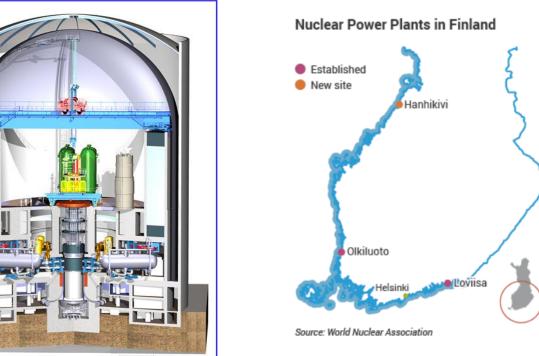


3rd – 5th April, 2019, 11th EMUG Meeting, Switzerland

MELCOR analyses for Loviisa NPP: Results and effect of steel oxidation

Tomi Räihä (tomi.raiha@fortum.com)

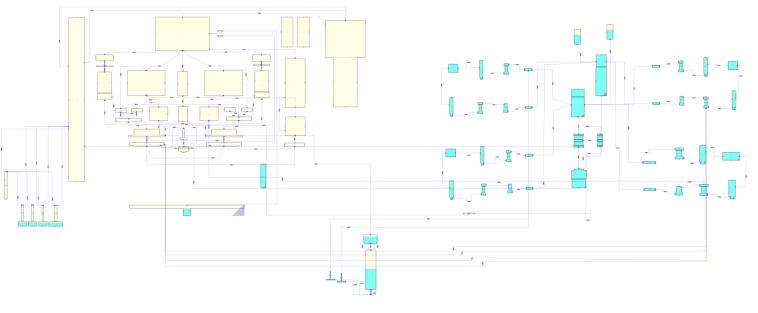
Fortum, Finland


Loviisa Nuclear Power Plant

• Two Soviet-designed VVER-440 PWR reactors (507/502 MWe) taken into operation in 1977/1980 in Loviisa, Finland

Steel containment

- Severe accident systems were installed in 2003 or before
- Relevant systems during severe accident
 - High-pressure injection
 - Low-pressure injection
 - Low-pressure hydro accumulators
 - Containment internal and external sprays
 - Ice condensers
 - Hydrogen recombinators
 - Hydrogen igniters
 - External cooling of RPV



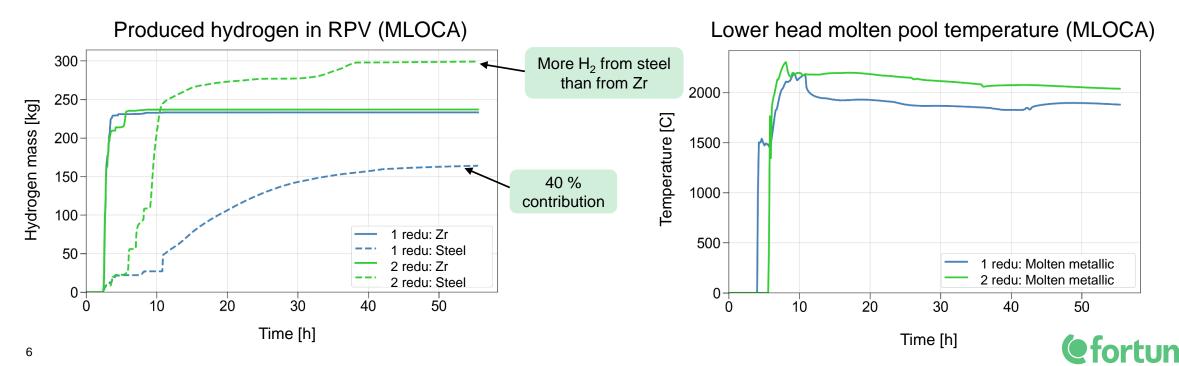
MELCOR nodalization of Loviisa NPP

- Loviisa model
 - 83 control volumes, 291 control functions, 124 flow paths, 139 heat structures
 - MELCOR 2.2.9541

