subgroup of PSG 
paramagnetic space group: PSG=SG⊗1’, where                   
1’=spin/time reversal, SG (parent space group).                                

2. How should S(r) be transformed?                          
gS(r) = Snewg(r) to different functions for each    g ∈ 
SG
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Magnetic space groups and representation 
analysis: competing or friendly concepts?

5

E. F. Bertaut, CNRS, Grenoble

 Representation Analysis (RA)*

W. Opechovski, UBC, Vancouver

 Shubnikov magnetic space 
groups

In 1960th-70th opposed

even until recent times RA was considered to be more 
powerful in neutron scattering community.*

* Yu.A. Izyumov, V. E. Naish well known papers (1978-), book:, ”Neutron diffraction of 
magnetic materials”, New York [etc.]: Consultants Bureau, 1991.
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5

E. F. Bertaut, CNRS, Grenoble

 Representation Analysis (RA)*

W. Opechovski, UBC, Vancouver

 Shubnikov magnetic space 
groups

In 1960th-70th opposed

Currently > 2010-…
(Representation Analysis) and  (Magnetic space groups) are 
complementary and must be used together to fully identify the 
magnetic symmetry. 

even until recent times RA was considered to be more 
powerful in neutron scattering community.*

* Yu.A. Izyumov, V. E. Naish well known papers (1978-), book:, ”Neutron diffraction of 
magnetic materials”, New York [etc.]: Consultants Bureau, 1991.
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“Old new” trends in magnetic structure determination from  
ND.  Currently there is solid understanding that both RA 
and Shubnikov magnetic symmetry should be used 
together.   Big progress in software tools during last 5 years 
in this way of analysis …

http://magcryst.org

• In some cases this allows one to find a hidden symmetry, which is not evident 
from the representation analysis alone. 

http://magcryst.org
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together.   Big progress in software tools during last 5 years 
in this way of analysis …
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• In some cases this allows one to find a hidden symmetry, which is not evident 
from the representation analysis alone. 

• Regular practice for crystal structure transitions:   This approach is routinely used 
by crystallographers in the analysis of crystal phase transition, 

• Magnetic transitions: Usually, representation approach with a single arm and 
general direction of order parameter of propagation vector star.  Possible high 
symmetry Shubnikov subgroups are lost. 

http://magcryst.org
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http://magcryst.org

IUCr Commission on Magnetic Structures 
The Commission on Magnetic Structures (CMS) was established ad interim by the Executive Committee in 
January 2011 and confirmed at the Madrid General Assembly in August 2011.  It’s primary purpose is to facilitate 
research on the discovery and communication of magnetic structures in magnetically ordered materials; and its 
present focus is to cultivate a community consisting of interested participants from diverse fields of research, who 
can establish standards for defining and communicating the crystallographic details of magnetic structures.  The 
scope of the Commission’s consideration encompasses a broad range of magnetic structure types, including 
commensurate magnetic structures, modulated and otherwise aperiodic magnetic structures, low-dimensional 
magnetic structures, disordered magnetic structures, etc.

http://magcryst.org
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January 2011 and confirmed at the Madrid General Assembly in August 2011.  It’s primary purpose is to facilitate 
research on the discovery and communication of magnetic structures in magnetically ordered materials; and its 
present focus is to cultivate a community consisting of interested participants from diverse fields of research, who 
can establish standards for defining and communicating the crystallographic details of magnetic structures.  The 
scope of the Commission’s consideration encompasses a broad range of magnetic structure types, including 
commensurate magnetic structures, modulated and otherwise aperiodic magnetic structures, low-dimensional 
magnetic structures, disordered magnetic structures, etc.

to establish standards for the description and dissemination of magnetic 
structures and their underlying symmetries and promote these standards within 
the IUCr and among other research communities that rely on magnetic structure 
information.

http://magcryst.org
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Downloadable Lecture Presentations on: 
The use of magnetic space groups and superspace groups, 
and magnetic irreducible representations, to constrain general 
magnetic-structure models. New magnetic-symmetry 
resources and capabilities for solving/refining magnetic 
structures. 8

Membership 
• B. Campbell (Chair, USA)
• A. Cornia (Italy)
• D. B. Litvin (USA)
• J.M. Perez-Mato (Spain)
• V. Petricek (Czech Republic)
• A. Pirogov (Russia)
• V. Pomjakushin (Switzerland)
• J. Rodriguez-Carvajal (France)
• T. Sato (Japan)
• W. Sikora (Poland)
• A.S. Wills (UK)

