Magnetic structure determination from the combined use of representation analysis and magnetic crystallographic symmetry

Vladimir Pomjakushin

Laboratory for Neutron Scattering and Imaging, LNS, Paul Scherrer Institute

Plan

Introduction to Representational & magnetic symmetry ways of description

Plan

- Introduction to Representational & magnetic symmetry ways of description
- Morden trends in magnetic structure determination from neutron diffraction ND. Advantages of the combined use of Representation Analysis RA and magnetic subgroups: Shubnikov or 3D+1

Plan

- Introduction to Representational & magnetic symmetry ways of description
- Morden trends in magnetic structure determination from neutron diffraction ND. Advantages of the combined use of Representation Analysis RA and magnetic subgroups: Shubnikov or 3D+1
- Examples: multiferroic TmMnO₃, pyrochlore Tm₂Mn₂O₅

Two ways of description of magnetic structures

Magnetic structure is an axial vector function $S(\mathbf{r})$ defined on the discreet system of points (atoms), e.g. $S(\mathbf{r}) = \mathbf{s}(\mathbf{r}_1) \oplus \mathbf{s}(\mathbf{r}_2) \oplus \mathbf{s}(\mathbf{r}_3) \oplus \mathbf{s}(\mathbf{r}_4)$

Crystal with space group G

1. How to make $S(\mathbf{r})$ invariant? Find (new) symmetry elements. $g_{new} S(\mathbf{r}) = S(\mathbf{r})$ to itself, where $g_{new} \in G_{sh}$ subgroup of PG paramagnetic space group: $PG=G\otimes 1'$, where 1'=spin/time reversal, G (parent space group).

Two ways of description of magnetic structures

Magnetic structure is an axial vector function $S(\mathbf{r})$ defined on the discreet system of points (atoms), e.g. $S(\mathbf{r}) = \mathbf{s}(\mathbf{r}_1) \oplus \mathbf{s}(\mathbf{r}_2) \oplus \mathbf{s}(\mathbf{r}_3) \oplus \mathbf{s}(\mathbf{r}_4)$

Crystal with space group G

1. How to make $S(\mathbf{r})$ invariant? Find (new) symmetry elements. $g_{new} S(\mathbf{r}) = S(\mathbf{r})$ to itself, where $g_{new} \in G_{sh}$ subgroup of PG paramagnetic space group: $PG=G\otimes 1'$, where 1'=spin/time reversal, G (parent space group).

or

2. How should $S(\mathbf{r})$ be transformed under elements of G? $gS(\mathbf{r}) = S^{new}{}_{g}(\mathbf{r})$ to different functions for each $g \in G$

Two ways 1. How to make $S(\mathbf{r})$ invariant? $gS(\mathbf{r}) = S(\mathbf{r})$ to itself, where $g \in$ subgroup of PSG paramagnetic space group: PSG=SG \otimes 1', where 1'=spin/time reversal, SG (parent space group). 2. How should $S(\mathbf{r})$ be transformed? $gS(\mathbf{r}) = S^{new}_{g}(\mathbf{r})$ to different functions for each $g \in$ SG

Magnetic or Shubnikov groups MSG. Historically the first way of description (Landau, Lifshitz 1951). <u>S(r) invariant under the Shubnikov subgroup G_{sh} of G⊗1' (1'=spin/time reversal). Identifying those symmetry elements that leave S(r) invariant. The MSG symbol looks similar to SG one, e.g. *I4/m*'
</u>

Two ways of description of	magnetic	
1. How to make $S(\mathbf{r})$ invariant? $gS(\mathbf{r}) = S(\mathbf{r})$ to itself, where $g \in$ subgroup of PSG paramagnetic space group: PSG=SG \otimes 1', where	MSG Exan 87.1.733	nple: I4/m
1 = spin/time reversal, SG (parent space group). 2. How should $S(\mathbf{r})$ be transformed? $gS(\mathbf{r}) = S^{new}{}_{g}(\mathbf{r})$ to different functions for each $g \in SG$	87.2.734	l4/m1'
50	87.3.735	l4'/m
1. Magnetic or Shubnikov groups MSG. Historically the first way of	87.4.736	l4/m'
Shubnikov subgroup G_{sh} of $G \otimes 1'$ (1'=spin/time reversal).	87.5.737	l4'/m'
Identifying those symmetry elements that leave $S(r)$ invariant.	87.6.738	l _P 4/m
The MSG symbol looks similar to SG one, e.g. 14/m	87.7.739	I _P 4'/m
	87.8.740	l _P 4/m'

