Power distribution for the Mu3e experiment

Frederik Wauters
on behalf of the Mu3e collaboration

Johannes Gutenberg Universität Mainz
The Mu3e experiment

- Standard Model branching ratio 5×10^{-55}
- Mu3e aims for a single event sensitivity of 1×10^{-16} (Phase II)
 of 2×10^{-15} (Phase I = this talk)
 → Search for new physics
 → Previous limit 1×10^{-12} (SINDRUM, 1988)

Signal:
- $\sum E = m_\mu$
- $\sum \vec{p} = 0$

Background:
- Internal conversion
- Combinatorial
The Mu3e detector

- Mu3e detector:
 - $1 \times 10^8 \mu^+$ at the Paul Scherrer Institute
 - Stop muons inside a 1T magnet
The Mu3e detector: power hungry ASICs

- **Mu3e detector:**
 - $1 \times 10^8 \mu^+$ at the Paul Scherrer Institute
 - Stop muons inside a 1T magnet
 - HV-MAPS Si pixel tracker

MuPix chip:
- High Voltage Monolithic Active Pixel Sensors
- $< 0.1\%$ of a radiation length/layer
- 2x2 cm, 50 um thick
- 1.25 Gb/s LVDS readout
- 1.8 VDC, $< 1.6 W$, He gas cooled
The Mu3e detector: power hungry ASICs

• Mu3e detector:
 - $1 \times 10^8 \mu^+$ at the Paul Scherrer Institute
 - Stop muons inside a 1T magnet
 - HV-MAPS Si pixel tracker
 - Outer tracker and timing detectors

MuTrig ASIC:
 - SiPM readout
 - 1.25 Gb/s LVDS
 - 1.8 VDC, < 1W

Frederik Wauters, Aachen, DPG 2019
The Mu3e experiment

Mu3e detector:
- $1 \times 10^8 \mu^+$ at the Paul Scherrer Institute
- Stop muons inside a 1T magnet
- HV-MAPS Si pixel tracker
- Outer tracker and timing detectors
- Frontend board with FPGA to merge data and send data out via optical links

112 x Frontend board:
- ArriaV FPGA
- LVDS in, optical out
- $1.1 \rightarrow 3.3$ VDC @ ≈ 15 W

- 3304 detector ASICs
- 5 kW @ 1.8 VDC
- 100 Gb/s @ 1.25 Gb/s
The Mu3e experiment

- **Mu3e detector:**
 - $1 \times 10^8 \mu^+$ at the Paul Scherrer Institute
 - Stop muons inside a 1T magnet
 - HV-MAPS Si pixel tracker
 - Outer tracker and timing detectors
 - Frontend board with FPGA to merge data and send data out via optical links
 - Power distribution & DC-DC conversion
The Mu3e experiment

- **Mu3e detector:**
 - $1 \times 10^8 \mu^+$ at the Paul Scherrer Institute
 - Stop muons inside a 1T magnet
 - HV-MAPS Si pixel tracker
 - Outer tracker and timing detectors
 - Frontend board with FPGA to merge data and send data out via optical links
 - Power distribution & DC-DC conversion
 - Very limited space for electronics
Power distribution

12 x 12 20VDC

High density feedthrough
~ 10 kW

Outside

He volume

Frontend boards

Power crate

DC-DC converters in magnetic field

2x18 cm flex with tap bonded 2x2 cm chips

! 2 x 14 μm Al for signal and power!

Cu bars along the beamline

Mupix chips

Flex

Outside He volume

‘no space’ region

Frederik Wauters, Aachen, DPG 2019
DC-DC converters

- Requirements DC-DC converters
 - $V_{in} = 20$ VDC
 - Efficiency $> 75\%$
 - Ripple of $V_{out} <$ few mV
 - Compact

<table>
<thead>
<tr>
<th>Number</th>
<th>Device</th>
<th>V_{out} (V)</th>
<th>Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.1</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>112</td>
<td>Detector ASIC</td>
<td>2.2</td>
<td>10-27</td>
</tr>
</tbody>
</table>
DC-DC converters

- Requirements DC-DC converters
 - $V_{\text{in}} = 20\ V_{\text{DC}}$
 - Efficiency > 75%
 - Ripple of $V_{\text{out}} < \text{few mV}$
 - Compact

- Design concept
 - Buck convertor topology
 - Commercial controller / switch +
 - Custom aircoil because B Field

\[
V_{\text{out}} = \text{Duty cycle} \times V_{\text{in}}
\]