Consultants 
• M.I. Aroyo (Spain)
• J. Brown (France)
• M.T. Fernandez-Diaz (France) 
• H.T. Stokes (USA)

http://stokes.byu.edu/iso/
Bilbao Crystallographic Server 
http://www.cryst.ehu.es

Symmetry heavyweights: 
Software tools for detailed 

symmetry analysis both RA and 
Shubnikov, superspace 3D+1

http://magcryst.org/meetings/cmsworkshop2014/program/

http://magcryst.org

University of the Basque Country

IUCr Congress SatelliteWorkshop (Hamilton, Canada) 
on the Role of Magnetic Symmetry in the Description & 

Determination of Magnetic Structures
http://magcryst.org

http://scripts.iucr.org/cgi-bin/detailed_display?&id=13074
http://stokes.byu.edu/iso/
http://www.cryst.ehu.es/
http://www.cryst.ehu.es
http://magcryst.org/meetings/cmsworkshop2014/program/
http://magcryst.org
http://magcryst.org
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Jana2006 http://jana.fzu.cz 

Fullprof suite  
 http://www.ill.eu/sites/fullprof/ 

MODY  
http://www.ftj.agh.edu.pl/~sikora/modyopis.htm 

SARAh suite  
https://dl.dropboxusercontent.com/u/8933134/

Website/Site/Software/Software.html

Software tools for 
symmetry analysis and 

data fitting 
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Representation* Analysis (RA). Propagation vector k 
formalism. Magnetic mode S0 is specified in zeroth block 
of the cell == parent cell without centering translations

Magnetic moment 
below a phase transition

*irreducible representation irrep:  
each group element g --> matrix τ(g) that 
specifies the spin transformation under element g

0th cell with many atoms in general

S01

S02

k=[1/2,1/2]

S(tn) = Re
�
CS0e

2⇡itnk
�

⇠ cos(2⇡tnk+ ')

amplitude or 
mixing 
coefficients 

magnetic mode

tn
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Example of complex magnetic structure

Zeroth cell:

only 5 magnetic modes, i.e. 
5 mixing coefficients C to 
find from experiment.

k-vector=[1/3, 1/3, 0]
P6/m

Antiferromagnetic (cycloidal spiral) three sub-lattice ordering in 
Tb14Au51

PHYSICAL REVIEW B 72, 134413 (2005) 

Zeroth cell contains 14 spins of Tb3+ 

Conventional magnetic unit cell contains 
126 spins of Tb3+!!
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what if several magnetic modes S0 are possible in RA?
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what if several magnetic modes S0 are possible in RA?

1. multi-dimentional (nD) irreducible 
representation generates nD magnetic 
modes S01, S02, S03… S0nD 

Two  commensurate cases when k=“rational fraction” 

S(0) ⇠
nDX

l=1

ClS
l
0
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any relations between mixing coefficients  
Cl  

                  ?

what if several magnetic modes S0 are possible in RA?

1. multi-dimentional (nD) irreducible 
representation generates nD magnetic 
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S(0) ⇠
nDX
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l
0
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Two magnetic modes E1 and E2 along x.

12

S01== E1= +1           +1            -1          -1   
S02== E2= +1            -1            -1         +1  

Mn-position  (1)            (2)           (3)            (4)                

TmMnO3

Pnma k=[1/2,0,0], k20, X 
irreps: two 2D τ1, τ2 

Mn mΓ: 3τ1 ⊕ 3τ2 

Mn

3 2

4
1
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S01== E1= +1           +1            -1          -1   
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(E1+E2)/2    =  +1            0             -1           0   
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Pnma k=[1/2,0,0], k20, X 
irreps: two 2D τ1, τ2 

Mn mΓ: 3τ1 ⊕ 3τ2 

Mn

3 2

4
1

independent spins on 
red and blue atoms
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any relations between mixing coefficients  
Cl  

                  ?

13

what if several magnetic modes S0, S0, S0…  are possible in RA?
1    2   3

Two  commensurate cases when k=“rational fraction” 
1. multi-dimentional (nD) 
irreducible representation generates 
nD magnetic modes S01, S02, S03… 
S0nD 
S(0) ⇠

nDX

l=1

ClS
l
0

RA: widespread unfavorable 
paradigm that one-k is enough…

C2/c
2. multi-Arm/multi-k structure 
(non-equivalent k1, k2, … km). 
nA magnetic modes S01, S02, 
S03… S0nA

1

2
000

1

2
0

Example of mutiarm, 
full star {k1,k2}:       
J. Phys.: Condens. 
Matter 26 496002
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Antiferromagnetic order in 
orthorhombic multiferroic TmMnO3

