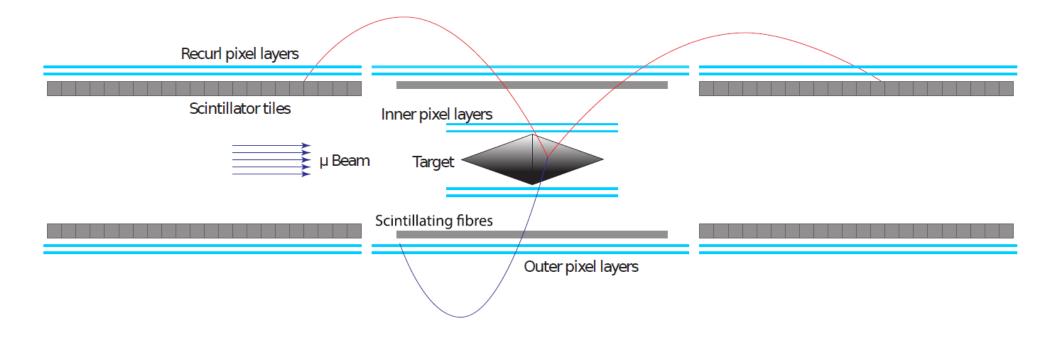


The MuPix 10 – the current state of design

Alena Weber for the Mu3e Collaboration

ASIC and Detector Laboratory, Karlsruhe Institute of Technology and University Heidelberg



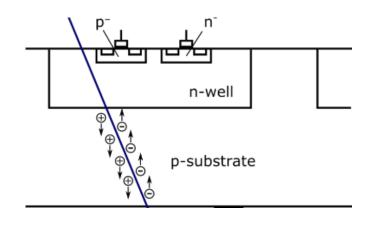
The Mu3e Experiment

HighR UNIVERSITÄT SEIT 1386 Karlsruher Institut für Technolog

- Searching for $\mu^+ \rightarrow e^+ e^- e^+$
- Main requirements of the detector:
 - Precise tracking
 - Minimal material budget

- High Voltage Monolithic Active Pixel Sensors (HV-MAPS) fulfil requirements
- Chosen for tracking layers
- \rightarrow On track to the final chip

26.03.2019

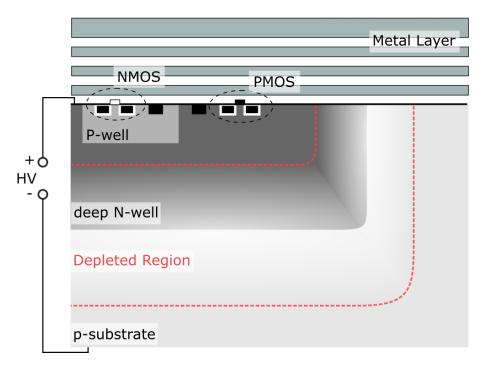

2

HVCMOS

= High Voltage Complementary Metal Oxide Semiconductor

Features

- Fast and efficient charge collection by drift
- Sensor and electronics on the same die
 → monolithic
- Low cost
- Thinned to 50 μm



Properties

■ High depletion voltage ≈ -150 V

Highℝ ∖ ⁺++

- 30 µm depletion depth
- Standard process

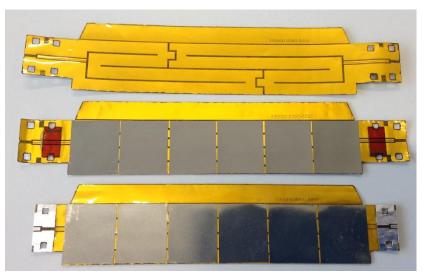
UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Karleruhar Instit

Overview of the latest MuPix and ATLASPix sensors

Main Challenges

Surrounding


- Full size: active sensor size ≈ 2 x 2 cm²
- Move to new technology
 From AMS to TSI
- One single supply voltage

Aim

Provide a chip for building functional Mu3e modules

Design Challenges

- Fully functional
- Operate multiple chips on flexprint
- Limited routing possibilities on flexprint

Parts of the existing mockup

Design transfer to another technology

AMS ah18

- Used for several prototypes > 10
- 6 metal layers

Chances

- One metal layer more: will be used for optimized routing
- Similar technology

TSI 180 nm HVCMOS

- First use in our group in 2018
- Submitted three chips
- Verification by comparison of MuPix7 in AMS and in TSI

