Test Measurements with the Technical Prototype for the Mu3e Tile Detector

Konrad Briggl, Huangshan Chen, Hannah Klingenmeyer, Yonathan Munwes, Wei Shen, Tiancheng Zhong and Hans-Christian Schultz-Coulon
Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany

The Mu3e Experiment

• searching for the lepton-flavour violating (LFV) decay $\mu \rightarrow eee$
 → suppressed in extended SM by $O(10^{-54})$
 → enhanced LFV predicted by new physics

• aimed sensitivity of BR < 10^{-16}
 → precise spatial and timing measurements for background suppression needed
 → tracking: pixel detector (HV-MAPS)
 → timing: scintillating tiles/fibres

The Tile Detector

• to be installed on recoil stations (up- and downstream of target)
 → scintillator tiles ($\approx 6\times6\times5$ mm3)
 → signals read out by silicon photomultipliers (SiPMs)
 → dedicated read-out ASIC MuTRiG
 → targeted timing resolution < 100 ps

structure:
• 2 x 16 tiles per submodule
• 14 submodules per module
• 7 modules per full recoil station
• 2 recoil stations (Mu3e phase I)
 → more than 6,000 channels in total

Thermal Simulation Studies of the Tile Detector

• implementation of prototype design in CAD software
• finite-element simulation of heat flux to investigate cooling system
 → ASIC and SiPMs implemented as heat source
 → water-cooled aluminium support structure
 → excellent agreement of simulation with measured data

enriched simulation:
• 14 ASICs implemented as heat sources (14 x 1.2 W)
• stress test: $T_{\text{water}} = 1^\circ \text{C}, T_{\text{air}} = 50^\circ \text{C}$
 → chip temperature below 42$^\circ$C
 → SiPM PCBs sufficiently cooled

Development of a Technical Prototype

• design and equipping of dedicated front end-boards (FEBs)
 → chip bonding
 → soldering of SiPMs and components
 → individual tile wrapping with reflective foils
 → reduce optical cross-talk
 → gluing of tiles to SiPMs
 → assembly of submodules to cooling structure
 → cooling support structure produced in local mechanics workshop

in progress:
• development of production and assembly line for full detector
 → FEB equipping in local electronics workshop
 → dedicated tooling for wrapping and gluing procedures
 → finished prototyping stage
 → simplified assembly to cooling structure to reduce risks of damage
• development of testing and QA scheme in the laboratory
 → gluing and assembly within tolerance limits
 → ASIC functionality
 → SiPM characteristics

Prototype Measurements at DESY

• two testbeam campaigns in February and June 2018 at DESY
• prototype consisting of three submodules
 → one serving as trigger
 → two devices under test (DUTs)
 → moveable in height and angle with respect to beam

 different contributions to ToT spectrum
 → blue: particle fully traversing the tile
 → red: crosstalk
 → green: particle grazing tile
 → excellent timing measurements achieved
 → single channel resolution at 45 ps
 → down to ≈ 18 ps possible for 8 hits per track

Thermal Simulation Studies of the Tile Detector

• implementation of prototype design in CAD software
• finite-element simulation of heat flux to investigate cooling system
 → ASIC and SiPMs implemented as heat source
 → water-cooled aluminium support structure
 → excellent agreement of simulation with measured data