14

Mn

Re

O

1. one-arm two dimensional irrep  k=[1/2,0,0]. 
Ferro-electric phase polar magnetic group 
Pbmn21


2. Constraints on basis functions vs. superspace for the 
incommensurate two arm  k=[1/2±δ,0,0]. {k}={-k,+k}. 
Para-electric phase (3D+1) superspace magnetic group 
Pmcn1’(00g)000s [Pnma, bca]


 New Journal of Physics 11, 043019 (2009)
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Symmetry analysis using both RA and magnetic subgroups

Mn1 Mn2

TmMnO3

Pnma k=[1/2,0,0], irrep:  2D mX1(τ1)

Moments along x

RA with  arbitrary mixing coefficients 
gives different spin sizes for the same 
type of spins. Symmetry?
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Symmetry analysis using both RA and magnetic subgroups
http://stokes.byu.edu/iso/
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Pnma k=[1/2,0,0], irrep:  2D mX1(τ1)
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Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch,
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RA with  arbitrary mixing coefficients 
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Symmetry analysis using both RA and magnetic subgroups
http://stokes.byu.edu/iso/

Mn1 Mn2

TmMnO3

Pnma k=[1/2,0,0], irrep:  2D mX1(τ1)

ISODISTORT 
Version 6.1.8, November 2014 

Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch,

P1 (a,0) 11.55   P_a2_1/m,  basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(1/2,0,0), s=2, i=4, k-active= (1/2,0,0)

P3 (a,a) 31.129 P_bmn2_1, basis={(0,1,0),(2,0,0),(0,0,-1)}, origin=(3/4,1/4,0), s=2, i=4, k-active= (1/2,0,0)

C1 (a,b) 6.21    P_am,          basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(0,1/4,0), s=2, i=8, k-active= (1/2,0,0)


Order parameter 
direction

Magnetic Shubnikov 
Space group

Moments along x

RA with  arbitrary mixing coefficients 
gives different spin sizes for the same 
type of spins. Symmetry?
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Symmetry analysis using both RA and magnetic subgroups
http://stokes.byu.edu/iso/

Mn1 Mn2

TmMnO3

Pnma k=[1/2,0,0], irrep:  2D mX1(τ1)

ISODISTORT 
Version 6.1.8, November 2014 
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C1 (a,b) 6.21    P_am,          basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(0,1/4,0), s=2, i=8, k-active= (1/2,0,0)


Order parameter 
direction

Magnetic Shubnikov 
Space group

 0

 3  4 1  2

 6  1 0  8 7 5  9

 1 1
PS1

PS 1̄Pa21 Pa21PamPccPbc

Pa21/mPc21/cPbmn21Pana21

Pnma1′Bilbao Crystallographic Server 
http://www.cryst.ehu.es

(a,a) (a,0)

(a,b)

Moments along x

RA with  arbitrary mixing coefficients 
gives different spin sizes for the same 
type of spins. Symmetry?
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Moments along x
 0

 3  4 1  2

 6  1 0  8 7 5  9

 1 1
PS1

PS 1̄Pa21 Pa21PamPccPbc

Pa21/mPc21/cPbmn21Pana21

Pnma1′Bilbao Crystallographic Server 
http://www.cryst.ehu.es

(a,a) (a,0)

(a,b)

TmMnO3

irrep:  2D mX1(τ1)

Solution!

http://stokes.byu.edu/iso/

ISODISTORT 
Version 6.1.8, November 2014 

Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch,

Pnma k=[1/2,0,0], irrep:  2D mX1(τ1)

P1 (a,0) 11.55   P_a2_1/m,  basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(1/2,0,0), s=2, i=4, k-active= (1/2,0,0)

P3 (a,a) 31.129 P_bmn2_1, basis={(0,1,0),(2,0,0),(0,0,-1)}, origin=(3/4,1/4,0), s=2, i=4, k-active= (1/2,0,0)

C1 (a,b) 6.21    P_am,          basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(0,1/4,0), s=2, i=8, k-active= (1/2,0,0)


Order parameter 
direction

Magnetic Shubnikov 
Space group

Case 1: magnetic mode E1 -> most symmetric maximal subgroup 
of Pnma1’
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Electric polarisation

along c allowed

Moments along x
 0

 3  4 1  2

 6  1 0  8 7 5  9

 1 1
PS1
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Pa21/mPc21/cPbmn21Pana21

Pnma1′Bilbao Crystallographic Server 
http://www.cryst.ehu.es

(a,a) (a,0)

(a,b)

TmMnO3

irrep:  2D mX1(τ1)

Solution!