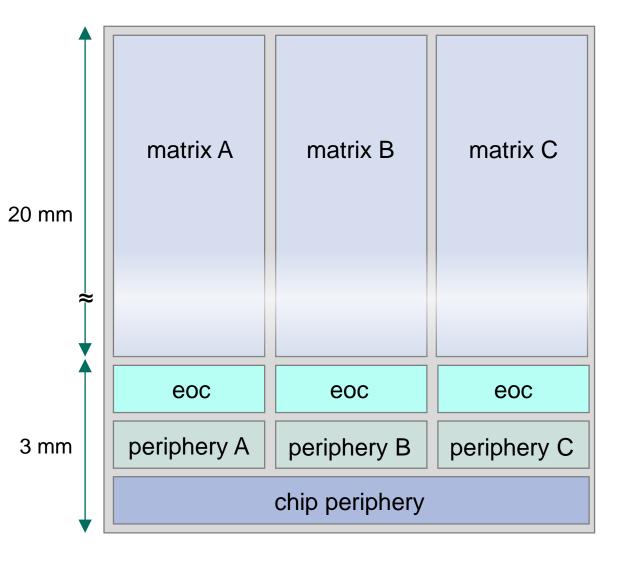
Highℝ

7 metal layers

Challenges

- Layout has to be redone for a few circuits
- Design rules different from metal 5 to the top
- Process similar but not the same

6


UNIVERSITÄT HEIDELBERG ZUKUNFT

Chip overview

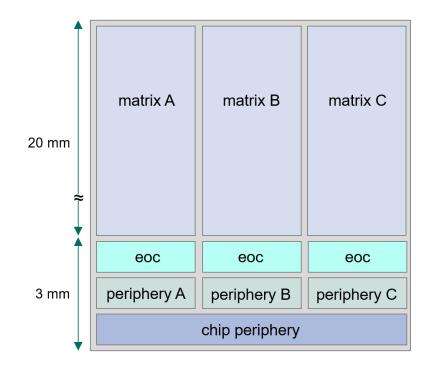
Main parts

- Pixel matrix divided in three submatrices
- Pixel periphery with end of column (eoc)
- Submatrix periphery
- Chip periphery

7

Matrix Design – three submatrices

Common features


- Pixel size 80 x 80 μm²
- 250 pixels per column, in total 250 columns
- Same state machine but one for every matrix
- Chip periphery

Challenges

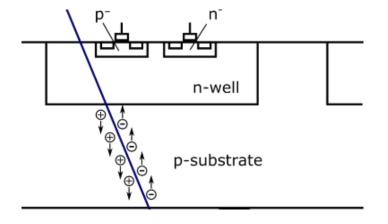
Operate all matrices at the same time with corresponding configuration and shared chip periphery

Separated parts and differences

- Configuration bits can be set individually
- Pixel amplifiers
- Signal transmission

Pixel Cell - Diode

Properties


- Pixel size 80 x 80 μm²
- Diode formed by the deep n-well and p-substrate
- New geometry of n-well

Optimization

- Geometry of charge collection diode will be optimized with TCAD simulations
 - \rightarrow studies ongoing
- Goal: homogeneous electrical field distribution

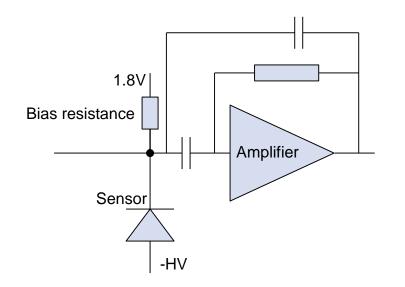
Implementation and Verification

- One optimized geometry chosen for all matrices
- In first columns of matrix A different pixel geometries will be implemented to allow studies and verification

9

Pixel Cell - Amplifier

Properties

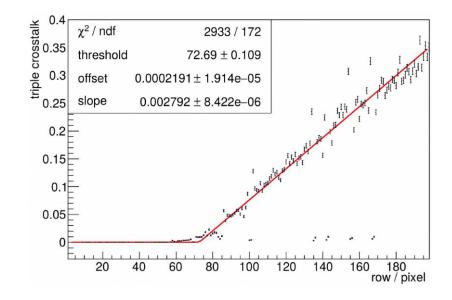

- Amplifier in pixel
- Every pixel maskable

CMOS Amplifier

- Implemented in ATLASPix 3
- Uses vdda = 1,8 V
 no additional voltage needed
- Matrix C

PMOS Amplifier

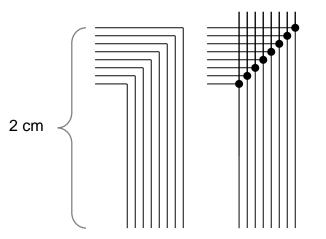
- Implemented in MuPix 8
- Vssa needed = 0,9 V
- Used successfully in many chips
- Matrix A and B


Signal Transmission

Source follower

Implemented in MuPix 8 matrix A

Current driver


- Implemented in MuPix 8 matrices B and C
- Small design modifications needed

High R UNIVERSITÄT SIT 1386 Karlsruher Institut für Technologie

Routing

- For routing in total 3 metal layers
- Routing scheme similar to ATLASPix 3
 - same line length
 - all lines with same shape
 - requires more time for routing
 - suppression of row-dependent change of pulse shape
 - more homogeneous time resolution