87.9.741 I_P4'/m'

Two ways	of description of	magnetic	
1. How to make $S(\mathbf{r})$ invariant? $gS(\mathbf{r}) = S(\mathbf{r})$ to itself, where $g \in subgroup$ of PSG paramagnetic space group: PSG=SG \otimes 1', where 1'=spin/time reversal_SG (parent space group)	structures	MSG Exar 87.1.733	nple: <mark>I4/m</mark>
2. How should $\mathbf{S}(\mathbf{r})$ be transformed? $g\mathbf{S}(\mathbf{r}) = \mathbf{S}^{\text{new}_g}(\mathbf{r})$ to different functions for each $g \in \mathbf{S}^{\text{new}_g}(\mathbf{r})$		87.2.734	l4/m1'
50		87.3.735	l4'/m
1. Magnetic or Shubnikov groups Ma description (London Lifebitz 1051)	87.4.736	l4/m'	
Shubnikov subgroup G_{sh} of $G \otimes 1'$ (1)	87.5.737	l4'/m'	
Identifying those symmetry element The MSG symbol looks similar to S	87.6.738	I _P 4/m	
The WISC Symbol looks similar to S	0 0110, 0.g. 14/11	87.7.739	I _P 4'/m
	VS.	87.8.740	l _P 4/m'
2. Representation analysis. (Bertaut transformed to $S^{i}(\mathbf{r})$ under $g \in G$ (par according to a single irreducible representation)	1967) <u>S(r) is</u> cent space group) sentation* τ: of G	87.9.741	l _P 4'/m'
according to a single inteducible repre-	$\frac{1}{1} = \frac{1}{1} = \frac{1}$		

Identifying/classifying all the functions $S^{1}(\mathbf{r})$ that appears under all symmetry operators of the same space group G

^{*}each group element $g \rightarrow matrix \tau(g)$

Two ways	of	des	scrip	otio	n o	of m	agn	etic		
1. How to make $S(\mathbf{r})$ invariant? $gS(\mathbf{r}) = S(\mathbf{r})$ to itself, where $g \in$ subgroup of PSG paramagnetic space group: PSG=SG \otimes 1', where 1'=spin/time reversal, SG (parent space group).		str	uctu	ires			M 8	ISG Exa 7.1.733	mple: I4/m	
2. How should $\mathbf{S}(\mathbf{r})$ be transformed? $g\mathbf{S}(\mathbf{r}) = \mathbf{S}^{\text{new}_g}(\mathbf{r})$ to different functions for each $g \in \mathbf{S}^{\text{c}}$							8	7.2.734	14/m	11
50							8	7.3.735	14'/n	ı
1. Magnetic or Shubnikov groups MS	SG. His	storica	lly the	first wa	ay of		8	7.4.736	I4/m	i'
description (Landau, Litshitz 1951). Shubnikov subgroup G_{sh} of $G \otimes 1'$ (1'	<u> </u>	<u>invaria</u> ime re	ant underversal).	er the			8	7.5.737	14'/n	ו'
Identifying those symmetry elements	s that le	eave S	(r) inva	riant.			8	7.6.738	I _P 4/r	m
The MSG symbol looks similar to SC	G one,	e.g. 14	4/m'				8	7.7.739	I _P 4'/	m
			VS	5.			8	7.8.740	I _P 4/r	m'
2. Representation analysis. (Bertaut 1 transformed to $S^{i}(\mathbf{r})$ under $g \in G$ (pare according to a single irreducible repres	1967) <u>S</u> ent spa sentatic	b(r) is ace gra on* τ _i a	oup) of <i>G</i> .				8	7.9.741	I _P 4'/	m'
Identifying/classifying all the functions under all symmetry operators of the same	s S ⁱ (r) me spa	that ap ce gro	opears oup G	I4/m	, k=0	irre has 8 1I	e p Exar D irreps	nple: τ ₁ , τ ₈ .		
		τ,ψ	$egin{array}{c} h_1 \ 1 \end{array}$	$egin{array}{c} h_{14} \ 4^+_z \end{array}$	$egin{array}{c} h_4 \ 2_z \end{array}$	$egin{array}{c} h_{15} \ 4_z^- \end{array}$	$h_{25} - 1$	$h_{38} - 4_z^+$	$h_{28} \ m_z$	$h_{39} - 4_z^-$
*each group element $g \rightarrow matrix \tau(g)$	τ	52	1	1	1	1	-1	-1	-1	-1
	τ	3	1	<i>i</i>	-1 1	-i	1	<i>i</i> 1	-1 1	-i
Pomjakushin, UFOX 7-8 July 2016 University of Salerno 2016	τ	5 77	1	-1 -i	-1	-1 <i>i</i>	1	-1 -i	-1	-1 <i>i</i>

