Development and simulation of the Mu3e tile detector prototype

DPG Spring Meeting Aachen

March 28, 2019

Hannah Klingenmeyer

Kirchhoff-Institute for Physics, Heidelberg University

The Mu3e tile detector

The Mu3e experiment

- search for decay $\mu^+ \rightarrow e^+e^+e^-$
- current upper limit: $B_{\mu \rightarrow 3e} < 10^{-12}$ (SINDRUM experiment, 1988)
 - \rightarrow aim of Mu3e: **B**_{$\mu \rightarrow 3e$} < **10**⁻¹⁶
- fixed-target experiment at the Paul Scherrer Institute, Switzerland

The tile detector

- suppression of accidental background
 - requires timing resolution ≤ **100 ps** at close to 100% efficiency
 - maximum rate: 60 kHz per channel
- plastic scintillator + silicon photomultipliers (SiPMs)
- MuTRiG: custom-designed ASIC to fulfil timing and rate requirements
- → resulting base-unit: **submodule**
 - 32 channels (tiles + SiPMs)
 - custom-designed PCB with flex-print
 - two tile types: centre and edge

6.2

્રંગ

From submodule to module to full detector

- module: 14 submodules assembled on aluminium support/cooling structure
 - water-cooled

Recurl pixel layers

Scintillator tile

- read-out of all 14 ASICs by one long mezzanine board
- full detector: 7 modules assembled on two endrings

Outer pixel layers

• Mu3e phase I: two detectors in recurl stations

Inner pixel layers

cintillating fibres

Technical prototype

- first technical prototype: three submodules
 - two submodules assembled on detector cooling structure
 - one additional submodule on custom-made cooling block (serving as reference during testbeam)
- to produce one submodule, we need:
 - assembled PCB (SiPM, ASIC, components) → electronic workshop
 - two types of tiles cut to the desired dimensions
 - reflective foils for tile wrapping

- first technical prototype: three submodules
 - two submodules assembled on detector cooling structure
 - one additional submodule on custom-made cooling block (serving as reference during testbeam)
- to produce one submodule, we need:
 - assembled PCB (SiPM, ASIC, components) → electronic workshop
 - two types of tiles cut to the desired dimensions
 - reflective foils for tile wrapping

- first technical prototype: three submodules
 - two submodules assembled on detector cooling structure
 - one additional submodule on custom-made cooling block (serving as reference during testbeam)
- to produce one submodule, we need:
 - assembled PCB (SiPM, ASIC, components) → electronic workshop
 - two types of tiles cut to the desired dimensions
 - reflective foils for tile wrapping

- first technical prototype: three submodules
 - two submodules assembled on detector cooling structure
 - one additional submodule on custom-made cooling block (serving as reference during testbeam)
- to produce one submodule, we need:
 - assembled PCB (SiPM, ASIC, components) → electronic workshop
 - two types of tiles cut to the desired dimensions
 - reflective foils for tile wrapping

Tile wrapping

- wrapping of tiles with reflective foil to reduce optical cross-talk
- wrapping tool design using CAD software
 - \rightarrow 3D-printed

Gluing the tiles to the SiPMs

- need to attach tiles to SiPMs \rightarrow light-transmitting glue
- some things to consider:
 - small tolerances (200 µm between tiles, without foils)
 - glue curing time of the order of a day
 - avoid bubbles \rightarrow once tile is glued, it must not be moved (up) again
- \rightarrow glue full tile matrix (4 x 4 tiles) all at once
- \rightarrow dedicated 3D-printed tool

Assembled submodule with one tile matrix

Testing the technical prototype at DESY

- two testbeam campaigns in 2018 (February and June/July)
- measuring/testing:
 - general functionality of the technical prototype
 - calibration/optimisation (w.r.t. timing performance)
 - data acquisition
 - time resolution

Testing the technical prototype at DESY

- two testbeam campaigns in 2018 (February and June/July)
- measuring/testing:
 - general functionality of the technical prototype
 - calibration/optimisation (w.r.t. timing performance)
 - data acquisition
 - time resolution

average single channel timing resolution: **~ 47 ps**

Thermal simulation

Thermal simulation concept

• CAD software also offers simulation add-ins

→ flow simulation (simulation of heat conductance, cooling system, water flow)

- idea: replicate prototype setup in simulation
- input from laboratory:
 - water temperature and volume flow
 - enviroment temperature
 - ASIC power consumption as heat source (3 different configurations)
- \rightarrow comparison with lab measurements

First results

- comparison of lab data and simulation
 - lab: temperature sensor on top of ASIC package
 - simulation: average temperature of sensor area
- good agreement of data and simulation
- \rightarrow reliable simulation
- \rightarrow can be enhanced and/or modified

First results

- comparison of lab data and simulation
 - lab: temperature sensor on top of ASIC package
 - simulation: average temperature of sensor area
- good agreement of data and simulation
- \rightarrow reliable simulation
- \rightarrow can be enhanced and/or modified

... e.g. to simulate power consumption expected during normal operation

Pre-study for experimental conditions

- SiPM performance depends on temperature
- shown here: SiPM PCBs in "stress test" conditions ۲
 - \rightarrow environment: T = 50°C
 - \rightarrow water: T = 1°C
- temperature range ~ 2°C

 \rightarrow could be adjusted by applying different voltages

Summary and outlook

Summary and outlook

- tile detector prototype is fully functional
 - production and assembly procedures developed
 - cooling system tested
- testbeam results show excellent timing performance well below requirement of 100 ps
- thermal simulation provides insights into cooling performance

next steps:

- assembly line for submodule production
 - must be easy to operate, yet precise (alignment)
 - also need to think about quality assurance procedures
- enhancement of thermal simulation
 - implement expected environment of the Mu3e experiment

Appendix

Tile detector requirements

- suppression of combinatorial background
 - e.g. Michel decays + scattered electron, Michel decay + internal conversion, ...
- requires 100 ps timing resolution at close to 100% efficiency
- maximum rate: 60 kHz per channel

Gluing procedure

Testing the technical prototype at DESY

- two testbeam campaigns in 2018 (February and June/July)
- measuring/testing:
 - general functionality of the technical prototype
 - calibration/optimisation (w.r.t. timing performance)
 - data acquisition
 - time resolution

Channel hitmap

- DUT₀ fully functioning (32 channels)
- DUT_1 only partially recovered \rightarrow only limited time available
- All trigger channels working (only one matrix used)

Single-channel timing resolution

• coincidence time resolution (CTR):

 $\sigma^2_{ij} = \sigma^2_{i} + \sigma^2_{j}$

• single channel resolution using three channels 1, 2, 3:

$$\sigma_1 = \frac{1}{\sqrt{2}} \sqrt{\sigma_{12}^2 + \sigma_{13}^2 - \sigma_{23}^2}$$

• internal timing resolution: ≈ 46.8 ps

Entries

Single-channel timing resolution

• coincidence time resolution (CTR):

 $\sigma^2_{ij} = \sigma^2_{i} + \sigma^2_{j}$

• single channel resolution using three channels 1, 2, 3:

$$\sigma_1 = \frac{1}{\sqrt{2}} \sqrt{\sigma_{12}^2 + \sigma_{13}^2 - \sigma_{23}^2}$$

• external timing resolution: additional jitter of the order of 50 ps

Entries

Time-over-threshold spectrum

- different contributions to ToT spectrum
 - $\rightarrow\,$ blue: particle fully traversing the tile
 - \rightarrow red: crosstalk
 - \rightarrow green: particle grazing tile