Readout Cell

2 Threshold Method

- 2 Comparators per pixel like MuPix 8
- 3 bits per readout cell for threshold tuning
- Lower threshold voltage provides timestamp with less timewalk
- Higher threshold confirms signal

Data Rate

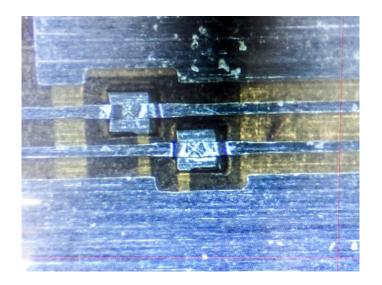
- 11 bits for timestamps
 1 bit more then MuPix 8
- 5 bits for TOT one bit less then MuPix 8
- \rightarrow same data format like MuPix 8
- sampling frequency 250 MHz

Chip Readout and Pads

Readout

- 3 LVDS links (one for every matrix)
- 1 LVDS link with multiplexed signals
- Max. LVDS data rate 1.6 Gbit/s

Monitor internal signals

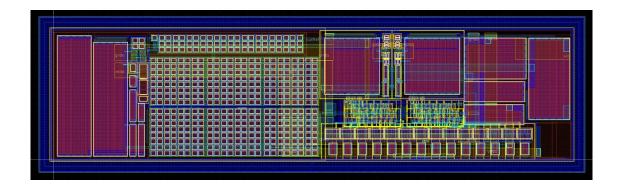

- Temperature
- Amplifier output
- Hitbus
- Bandgap voltage
- Power regulated voltages

Pads

 Minimized number of inputs and outputs to run the chip

Highℝ

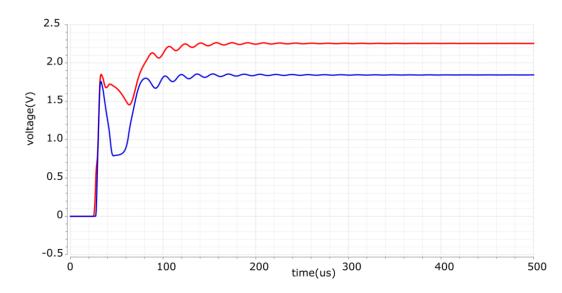
- All pads at the bottom
- Enough space for test to monitor internal signals
- Suitable for TAB-bonding



UNIVERSITÄT HEIDELBERG ZUKUNFT

Power Regulator

Properties


- In Mu3e: one supply voltage: 2.0 2.2 V
- Generates stable 1.8 V and 0.9 V
- Controlled by slow control
- Power separated:
 - Analogue and digital part separated
 - Capacitively coupled
 - Allow different voltage levels for optional serial powering with different schemes

HighR High R Hig

Status

- Power regulator designed for ATLASPix and MuPix
- Actual design submitted with ATLASPix 3

Simulation of 4 chips with power regulator connected in parallel

Summary

- Full size
- Suitable for module building
- A lot of features in one chip old ones, improved ones, new ones
- Different options in one chip including the final MuPix design
- Last prototype
- Final chip based on MuPix 10

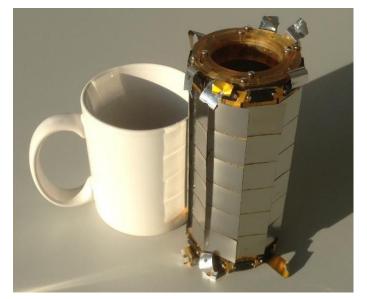


Photo of the existing mockup

BACKUP

Important features from other chips for MuPix 10

- 2 threshold mode MuPix 8
- 3 submatrices MuPix 8
- Pixels with PMOS amplifier MuPix 8
- Slow control MuPix 9
- Analog and digital power supply separated and capacitive coupled MuPix 9
- Power Regulator MuPix 9 and ATLASPix 3
- Pixels with CMOS amplifier ATLASPix 3

Power Regulator

- Only one supply voltage: 2.0 2.2 V
- Similar Power Regulator developed and implanted on ATLASPix 3, submitted in March
- Based on the results of the measurements of this power regulator the circuit will be optimised for MuPix 10
- Power Regulators controlled by slow control
- Power Regulators can be bypassed
- Power Up Reset with max 1 ms length
 - chip in standby
 - chip can be configured \rightarrow slow control is the only powered part
 - power regulators disabled
 - single chips tests without cooling possible
- Analogue and digital part separated regarding to power and capacitively coupled

 \rightarrow allow different voltage levels for optional serial powering with different schemes \rightarrow implemented in MuPix 9 \checkmark