$\Delta V = \Delta Q / C \ (\text{in theory})$

<table>
<thead>
<tr>
<th>Number</th>
<th>Device</th>
<th>$V_{\text{out}} (V)$</th>
<th>Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.1</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>112</td>
<td>Detector ASIC</td>
<td>2.2</td>
<td>10-27</td>
</tr>
</tbody>
</table>
DC-DC convertors

- Requirements DC-DC convertors
 - Vin = 20 VDC
 - Efficiency > 75%
 - Ripple of Vout < few mV
 - Compact

- Design concept
 - Buck convertor topology
 - Commercial controller / switch +
 - Custom aircoil because B Field

<table>
<thead>
<tr>
<th>Number</th>
<th>Device</th>
<th>Vout (V)</th>
<th>Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.1</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>112</td>
<td>Detector ASIC</td>
<td>2.2</td>
<td>10-27</td>
</tr>
</tbody>
</table>

+ We don`t have to invent the wheel (e.g. FEAST modules of Atlas & CMS)

- Specs of existing CERN boards ≠ Mu3e requirements
DC-DC convertors

- Requirements DC-DC convertors
 - \(V_{\text{in}} = 20 \text{ VDC} \)
 - Efficiency > 75%
 - Ripple of \(V_{\text{out}} \) < few mV
 - Compact

- Status:
 - Aircoil design ready: 2 x 1 cm
 - Prototype for each type
 - Currently: testing / noise study

<table>
<thead>
<tr>
<th>Number</th>
<th>Device</th>
<th>(V_{\text{out}}) (V)</th>
<th>Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.1</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>112</td>
<td>Detector ASIC</td>
<td>2.2</td>
<td>10-27</td>
</tr>
</tbody>
</table>
DC-DC convertors

- Requirements DC-DC convertors
 - Vin = 20 VDC
 - Efficiency > 75%
 - Ripple of Vout < few mV
 - Compact

- Status:
 - Aircoil design ready: 2 x 1 cm
 - Prototype for each type
 - Currently: testing / noise study

<table>
<thead>
<tr>
<th>Number</th>
<th>Device</th>
<th>Vout (V)</th>
<th>Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.1</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>112</td>
<td>Detector ASIC</td>
<td>2.2</td>
<td>10-27</td>
</tr>
</tbody>
</table>

Frederik Wauters, Aachen, DPG 2019
DC-DC convertors

- Requirements DC-DC convertors
 - $V_{in} = 20 \text{VDC}$
 - Efficiency $> 75\%$
 - Ripple of $V_{out} < \text{few mV}$
 - Compact

- Status:
 - Aircoil design ready: $2 \times 1 \text{ cm}$
 - Prototype for each type
 - Currently: testing / noise study

<table>
<thead>
<tr>
<th>Number</th>
<th>Device</th>
<th>V_{out} (V)</th>
<th>Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.1</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>112</td>
<td>Detector ASIC</td>
<td>2.2</td>
<td>10-27</td>
</tr>
</tbody>
</table>

10 mV Pk-PK

Efficiency vs. load current

Frederik Wauters, Aachen, DPG 2019
DC-DC convertors

- **Requirements DC-DC convertors**
 - Vin = 20 VDC
 - Efficiency > 75%
 - Ripple of Vout < few mV
 - Compact

- **Status:**
 - Aircoil design ready: 2 x 1 cm
 - Prototype for each type
 - Currently: testing / noise study

- **Testing program:**
 - Noise study: second filter? + shielding
 - Mechanical/durability testing
 - Feedback stability → load transients

<table>
<thead>
<tr>
<th>Number</th>
<th>Device</th>
<th>Vout (V)</th>
<th>Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.1</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>112</td>
<td>Detector ASIC</td>
<td>2.2</td>
<td>10-27</td>
</tr>
</tbody>
</table>

Frederik Wauters, Aachen, DPG 2019
Requirements DC-DC convertors
- $V_{in} = 20\text{ VDC}$
- Efficiency $> 75\%$
- Ripple of $V_{out} < \text{few mV}$
- Compact

Status:
- Aircoil design ready: $2 \times 1\text{ cm}$
- Prototype for each type
- Currently: testing / noise study

Testing program:
- Noise study: second filter? + shielding
- Mechanical/durability testing
- Feedback stability \rightarrow load transient

<table>
<thead>
<tr>
<th>Number</th>
<th>Device</th>
<th>V_{out} (V)</th>
<th>Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.1</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>112</td>
<td>Frontend board</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2</td>
<td>10-27</td>
</tr>
</tbody>
</table>

Conclusion
- Mu3e under construction (2021)
- Powering scheme
- DC-DC converter prototypes
 - High I
 - B field
 - Compact