http://stokes.byu.edu/iso/

ISODISTORT 
Version 6.1.8, November 2014 

Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch,

Pnma k=[1/2,0,0], irrep:  2D mX1(τ1)

P1 (a,0) 11.55   P_a2_1/m,  basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(1/2,0,0), s=2, i=4, k-active= (1/2,0,0)

P3 (a,a) 31.129 P_bmn2_1, basis={(0,1,0),(2,0,0),(0,0,-1)}, origin=(3/4,1/4,0), s=2, i=4, k-active= (1/2,0,0)

C1 (a,b) 6.21    P_am,          basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(0,1/4,0), s=2, i=8, k-active= (1/2,0,0)


Order parameter 
direction

Magnetic Shubnikov 
Space group

orthorhombic Pmn21

Case 1: magnetic mode E1 -> most symmetric maximal subgroup 
of Pnma1’
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Mn1
Mn2

17

Moments along x
 0

 3  4 1  2

 6  1 0  8 7 5  9

 1 1
PS1

PS 1̄Pa21 Pa21PamPccPbc

Pa21/mPc21/cPbmn21Pana21

Pnma1′Bilbao Crystallographic Server 
http://www.cryst.ehu.es

(a,a) (a,0)

(a,b)

irrep:  2D mX1(τ1)

http://stokes.byu.edu/iso/

ISODISTORT 
Version 6.1.8, November 2014 

Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch,

Pnma k=[1/2,0,0], irrep:  2D mX1(τ1)

P1 (a,0) 11.55   P_a2_1/m,  basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(1/2,0,0), s=2, i=4, k-active= (1/2,0,0)

P3 (a,a) 31.129 P_bmn2_1, basis={(0,1,0),(2,0,0),(0,0,-1)}, origin=(3/4,1/4,0), s=2, i=4, k-active= (1/2,0,0)

C1 (a,b) 6.21    P_am,          basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(0,1/4,0), s=2, i=8, k-active= (1/2,0,0)


Order parameter 
direction

Magnetic Shubnikov 
Space group

conventional general solution in RA: lowest symmetry for the given irrep

monoclinic Pm

TmMnO3

Case 2: General solution in RA -> low symmetry non-maximal 
subgroup
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Magnetic structure of Pyrochlore Tm2Mn2O7 at Г-point k=0

Inorg.Chem. 2015, 54, 9092-9097



 0

 1 0  9  8  7  6  5  4  3  2  1
Im′ma Imm′a′ I41/a′md I4′1/amd′ I4′1/a

′m′d I41/am′d′ Fd3̄m

Fd3̄m1′

Fd′3̄′m Fd3̄m′ Fd′3̄′m′

Spin Mn, Tm ≠ 0 Spin Mn, Tm ≠ 0 Spin Mn, Tm ≠ 0 Spin Mn, Tm ≠ 0
FM FM

R-3m’

FM

I4_1/amd

nonFM I4_1'/am'd


nonFM
Fddd

nonFM

R-3m

nonFM

Fd’d’d

FM

C2’/c’

FM

2Γ4+(ab0),Γ5+(0ab)

2Γ4+(a00),Γ5+(0a0)

6modes

3modes

Γ5+(a00)

1modes

2Γ4+(a00)

2modes

primary Γ4+(ab0)

Γ5+(aa0) nonFM 

accidentally or/and

2Γ4+(a0-a) FM

3modes
Γ3+(a0)

1modes

Γ5+(aaa)

1modes

Γ3+(0a),

Γ2+(a)

Γ2+(a)

2modes

1modes

2Γ4+(aaa),

Γ2+(a)

3modes

Γ3+(ab),

Γ2+(a)

3modes

C2/m

FM

2Γ5+(aab), Γ2+(a), Γ4+(a0-a) FM, 
Γ5+(0a-a),

10 modes

P-1

FM

Γ5+(abc), Γ2+(a), Γ3+(ab), 2Γ4+(abc) FM.
12modes, 3modes from primary

two irreps 
needed

�mag = �+
2 (1D)� �+

3 (2D)� �+
5 (3D)� 2�+

4 (3D)

P-1

FM

2Γ4+(abc), Γ2+(a), Γ3+(ab), Γ5+(abc),
12modes

2Γ4+(aa0) FM

C2’/m’

FM

2Γ4+(aab), Γ2+(a), Γ3+(0a), Γ5+(0a-a),
7modes

Solution

Maximal and non-maximal MG for the parent SG 227 (Fd-3m) at gamma point k = (0, 0, 0) 
generated by one irrep for 16d (1/2,1/2,1/2), 16c (0,0,0) position 

Magnetic structure of Pyrochlore Tm2Mn2O7 at Г-point k=0
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choose one irreducible representation (irrep) of PSG
magnetic symmetry representation

No rules to make constraints without symmetry arguments
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Relation of magnetic Shubnikov/superspace 
symmetry and representation analysis RA

20

Paramagnetic crystallographic space group (PSG) Propagation vector of magnetic structure k

choose one irreducible representation (irrep) of PSG

is irrep real and 1D, and single arm {k}-star?