Two ways	of	de	scrip)tio	n o	fm	agn	etic		
1. How to make $S(\mathbf{r})$ invariant? $gS(\mathbf{r}) = S(\mathbf{r})$ to itself, where $g \in$ subgroup of PSG paramagnetic space group: PSG=SG \otimes 1', where 1'=spin/time reversal, SG (parent space group).		str	uctu	ires			M 8	ISG Exa 7.1.733	mple: 14/m	I
2. How should $\mathbf{S}(\mathbf{r})$ be transformed? $g\mathbf{S}(\mathbf{r}) = \mathbf{S}^{\text{new}_g}(\mathbf{r})$ to different functions for each $g \in \mathbf{S}^{C}$							8	7.2.734	14/m	1'
50							8	7.3.735	14'/m	ı
1. Magnetic or Shubnikov groups MS	SG. Hi	storic	ally the	first wa	ay of		8	7.4.736	I 4/m	
Shubnikov subgroup G_{sh} of $G \otimes 1'$ (1'	. <u>S(r)</u> /=spin/1	time r	eversal).	<u>er the</u>			8	7.5.737	14'/m	1'
Identifying those symmetry elements	s that lo	eave S	S(r) inva	riant.			8	7.6.738	I _P 4/r	n
The MSG symbol looks similar to S	G one,	e.g. 1	4/ <i>M</i>				8	7.7.739	I _P 4'/	m
	10(7)		VS	5.			8	7.8.740	I _P 4/r	n'
2. Representation analysis. (Bertaut 1 <u>transformed to $S^{i}(\mathbf{r})$ under $g \in G$ (par according to a single irreducible representation</u>	(1967) <u>Sent spa</u> sentatio	<u>5(r) 15</u> ace gr on* τ _i	oup) of <i>G</i> .				8	7.9.741	I _P 4'/	m'
Identifying/classifying all the function under all symmetry operators of the sa	s S ⁱ (r) ime spa	that a acce gro	ppears oup G	I4/m	, k=0	irre has 8 1I	e p Exar D irreps	nple: τ ₁ , τ ₈ .		
	-	τ,ψ	h_1 1	$\begin{array}{c} h_{14} \\ 4_z^+ \end{array}$	$egin{array}{c} h_4 \ 2_z \end{array}$	$h_{15} \ 4_z^-$	$h_{25} - 1$	$h_{38} - 4_z^+$	h_{28} m_z	$h_{39} - 4_z^-$
*each group element $g \rightarrow matrix \tau(g)$)	τ2	1	1	1	1	-1	-1	-1	-1
	1	τ_3	1	i	-1	-i	1	<i>i</i>	-1	-i
Pomjakushin, UFOX 7-8 July 2016 University of Salerno 2016		τ ₅ τ ₇	1	-1 -i	-1	-1 <i>i</i>	1	-1 -i	-1	-1 <i>i</i>

Magnetic space groups and representation analysis: competing or friendly concepts?