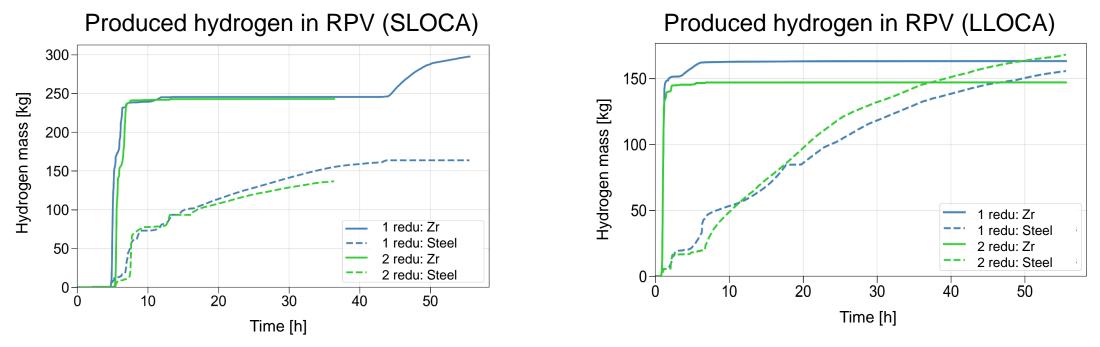
Model view in SNAP

MELCOR analyses done for FSAR in 2018

- Various accident scenarios starting at full power
- Initial state at time 0 s
 - Reactor scram
 - Loss of emergency AC/DC (SBO), separate SAM diesel generators are working
 - Possible LOCA
- Basic LOCA scenarios
 - Primary pipe break of 4 cm² (SLOCA), 22 cm² (MLOCA), 220 cm² (LLOCA)
 - Systems in operation: Primary system depressurization, passive low-pressure hydro accumulators, ice condensers, hydrogen recombiners and igniters, external cooling of RPV
 - Severe accident systems fullfill single failure criterium (depressurization valves, ice condenser door opening, hydrogen recombiners and igniters)


MELCOR analyses done for FSAR in 2018

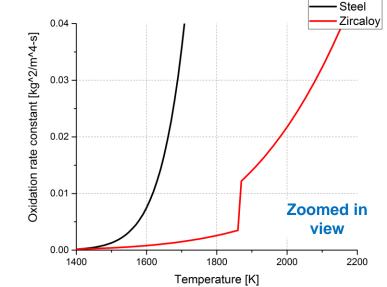
- Additional variation scenarios
 - Enhanced hydrogen production (required by regulatory authority)
 - MLOCA: Delayed reflooding with high-pressure injection
 - MLOCA: Scaling of of zirconium surface area by a factor of 4 (unphysical)
 - MLOCA: Hydrogen igniters not working
 - SBO: Primary circuit stays intact
 - SLOCA: Both RPV depressurization lines working
 - LLOCA: All ice condenser doors were able to be opened


Analysis results: Effect of opening ice condenser doors (1/2)

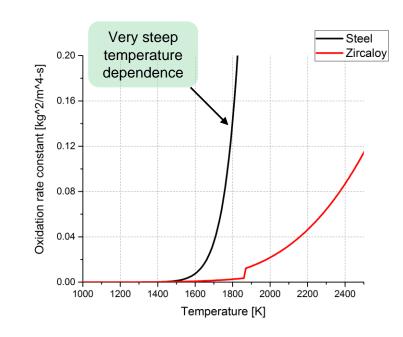
- As a severe accident measure the ice condenser doors are opened to mix the containment atmosphere. The openining system has two redundancies.
- · Using two redundancies instead of one the oxidation of steel almost doubled in MLOCA
- Practically no change in oxidation of zircaloy
- Loviisa NPP: Amount of steel relatively high

Analysis results: Effect of opening ice condenser doors (2/2)

SLOCA and LLOCA do not show notable change in steel oxidation

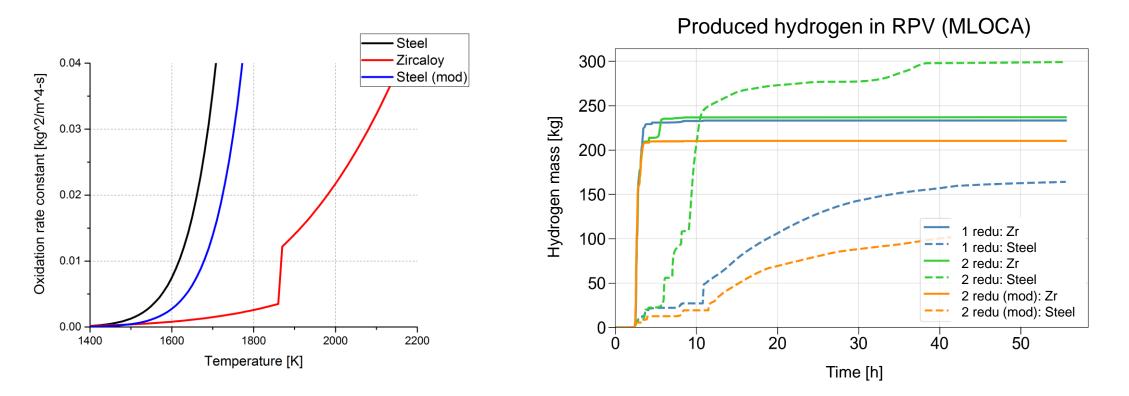


Oxidation processes in MELCOR


- Report: L. Baker, Jr., Hydrogen-generating reactions in LWR severe accidents
 - "White's parabolic rate law appears to describe the observed reaction well at 1400 °C but gives high predictions at 1600 °C"
- Oxidation of steel seems to be very sensitive to temperature in RPV
- SC1002: Steel oxidation constant coefficients

