HAXPES at PETRA III: electronic structure, operando devices and *in-situ* catalysis

Christoph Schlueter¹, Andrei Gloskovskii¹, Yury Matveyev¹, Patrick Lömker¹, Katrin Ederer¹, Ilja Schostak¹, Michael Sing², Ralph Claessen², Carsten Wiemann³, Claus M. Schneider³, Katerina Medjanik⁴, Gerd Schönhense⁴, Peter Amann⁵, Anders Nilsson⁵ and Wolfgang Drube¹

¹Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ²Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany ³Peter Grünberg Institut, Forschungszentrum Jülich, 52425 Jülich, Germany ⁴Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany ⁵Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden

ABSTRACT

In September 2018, a new X-ray undulator beamline (P22), fully dedicated to hard X-ray photoelectron spectroscopy (HAXPES) techniques, opened to users. This beamline has been designed to the specific needs of the HAXPES user community [1,2]. Adaptive beam focusing is realized by Be compound refractive lenses and/or horizontally deflecting mirrors down to a spot size of ~15x17 μ m² with a flux of up to 1.1x10¹³ ph/s (for Si(111) at 6 keV).

P22 hosts four specialised experimental end stations for high-resolution studies of the electronic and chemical structure of complex materials, realistic device-like structures and catalytic interfaces. The main instrument for conventional HAXPES techniques offers sample cooling and in-situ electrical characterisation for *operando* studies. A separate instrument provides full-field, sub-µm electron spectro-microscopy (HAXPEEM). Additionally, a specialized setup for high-pressure HAXPES applications (POLARIS) recently demonstrated its capabilities at pressures >2.0 bar. Finally, a full-field *k*-microscope with time-of-flight energy discrimination delivered first fully *k*-resolved valence band structures in the HAXPES energy range (up to 7 keV). All instruments are implemented and operated in close collaboration with external user groups and as such reflect the wide range of scientific fields currently covered by our community.

Following a short presentation of the beamline capabilities I will highlight recent results from the instruments operated at P22.

REFERENCES

2. C. Schlueter, A. Gloskovskii, et al. Synchrotron Radiation News 31, 29–35 (2018)

^{1.} C. Schlueter, A. Gloskovskii, et al. AIP conference proceedings 2054(1), 040010 (2019)