In 1960th-70th opposed

E. F. Bertaut, CNRS, Grenoble Representation Analysis (RA)* W. Opechovski, UBC, Vancouver Shubnikov magnetic space groups

even until recent times RA was considered to be more powerful in neutron scattering community.*

* Yu.A. Izyumov, V. E. Naish well known papers (1978-), book:, "Neutron diffraction of magnetic materials", New York [etc.]: Consultants Bureau, 1991.

Magnetic space groups and representation analysis: competing or friendly concepts?

In 1960th-70th opposed

E. F. Bertaut, CNRS, Grenoble Representation Analysis (RA)* W. Opechovski, UBC, Vancouver Shubnikov magnetic space groups

even until recent times RA was considered to be more powerful in neutron scattering community.*

Currently > 2010-...

(Representation Analysis) and (Magnetic space groups) are complementary and **must** be used together to fully identify the magnetic symmetry.

* Yu.A. Izyumov, V. E. Naish well known papers (1978-), book:, "Neutron diffraction of magnetic materials", New York [etc.]: Consultants Bureau, 1991.

Pomjakushin, UFOX 7-8 July 2016 University of Salerno 2016

"Old new" trends in magnetic structure determination from ND. Currently there is solid understanding that both RA and Shubnikov magnetic symmetry should be used together. Big progress in software tools during last 5 years in this way of analysis ...

 In some cases this allows one to find a hidden symmetry, which is not evident from the representation analysis alone. "Old new" trends in magnetic structure determination from ND. Currently there is solid understanding that both RA and Shubnikov magnetic symmetry should be used together. Big progress in software tools during last 5 years in this way of analysis ...

- In some cases this allows one to find a hidden symmetry, which is not evident from the representation analysis alone.
- Regular practice for crystal structure transitions: This approach is routinely used by crystallographers in the analysis of crystal phase transition,
- Magnetic transitions: Usually, representation approach with a single arm and general direction of order parameter of propagation vector star. Possible high symmetry Shubnikov subgroups are lost.

IUCr Commission on Magnetic Structures

Home Membership Meetings ~ Reports ~ Resources ~ Contact IUCr

IUCr Commission on Magnetic Structures

The Commission on Magnetic Structures (CMS) was established *ad interim* by the Executive Committee in January 2011 and confirmed at the Madrid General Assembly in August 2011. It's primary purpose is to facilitate research on the discovery and communication of magnetic structures in magnetically ordered materials; and its present focus is to cultivate a community consisting of interested participants from diverse fields of research, who can establish standards for defining and communicating the crystallographic details of magnetic structures. The scope of the Commission's consideration encompasses a broad range of magnetic structure types, including commensurate magnetic structures, modulated and otherwise aperiodic magnetic structures, low-dimensional magnetic structures, disordered magnetic structures, etc.

Home Membership Meetings ~ Reports ~ Resources ~ Contact IUCr

IUCr Commission on Magnetic Structures

The Commission on Magnetic Structures (CMS) was established *ad interim* by the Executive Committee in January 2011 and confirmed at the Madrid General Assembly in August 2011. It's primary purpose is to facilitate

to establish standards for the description and dissemination of magnetic structures and their underlying symmetries and promote these standards within the IUCr and among other research communities that rely on magnetic structure information.

http://magcryst.org

structures.

structures.

Magnetic moment below a phase transition

S₀₁

S02

*irreducible representation irrep: each group element $g \rightarrow matrix \tau(g)$ that

specifies the spin transformation under element g

k=[1/2,1/2]

Magnetic moment below a phase transition

*irreducible representation irrep: each group element $g \rightarrow matrix \tau(g)$ that specifies the spin transformation under element g

Example of complex magnetic structure

Antiferromagnetic (cycloidal spiral) three sub-lattice ordering in Tb₁₄Au₅₁

P6/m

what if several magnetic modes S_0 are possible in RA?

Pomjakushin, UFOX 7-8 July 2016 University of Salerno 2016

what if several magnetic modes S_0 are possible in RA?

