Mu3e electrical readout chain

Lars Olivier Sebastian Noehte on behalf of the Mu3e Collaboration Physikalisches Institut Heidelberg University DPG Frühjahrstagung – Aachen

March 25, 2019

Mu3e experiment - $\mu^+ \rightarrow e^+ e^- e^+$

- Charged lepton flavor violating decay
- High vertex and momentum resolution needed
- Low momentum $p_e \leq 53 \,\mathrm{MeV/c}$
- Multiple scattering demands low material budget

J.

et

 e^{-}

Ve

Mu3e detector - tracker

- Four tracking layers
- Divided into ladders with length 6 (inner) and 17/18 (outer) MuPix chips
- Electrically separated in the middle
- Routed from the center to the end of the barrel

Mu3e detector

- $X/X_0 = 0.115\%$ per layer
- \circ 1.25 Gbit/s
- Continuous data stream
- 3060 differential links

- Trace length
 - $\triangleright \sim 24 \, cm$ over HDI + flex prints
 - $\triangleright \sim 2 m$ over twisted pairs

- $X/X_0 = 0.115\%$ per layer
- \circ 1.25 Gbit/s
- Continuous data stream
- 3060 differential links

- Trace length
 - $\triangleright \sim 24 \, cm$ over HDI + flex prints
 - $\triangleright \sim 2 m$ over twisted pairs

- $X/X_0 = 0.115\%$ per layer
- \circ 1.25 Gbit/s
- Continuous data stream
- 3060 differential links

- Trace length
 - $\triangleright \sim 24 \, cm$ over HDI + flex prints
 - $\triangleright \sim 2 m$ over twisted pairs

- $X/X_0 = 0.115\%$ per layer
- \circ 1.25 Gbit/s
- Continuous data stream
- 3060 differential links

- Trace length
 - $ightarrow \sim 24 \, cm$ over HDI + flex prints
 - $\triangleright \sim 2 m$ over twisted pairs

Aluminum High Density Interconnects (HDI) technology

- Two layers polyimide aluminum laminate
- Single-point Tape Automated Bonding (SpTAB)
 - ▷ Ultra sonic induced welding
 - ▶ No extra material
 - Bonding yield close to 100% \triangleright
 - ▶ Small risk of intermetallics

LTU HDI

135

LTU HDI

MET.

HDI Measurements

- ${\rm \circ}~$ BERT at 95% CL
 - ▷ @ $1.25 \, \text{GBit/s:} \le 4.28 \times 10^{-14}$
 - ▷ @ 2.50 GBit/s: $\leq 2.56 \times 10^{-13}$
- $\circ~@~625\,\mathrm{MHz}$ attenuation at $-(12.3\pm0.2)\,\mathrm{dB/m}$
- Impedance Z_{diff} between $80\,\Omega$ and $135\,\Omega$
- No crosstalk detected even after detailed jitter and noise analysis

MuPix readout over wire bonds

N.S.

MuPix readout over HDI

- First LTU HDI bonded to a MuPix8
- Connects all necessary pads from the chip to an insertable readout PCB
- Various trace lengths possible (approx. $1 24 \,\mathrm{cm}$)
- $\circ~1.5$ layer stack

Unshielded Twisted Pair Cable (UTP)

- Already used in CMS readout (up to 160 Mbit/s)
- First step: 1.25Gbit/s characterization by Beat Meier (PSI)
 - $\triangleright~{\rm Signal~loss} \sim 1.9\,{\rm dB/m}$
 - $\triangleright\,$ Differential impedance between 85 Ω and 90 $\Omega\,$

Vertical slice mockup

Samtec Zray design guide

Outlook

