

Track reconstruction for the Mu3e experiment

Alexandr Kozlinskiy (Mainz, Institut für Kernphysik)

on behalf of the Mu3e collaboration

DPG 2019 @ Aachen (.03.26, T42.1)

Mu3e experiment:

- Search for Lepton Flavor Violation (LFV)
 - Decay: $\mu^+ \rightarrow e^+ e^+ e^-$
 - Standard Model: Br $< 10^{-54}$ (not observable)
 - Enhanced in New Physics (NP) models
 - Any observed decay will point to NP
- Location: Paul Scherrer Institute (PSI)
 - Commission in 2020-21

Current experimental status:

- SINDRUM (1988) Nucl. Phys. B299(1988)1
- Br $< 10^{-12}$ at 90% c.l

Mu3e aim for sensitivity of one in $10^{15}~\mu\text{-decays}$

- With existing beam line at PSI: $10^8 \mu/s$
- Better sensitivity with new beam line $(10^9 \mu/s)$

Signal & Background

Signal:

- Three tracks
- Decay at rest
 - $\sum E_e = m_\mu \ (E_e < 53 \,\mathrm{MeV/c})$
 - $\sum \mathbf{p}_e = 0$
 - Common vertex & time

Background:

- Random combinations:
 - $\mu^+ \rightarrow e^+ + 2\nu$, e^{\pm} scattering
 - Fake tracks
 - Not same vertex, time, etc.
- Internal conversion:
 - $\mu^+ \rightarrow e^+ e^+ e^- + 2\nu$
 - Missing momentum & energy

Mu3e Detector (1)

Muons stop and decay on target:

- Double cone hollow target
 - O(100) µm thickness
 - Vertex separation
- Existing beam line at PSI:
 - Continuous muon beam
 - O(10⁸) μ^+/s

Inner pixel layers:

- Thin & high granularity
- 99.9% efficiency
- As close as possible to target
 - Reduce effect of Multiple Scattering (MS) and pixel size
 - Improve vertex resolution

Mu3e Detector (2)

Two outer pixel layers:

- Reconstruct momentum
- 1 Tesla $\rightarrow \min p_T \approx 12 \text{ MeV/c}$ (limited by outer layer radius)

Scintillating fibres:

- $\sigma_t < 1$ ns
- Suppress accidental BG
- Charge ID

Mu3e Detector (3)

Particles bend back in magnetic field:

- Dedicated 'recurl' stations
- Improve momentum resolution (factor 5-10 improvement)

Recurl stations:

- Two pixel layers (same as central station)
- Scintillating tiles
 - $\sigma_t < 100 \text{ ps}$
 - Suppress accidentals

HV-MAPS

High Voltage - Monolithic Active Pixel Sensor

- Commercially available technology
- Large area $(2 \times 2 \text{ cm}^2)$
- High granularity (pixel size $80 \times 80 \ \mu m^2$)
- Thin (50 µm)
- Fast charge collection via drift (HV, $\sigma_t \approx 15$ ns)
- High efficiency (> 99%)

I.Peric, NIM A582(2007)876

See T-27.1 and T-27.2

"Motivation"

A lot of data from detector:

- $10^8 \mu/\text{s}$ stop and decay on target \approx same number of electrons
- O(10¹⁰) pixel hits/s + fibre & tile hits

Need reconstruction:

- Fast (online tracking @ filter farm)
- $\bullet \ \rightarrow \, {\rm fast \ fit}$

Triplet fit

- Track in mag.field:
- Helical trajectory
- Require minimum 3 hits

If no pixel uncertainty and no energy loss:

- Triplet trajectory with Multiple Scattering (MS) in middle point
- One parameter curvature $r \pmod{p}$
- MS angles $\varphi_{MS}(r), \lambda_{MS}(r)$

Fit - minimize χ^2 (scattering angle):

•
$$\chi^2=\varphi^2_{MS}(r)/\sigma^2_{MS}+\lambda^2_{MS}(r)/\sigma^2_{MS}$$

- No analytical solution
- Small MS angles \rightarrow linearization around known solution (circle in *xy*-plane)

Track fit

Track/Segment:

- Sequence of triplets
- 3D radius:
 - Minimize combined χ^2
 - Simple solution $r = \frac{\sum r_i / \sigma_i^2}{1/\sigma_i^2}$ where r_i - individual triplet solution (weighted average)

Note:

- Theoretically individual triplets can be fitted in parallel and then combined.
- In practice start from seed triplet and then add more hits.

Reconstruction: triplets

Combine hits of first 3 layers:

- 10 hits per layer per event (50 ns)
- O(1K) triplet combinations
- Factor 50 reduction with geometrical selections
- 10^8 triplet fits each second

Result:

- Collection of triplets (seeds)
- Fake rate ≈ 1 (1 fake per truth track)

Reconstruction: short tracks

Make short tracks:

- Use triplets as seeds
 - Estimate hit at last layer
 - Lookup in φ/z window
- Combine 4 hits (triplet + hit)
 - 2 triplets (2 shared hits)
 - Fit (weighted average)

O(10) short tracks

• Fake rate $\approx 1.0\%$

Reconstruction: long tracks

Long (6- and 8-hit) tracks:

- Combine short track with pair of hits or another short tracks
- Fake rate $\approx 3.7\%$
 - $\approx 0.5\%$ true random combinations
 - Rest hits from same tracks, different turns

Acceptance & efficiency

Full Geant4 simulation of Mu3e detector

- Decay: $\mu^+ \to e^+ \nu \nu$ (≈ 5 decays within frame)
- 50 ns frame (event size)

Reconstruction efficiency:

- Acceptance: $\epsilon_{acc} \approx 80\%$
 - Require minimum 4 hits (1 per layer)
 - min $p_{_T}$, etc.
- Short tracks: $\varepsilon_{\scriptscriptstyle S} \approx 95\% \cdot \varepsilon_{acc}$
 - Geometrical and χ^2 cuts
- Long tracks: $\varepsilon_{\scriptscriptstyle L} \approx 80\% \cdot \varepsilon_{\scriptscriptstyle S}$
 - Used for analysis (vertex fit, etc.)

Reconstruction efficiency: long tracks

Short tracks (4 hits)

- $\langle \sigma_p \rangle \approx 1.4 \text{ MeV/c}$
- Depends linearly on momentum

Long tracks (6 and 8 hits)

- $\langle \sigma_p \rangle \approx 0.2 \text{ MeV/c}$
- min $\sigma_p \approx 100 \text{ KeV/c}$

Sensitivity

- Vertex fit (3 long tracks and/or short track)
- Fit invariant mass
- Better tracking \rightarrow narrow mass distribution
- With current design and $10^{15} \mu/s$: SES $\approx 2 \cdot 10^{-15}$

Questions