Two commensurate cases when k="rational fraction"

1. multi-dimentional (nD) irreducible representation generates nD magnetic modes S_0^1 , S_0^2 , S_0^3 ... S_0^{nD}

$$\mathbf{S}(0) \sim \sum_{l=1}^{nD} C_l \mathbf{S}_0^l$$

what if several magnetic modes S_0 are possible in RA?

Two commensurate cases when k="rational fraction"

1. multi-dimentional (nD) irreducible representation generates nD magnetic modes S_0^1 , S_0^2 , S_0^3 ... S_0^{nD}

$$\mathbf{S}(0) \sim \sum_{l=1}^{nD} C_l \mathbf{S}_0^l$$

any relations between mixing coefficients C_l ?

$TmMnO_{3}$ Two magnetic modes \textbf{E}_{1} and \textbf{E}_{2} along x.

Mn-position (1) $0, 0, \frac{1}{2}$ (2) $\frac{1}{2}, \frac{1}{2}, 0$ (3) $0, \frac{1}{2}, \frac{1}{2}$ (4) $\frac{1}{2}, 0, 0$

$S_0^1 = E_1 = +1$	+1	-1	-1
$S_0^2 = E_2 = +1$	-1	-1	+1

Pnma k=[1/2,0,0], k20, *X irreps*: two **2D** τ₁, τ₂ Mn mΓ: $3\tau_1 \oplus 3\tau_2$

$TmMnO_{3}$ Two magnetic modes E_{1} and E_{2} along x.

Mn-position (1) $0, 0, \frac{1}{2}$ (2) $\frac{1}{2}, \frac{1}{2}, 0$ (3) $0, \frac{1}{2}, \frac{1}{2}$ (4) $\frac{1}{2}, 0, 0$

Pnma k=[1/2,0,0], k20, *X irreps*: two **2D** τ₁, τ₂ Mn mΓ: $3\tau_1 \oplus 3\tau_2$

$TmMnO_{3}$ Two magnetic modes E_{1} and E_{2} along x.

Pomjakushin, UFOX 7-8 July 2016 Universi,

what if several magnetic modes S_0^1 , S_0^2 , S_0^3 ... are possible in RA? Two commensurate cases when k="rational fraction"

1. multi-dimentional (nD) irreducible representation generates nD magnetic modes S_0^1 , S_0^2 , S_0^3 ... S_0^{nD} nD

 $\mathbf{S}(0) \sim \sum C_l \mathbf{S}_0^l$

2. multi-*Arm*/multi-**k** structure (non-equivalent $\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_m$). *nA* magnetic modes $S_0^1, S_0^2, S_0^3 \dots S_0^{nA}$

RA: widespread unfavorable paradigm that one-**k** is enough...

any relations between mixing coefficients C_l ?

Example of mutiarm full star {**k**₁,**k**₂}: J. Phys.: Condens. Matter **26** 496002

what if several magnetic modes S_0^1 , S_0^2 , S_0^3 ... are possible in RA? Two commensurate cases when k="rational fraction"

1. multi-dimentional (nD) irreducible representation generates *nD* magnetic modes S_0^1 , S_0^2 , S_0^3 ... S_0^{nD}

nD $\mathbf{S}(0) \sim \sum C_l \mathbf{S}_0^l$

2. multi-Arm/multi-k structure (non-equivalent $\mathbf{k}_1, \mathbf{k}_2, \ldots \mathbf{k}_m$). *nA* magnetic modes S_0^1 , S_0^2 , $S_0^3...S_{nA}^{nA}$ $0\frac{1}{2}0 \mathbf{k_{2}} |\mathbf{k_{1}}| \frac{1}{2}00$ $\mathbf{S}(\mathbf{t}_n) \sim \sum_{n=1}^{\infty} C'_m \mathbf{S}_0^m \cos(2\pi \mathbf{k}_m \mathbf{t}_n + \varphi_m)$ RA: widespread unfavorable paradigm that one-k is enough...