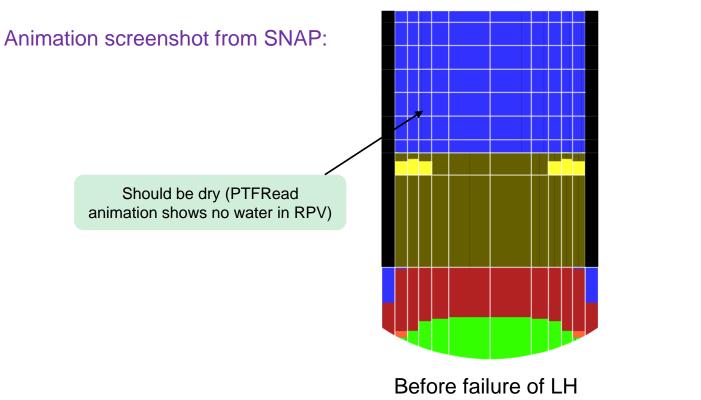
White's rate equation for steel oxidation (MELCOR Reference Manual):

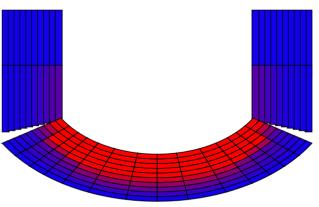
K(T) =
$$2.42 \cdot 10^9 \exp\left(\frac{-42400.0}{T}\right)$$


Oxidation rate constant

Test with modified steel oxidation

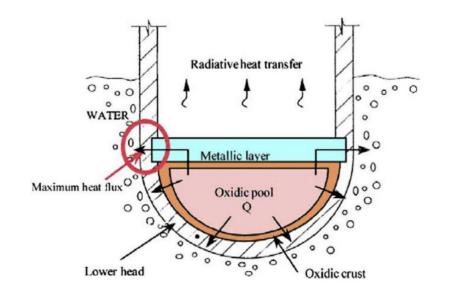
- By adjusting equation parameters possible to tame steel oxidation efficiently
- Modified sensitivity coefficient in testing: SC1002(2,1) = 4.4e4 (default: 4.24e4)


External cooling of RPV

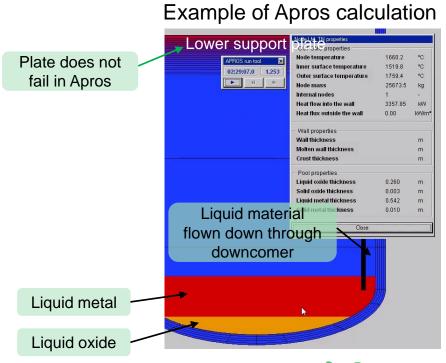

- Loviisa NPP: During severe accident lower part of the containment (reactor cavity, lower compartment) is flooded to provide external cooling
 - keeps the pressure vessel intact and cools down corium
- MELCOR: Sometimes the lower head fails in spite of external cooling
 - Does not reflect our best understanding

Lower head failure

- Change in Loviisa model to prevent from LH failure: Heat flux correlation term SC1245-1 from 0.034 to 0.2
 - Does not always work, difficult to find a realistic set of parameters
- Relatively small liquid oxide pool



46139.2s



Modelling of corium structure

- What we would expect
 - Formation of crust on the lower head
 - Large oxidic and metallic pools, highest heat transfer to the side walls
- Based on currently ongoing "In-vessel melt retention" project MELCOR has significantly different modelling approach than many other codes

Courtesy: Sehgal, Nuclear Safety in Light Water Reactors - Severe Accident Phenomenology, 2012

SA in Loviisa NPP:

Calculation of AICC pressure

- AICC: Adiabatic Isochoric Complete Combustion
 - What would containment pressure be if all hydrogen burned instantly?
- Calculation of AICC pressure required by the regulatory authority in Finland
 - Additional 50 % margin for overpressure
 - Loviisa NPP: dynamic pressure safety limit 3.2 bar
- AICC is calculated during postprocessing of data
 - Requires various information of several nodes

MELCOR analyses to be done for FSAR in 2019

- Various accident scenarios occuring during plant outage
- Things still to be added to the model
 - Removal of RPV lid
 - Cooling down primary coolant
 - Removal part of primary coolant
 - Opening of various doors and hatches
 - Addition of spent fuel pool (located in the containment) as a heat/steam source

- Etc.

- Produced hydrogen from oxidation of steel very sensitive to conditions in RPV
 - Sometimes even more hydrogen than that from oxidation of zircaloy
- Corium on top of lower head
 - Unrealistically RPV may fail in spite of external cooling
- MELCOR provides realistic behaviour of progression of severe accidents in Loviisa NPP
 - Used for FSAR and PRA analyses
 - Provides useful input for various kind of analyses (e.g. transportation of radioactive nuclides in the containment, radiation dose rate calculation using MCNP and doses in the environment)

- Produced hydrogen from oxidation of steel very sensitive to conditions in RPV
 - Sometimes even more hydrogen than that from oxidation of zircaloy
- Corium on top of lower head
 - Unrealistically RPV may fail in spite of external cooling
- MELCOR provides realistic behaviour of progression of severe accidents in Loviisa NPP
 - Used for FSAR and PRA analyses
 - Provides useful input for various kind of analyses (e.g. transportation of radioactive nuclides in the containment, radiation dose rate calculation using MCNP and doses in the environment)

Tomi Räihä tomi.raiha@fortum.com