Yes

Shubnikov from PSG 
Symop g that have irrep(g)=-1 
are primed in Sh-group

No is k commensurate?

3D+1 magnetic 
superspace group for 
{k,-k} star in general

No Yes

choice of direction of 
order parameter for 
irrep

combining nD irrep 
based on full star {k} & 
c.c into real 2nD

equivalent

magnetic symmetry representation

Magnetic structure made 
from admissible spin 
directions in Sh-group

Shubnikov from 
isotropy subgroup of 
PSG. 

equivalent

Construction of 
basis functions 
(normal modes)

or in 3D+1 magnetic group

No rules to make constraints without symmetry arguments

Constraints on the 
mixing coefficients 
of basis function for 
>1D irrep and/or 
multi-arm star of k,          
{-k,k} star for 
incommensurate. 

?

Magnetic structure 
made from linear 
combination of 
normal modes.
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symmetry and representation analysis RA
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Paramagnetic crystallographic space group (PSG) Propagation vector of magnetic structure k

choose one irreducible representation (irrep) of PSG

is irrep real and 1D, and single arm {k}-star?

Yes

Shubnikov from PSG 
Symop g that have irrep(g)=-1 
are primed in Sh-group

No is k commensurate?

3D+1 magnetic 
superspace group for 
{k,-k} star in general

No Yes

choice of direction of 
order parameter for 
irrep

combining nD irrep 
based on full star {k} & 
c.c into real 2nD

equivalent

magnetic symmetry representation

Magnetic structure made 
from admissible spin 
directions in Sh-group

Shubnikov from 
isotropy subgroup of 
PSG. 

equivalent

Construction of 
basis functions 
(normal modes)

or in 3D+1 magnetic group

No rules to make constraints without symmetry arguments

Constraints on the 
mixing coefficients 
of basis function for 
>1D irrep and/or 
multi-arm star of k,          
{-k,k} star for 
incommensurate. 

?

Magnetic structure 
made from linear 
combination of 
normal modes.

The disadvantage of using only RA:  

In general:  there are no rules to make constraints,    (except ones based on physical grounds)  

but the constraints appear in a natural way from magnetic group symmetry arguments 

?
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Thank you!
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Paramagnetic crystallographic space group (PSG) Propagation vector of magnetic structure k

choose one irreducible representation (irrep) of PSG

is irrep real and 1D, and single arm {k}-star?

Yes

Shubnikov from PSG 
Symop g that have irrep(g)=-1 
are primed in Sh-group

No is k commensurate?

3D+1 magnetic 
superspace group for 
{k,-k} star in general

No Yes

choice of direction of 
order parameter for 
irrep

combining nD irrep 
based on full star {k} & 
c.c into real 2nD

equivalent

magnetic symmetry representation

Magnetic structure made 
from admissible spin 
directions in Sh-group

Shubnikov from 
isotropy subgroup of 
PSG. 

equivalent

Construction of 
basis functions 
(normal modes)

or in 3D+1 magnetic group

No rules to make constraints without symmetry arguments

Constraints on the 
mixing coefficients 
of basis function for 
>1D irrep and/or 
multi-arm star of k,          
{-k,k} star for 
incommensurate. 

?

Magnetic structure 
made from linear 
combination of 
normal modes.
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Magnetic structure TmMnO3
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Para-electric phase
(3D+1) superspace magnetic group 
Pmcn1’(00g)000s

Ferro-electric phase
polar magnetic group Pbmn21

E = 0

E (polarization)

Example of HRPT & DMC complementarity

Solved from DMC



PSI master class’13 25

Example of accuracy on metric: 
orthorhombic multiferroic TmMnO3

material that have coupled electric, 
magnetic and structural order 
parameters

10-4

δd/d~10-5

accuracy ~0.0001Å=10 fm

Lattice constants

Example of HRPT & DMC complementarity

Refined from HRPT
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Example of accuracy on metric: 
orthorhombic multiferroic TmMnO3

material that have coupled electric, 
magnetic and structural order 
parameters

10-4

δd/d~10-5

accuracy ~0.0001Å=10 fm

Lattice constants

Example of HRPT & DMC complementarity

Refined from HRPT

Spin-lattice coupling