Example of mutiarm full star { $\mathbf{k}_1, \mathbf{k}_2$ }: J. Phys.: Condens. Matter 26 496002

any relations between mixing coefficients $C_{l} \text{ or } C'_{m}$?

what if several magnetic modes S_0^1 , S_0^2 , S_0^3 ... are possible in RA?

Two commensurate cases when k="rational fraction"

1. multi-dimentional (nD) irreducible representation generates nD magnetic modes S_0^1 , S_0^2 , S_0^3 ... S_0^{nD}

 $\mathbf{S}(0) \sim \sum_{l=1}^{nD} C_l \mathbf{S}_0^l$

2. multi-*Arm*/multi-k structure (non-equivalent k₁, k₂, ... k_m). *nA* magnetic modes $S_0{}^1$, $S_0{}^2$, $S_0{}^3$... $S_0{}^{nA}{}_{nA}$ $\mathbf{S}(\mathbf{t}_n) \sim \sum_{m=1}^{nA} C'_m \mathbf{S}_0^m \cos(2\pi \mathbf{k}_m \mathbf{t}_n + \varphi_m)$ RA: widespread unfavorable

RA: widespread unfavorable paradigm that one-**k** is enough...

Example of mutiarm full star {**k**₁,**k**₂}: J. Phys.: Condens. Matter **26** 496002

 $0\frac{1}{2}0 \mathbf{k}_{2} |\mathbf{k}_{1}|^{2} \frac{1}{2}00$

any relations between mixing coefficients C_l or C'_m ?

for incommensurate structures:

any constraints on mixing coefficients ? 1. between atoms unrelated by $\overline{1}$? 2. phases along x,y,z? $\mathbf{S}_0 = |C_x|e^{i\phi_x}\mathbf{e}_x + |C_y|\mathbf{e}_y, \phi_x = 0, \frac{\pi}{2}, ...?$ amplitude modulation for $\phi_x = 0$, cycloid or helix for e.g. $\phi_x = \frac{\pi}{2}$,...? { $\mathbf{k}, -\mathbf{k}$ }

what if several magnetic modes S_0^1 , S_0^2 , S_0^3 ... are possible in RA? Two commensurate cases when k="rational fraction" 2. multi-Arm/multi-k structure 1. multi-dimentional (nD) (non-equivalent $\mathbf{k}_1, \mathbf{k}_2, \dots \mathbf{k}_m$). irreducible representation generates *nA* magnetic modes S_0^1 , S_0^2 , *nD* magnetic modes S_0^1 , S_0^2 , S_0^3 ... $S_0^3...S_0^{nA}$ S_0^{nD} $0\frac{1}{2}0 \mathbf{k_{2}} |\mathbf{k_{1}}|^{1}\frac{1}{2}00$ $\mathbf{S}(0) \sim \sum C_l \mathbf{S}_0^l$ $\mathbf{S}(\mathbf{t}_{n}) \sim \sum C'_{m} \mathbf{S}_{0}^{m} \cos(2\pi \mathbf{k}_{m} \mathbf{t}_{n} + \varphi_{m})$ RA: widespread unfavorable Example of mutiarm full star { $\mathbf{k}_1, \mathbf{k}_2$ }: paradigm that one-k is enough... J. Phys.: Condens. Matter 26 496002 any relations between mixing coefficients $C_{l} \text{ or } C_{m}^{'}$? **No** from RA alone... for incommensurate structures: Yes from magnetic any constraints on mixing coefficients? 1. between atoms unrelated by 1? 2. phases along x,y,z? symmetry! $\mathbf{S}_{0} = |C_{x}|e^{i\phi_{x}}\mathbf{e}_{x} + |C_{y}|\mathbf{e}_{y}, \phi_{x} = 0, \frac{\pi}{2}, \dots?$ amplitude modulation for $\phi_x = 0$,

 $\{k, -k\}$

cycloid or helix for e.g. $\phi_x = \frac{\pi}{2}$,...?

