

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ A Control System for the Mu3e DAQ Martin Müller, DPG Spring Meeting 2019 Aachen

Mu3e



Mu3e DAQ



#### Mu3e

- search for the decay  $\mu^+ \rightarrow e^+ e^- e^+$
- allowed in the SM via internal neutrino oscillation
- predicted branching ratio of 10<sup>-54</sup> (not observable)
- observation of  $\mu^+ \rightarrow e^+ e^- e^+$  would be a clear sign for new Physics
- previous upper limit:  $BR=10^{-12}$ SINDRUM (1988)
- Mu3e will aim for 10<sup>-15</sup>



### The Mu3e Experiment

Mu3e



https://www.psi.ch/media/the-psi-proton-accelerator

- Mu3e will be located at the Paul Scherrer Institute (PSI)
- world's most powerful proton accelerator (HIPA)
- 590 MeV, 2 mA
- 10<sup>8</sup>µ/s in a secondary beamline
- muons stopped in a target
- Inside a 1 T magnetic field

The Mu3e Experiment





#### Background processes

combinatorical

...

- for signal events:  $\sum \vec{p} = 0$ ,  $\sum E = m_{\mu}$ ,  $\Delta t = 0$
- $\blacksquare \rightarrow$  need good momentum, vertex and time resolution
- multiple scattering  $\rightarrow$  material budget



Mu3e The MuPix

#### The Mu3e Experiment

Mu3e DAQ

### Development of a pixel sensor for the Mu3e experiment

- pixel size of 80x80  $\mu m^2$ , can be thinned down to 50 $\mu m$
- includes analog and digital readout electronics on chip
- high voltage bias → "HV-MAPS"
- **prototype efficiency** > 99%
- time resolution < 10 ns



Martin Müller





- pixel sensors mounted in 4 layers on kapton strips
- scintillating fibres (∆t =500 ps) & tiles (∆t =70 ps) to increase timing precision
- $\rightarrow$  need time synchronization (clock and reset) to a precision of  $\mathcal{O}(10 \text{ ps})$
- expected data rate of up to 1 TBit/s





- 3 Layer system
- 112 Frontend boards (FEB) connected to Pixel sensors and scintillators
- fast optical connection to 4 Switching boards
- daisy Chain of GPUs with Arria10 development boards as optical receiver
- more in the next two talks ...





#### Clock Transmission Boards

Mu3e



 clock & reset distribution board

Mu3e DAG

- provides 144 copies of a optical clock and 144 copies of a optical reset signal
- FEB's have optical receivers for clock and reset
- other components need electrical input ...

The Mu3e Experiment



#### Clock Transmission Boards

Mu3e

- converts the optical clock to electrical signal
- used inside the filter farm PCs
- programmable via SPI with the receiver board
- designed by a bachelor student (Tobias Wagner)



Mu3e DAQ

The Mu3e Experiment





- synchronisation test results:
- 10 ps relative delay (with clock chip corrections and reset synchronised in firmware)
- jitter < 2 ps</p>
- can be maintained across the system
- using MIDAS to control reset signals



- continuous development since 1988
- control of fast and slow data
- integrates all parts of a DAQ into a single system with an online database
  - data logger
  - custom device drivers
  - alarm system
  - history system
  - electronic logbook (ELOG)
  - ...
- user interface: MIDAS Web Server
- more information: https://midas.triumf.ca







| 132 | Mu3e           | The Mu3e Experiment | Mu3e DAQ |
|-----|----------------|---------------------|----------|
| Ø   | DAQ test setup |                     |          |
|     |                |                     |          |



- user interfaces
- horizontal scaling (more FEB's)
- replacing preliminary parts with the final components
- integrating the real pixel, fibre and tile detector



Mu3e □ The Mu3e Experiment

Mu3e DAQ

#### DAQ test setup



# Questions ?

## Backup

| Mart | Mu3e                 | The Mu3e Experiment | Mu3e DAQ |
|------|----------------------|---------------------|----------|
| 30   | FEB States           |                     |          |
| ()   | and Data send to SWB |                     |          |

| FEB State   | $Data{	o}SWB$       | Comment                  |  |
|-------------|---------------------|--------------------------|--|
| Idle        | Slowcontrol         |                          |  |
| Run Prepare | Slowcontrol         |                          |  |
|             | Active signal       | only once                |  |
| Sync        | -                   |                          |  |
| Running     | Slowcontrol         |                          |  |
|             | MuPix data          |                          |  |
| Terminating | Slowcontrol         |                          |  |
|             | MuPix data          | "leftovers" from running |  |
|             | Run tail            | only once                |  |
| Link Test   | BERT's              | bit error rate tests     |  |
| Sync Test   | Timing measurements |                          |  |
| Reset       | _                   |                          |  |
| Out of DAQ  | Slowcontrol         |                          |  |

use reset link to distribute control signals from GENESIS

Mu3e

The Mu3e Experiment

Mu3e DAQ

#### Reset signals

| Command         | Code | Payload              | Comment |
|-----------------|------|----------------------|---------|
| Run Prepare     | 0x10 | 32 bit run number    |         |
| Sync            | 0x11 | -                    |         |
| Start Run       | 0x12 | -                    |         |
| End Run         | 0x13 | -                    |         |
| Abort Run       | 0x14 | -                    |         |
| Start Link Test | 0x20 | To be specified      |         |
| Stop Link Test  | 0x21 | -                    |         |
| Start Sync Test | 0x24 | To be specified      |         |
| Stop Sync Test  | 0x25 | -                    |         |
| Test Sync       | 0x26 | To be specified      |         |
| Reset           | 0x30 | 16 bit mask          |         |
| Stop Reset      | 0x31 | 16 bit mask          |         |
| Enable          | 0x32 |                      |         |
| Disable         | 0x33 |                      |         |
| Address         | 0x40 | 16 bit address       |         |
|                 |      | scheme to be defined |         |



#### Reset control singals

- Implemented in hardware, including ...
  - Payload
  - Addressing
  - synchronisation across multiple FEB's
- MIDAS frontend communicating with GENESIS



- 3 categories of control data:
  - default (optical)
    - large amounts of data
    - pixel configuration
    - firmware updates
    - ...
  - safety-related data (MSCB)
    - temperatures
    - pressure
    - **.**.
    - redundancy for some measurements required
  - time critical signals (optical reset)
    - timestamp synchronisation