TCAD Simulation of High Voltage Monlithic Active Pixel Sensors

Annie Meneses Gonzalez Physikalisches Institut Heidelberg

HV-MAPS

High Voltage Monolithic Active Pixel Sensor

- ▶ Integrated readout electronic and sensor.
- ▶ Implemented in a commercial CMOS process.
- Depletion area ~ 15 μm at -60V for 20 Ωcm .
- ▶ Fast charge collection via drift.

*N. Wermes / Nuclear Instruments and Methods in Physics Research A 650 (2011) 245–252

HV-MAPS

High Voltage Monolithic Active Pixel Sensor

- ▶ Integrated readout electronic and sensor.
- ▶ Implemented in a commercial CMOS process.
- Depletion area ~ 15 μm at -60V for 20 Ωcm .
- ▶ Fast charge collection via drift.

Technology Computer Aided Design

Use of computer simulations to develop and optimize semiconductor processing technologies and devices.

Why TCAD?

- ▶ Fabrication process and electrical behavior.
- ▶ Tiny and complex structures.
- ▶ 2D and 3D Simulations.
- Visualization tool.
- ▶ Save time and money.
- ▶ Complement to laboratory measurements.

SYNOPSYS°

TCAD Process Flow

► Structure Simulation (Device structure and doping profiles)

^{*}Layout of MuPix8

- Device Simulation (Physical models: temperature, mobility, recombination, avalanche, radiation damage)
 - 1. Quasistationary (Breakdown Voltage, Capacitance, Electric Field ...)
 - 2. Transient simulation of Minimum Ionizing Particle (MIP) (Charge collection process)

► Simple Pixel Structure

Ionizing radiation damage in the Si-SiO2 interface*

eDensity

*Charge density in Si-SiO2 interface from 10^{11} cm⁻² to 10^{12} cm⁻² between 0 and 10^8 Rad

► Simple Pixel Structure

Ionizing radiation damage in the Si-SiO2 interface*

eDensity

*Charge density in Si-SiO2 interface from 10^{11} cm⁻² to 10^{12} cm⁻² between 0 and 10^8 Rad

► Simple Pixel Structure

▶ Pixel Isolation

► Simple Pixel Structure

Pixel Isolation

eDensity @ 20 Ωcm @ 10¹¹ density of charge in Si-SiO2 interface

▶ p-spray: Decrease of crosstalk.

 p-spray: Breakdown Voltage have to be optimize

@ 20 Ωcm @ 10¹¹ Si-SiO2 interface charge

Electric Field

Breakdown:

- 1. n-well p-spray junction
- 2. SiO2 gap between metal layers

@ 20 Ωcm @ 10¹¹ Si-SiO2 interface charge

Electric Field

Breakdown:

- 1. n-well p-spray junction
- 2. SiO2 gap between metal layers

Electric Field

▶ 1 μm mask

• 4 μm mask

@ 20 Ωcm @ 10^{11} Si-SiO2 interface charge

Electrostatic Potential

▶ 1 μm mask

@ 20 Ωcm @ 10^{11} Si-SiO2 interface charge

@ 20 Ωcm @ 10¹¹ Si-SiO2 interface charge

Electric Field

Breakdown:

- 1. n-well p-spray junction
- 2. SiO2 gap between metal layers 1 μm gap BDV: -170 V 2 μm gap BDV: -180 V

Ωcm

Current signal at -150 V (hit between pixels) 1.4 20 Ωcm 1.2 -80 Ωcm 200 Ωcm 1.0 1000 Ωcm Current [µA] 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Time [ns]

eCurrentDensity
20 Ωcm
-150 V
10¹¹ Si-SiO2 interface charge

- ► TCAD simulation is a powerful tool for designing and optimization of semiconductor detectors.
- ▶ Better understanding of the detector performance.
- ▶ Ongoing studies of pixel estructure (pixel size, inter pixel distance, guardring, radiation damage) to improve the performance of the MuPix and ATLASPix prototypes.
- ► ATLASPix3 design includes modifications based on the results of this study.

HV-MAPS structure

▶ Si p-substrate

Resistivity: 80, 200 and 1000 Ωcm Depth: 40 μ m

n-well

Concentration: $6.5^{*10^{15}}$ cm⁻² Depth: $6.5 \ \mu$ m

► shallow n-well Concentration: 6.5*10¹⁶ cm⁻²

Depth: 0.7 $\mu\mathrm{m}$

- Aluminum Contacts
- ▶ Silicon Dioxide

Depth: 1.0 $\mu\mathrm{m}$

▶ Pixel Guardring

2

Inter Pixel Capacitance at -60 V

3

pixel 1 2 20 Ωcm : 8 fF pixel 1 3 20 Ωcm : 8 fF pixel 1 2 80 Ωcm : 5 ff pixel 1 2 80 Ωcm : 5 fF pixel 1 2 200 Ωcm : 4 fF pixel 1 3 200 Ωcm : 3.5 fF pixel 1 2 1000 Ωcm : 3 fF pixel 1 3 1000 Ωcm : 57 aF

@ 1MHz

New Structure 3