Pomjakushin, UFOX 7-8 July 2016 University of Salerno 2016

Antiferromagnetic order in orthorhombic multiferroic TmMn03

- 1. one-arm two dimensional irrep \mathbf{k} =[1/2,0,0]. Ferro-electric phase polar magnetic group P_bmn2_1
- Constraints on basis functions vs. superspace for the incommensurate two arm k=[1/2±δ,0,0]. {k}={-k,+k}. Para-electric phase (3D+1) superspace magnetic group *Pmcn1'(00g)000s [Pnma, bca]*

Pnma

Mr

Re

Symmetry analysis using both RA and magnetic subgroups

Pnma k=[1/2,0,0], *irrep*: **2D** mX1(τ_1)

Symmetry analysis using both RA and magnetic subgroups

Pnma k=[1/2,0,0], *irrep*: **2D** mX1(τ_1)

http://stokes.byu.edu/iso/ ISOTROPY Software Suite

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84606, USA, **ISODISTORT**

Version 6.1.8, November 2014 Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch,

Symmetry analysis using both RA and magnetic subgroups

Pnma k=[1/2,0,0], *irrep*: **2D** mX1(τ_1)

ISOTROPY Software Suite Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84606, USA, ISODISTORT

Version 6.1.8, November 2014 Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch,

http://stokes.byu.edu/iso/

P1 (a,0) 11.55 P_a2_1/m, basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(1/2,0,0), s=2, i=4, k-active= (1/2,0,0) P3 (a,a) 31.129 P_bmn2_1, basis={(0,1,0),(2,0,0),(0,0,-1)}, origin=(3/4,1/4,0), s=2, i=4, k-active= (1/2,0,0) C1 (a,b) 6.21 P_am, basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(0,1/4,0), s=2, i=8, k-active= (1/2,0,0)

Order parameter direction

Magnetic Shubnikov Space group

Symmetry analysis using both RA and magnetic subgroups <u>http://stokes.byu.edu/iso/</u>

Pnma k=[1/2,0,0], *irrep*: **2D** mX1(τ_1)

ISOTROPY Software Suite Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84606, USA,

ISODIŜTORT

Version 6.1.8, November 2014 Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch,

P1 (a,0) 11.55 P_a2_1/m, basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(1/2,0,0), s=2, i=4, k-active= (1/2,0,0) P3 (a,a) 31.129 P_bmn2_1, basis={(0,1,0),(2,0,0),(0,0,-1)}, origin=(3/4,1/4,0), s=2, i=4, k-active= (1/2,0,0) C1 (a,b) 6.21 P_am, basis={(2,0,0),(0,1,0),(0,0,1)}, origin=(0,1/4,0), s=2, i=8, k-active= (1/2,0,0)

Pomjakushin, UFOX 7-8 July 2016 University of Salerno 2016

Pomjakushin, UFOX 7-8 July 2016 University of Salerno 2016

Magnetic structure of Pyrochlore $Tm_2Mn_2O_7$ at Γ -point k=0 141.557 I4_1/am'd' $\Gamma_{mag} = \Gamma_2^+(1D) \oplus \Gamma_3^+(2D) \oplus \Gamma_5^+(3D) \oplus 2\Gamma_4^+(3D)$

Magnetic structure of Pyrochlore $Tm_2Mn_2O_7$ at Γ -point k=0

Maximal and non-maximal MG for the parent SG 227 (Fd-3m) at gamma point k = (0, 0, 0) generated by one irrep for 16d (1/2,1/2,1/2), 16c (0,0,0) position

and Astronomy, Brigham Young University, Provo, Utah 84606, USA,

Magnetic structure of Pyrochlore $Tm_2Mn_2O_7$ at Γ -point k=0

Maximal and non-maximal MG for the parent SG 227 (*Fd*-3*m*) at gamma point k = (0, 0, 0)generated by <u>one irrep</u> for 16d (1/2,1/2,1/2), 16c (0,0,0) position

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physic and Astronomy, Brigham Young University, Provo, Utah 84606, USA,

Pomjakushin, UFOX 7-8 July 2016 University of Salerno 2016

'2I

Thank you!

Magnetic structure TmMn0₃

