# On the Path to Module Integration with the HV-MAPS prototype MuPix9



Heiko Augustin\*, Alena Weber and Ivan Perić for the Mu3e Collaboration

DPG Spring conference 2019 – Aachen

26.03.2019

#### The Mu3e Detector





- Search for  $\mu^+ \rightarrow e^+e^-e^+$
- 10<sup>9</sup> decays per second
- $p_{max} = m_{\mu}/2$
- Multiple Coulomb Scattering
- Good vertex and time resolution (100 µm & 500 ps)
- Good momentum resolution (0.5 MeV)

## The Mu3e Detector

Pixel detector requirements:

| Pixel Size              | Time Resolution | Material Budget            | Efficiency |
|-------------------------|-----------------|----------------------------|------------|
| 80 x 80 µm <sup>2</sup> | < 20 ns         | 0.1% X <sub>0</sub> /layer | > 99 %     |

- Search for  $\mu^+ \rightarrow e^+e^-e^+$
- 10° decays per second
- $p_{max} = m_{\mu}/2$
- Multiple Coulomb Scattering
- Good vertex and time resolution (100 µm & 500 ps)
- Good momentum resolution (0.5 MeV)

# High Voltage - Monolitic Active Pixel Sensors



- Low ohmic substrates (10-200 Ωcm)
- High voltage > 100V
- Deep N-well diode
- ~ 30 µm depletion
- Charge collection via drift

- In-pixel electronics
- Monolithic design: Detection and Readout combined in one chip
- Commercially available processes: AMS 180nm TSI 180nm
- Chips are thinned to 50 µm

#### The Road Map to the Mu3e Pixel Chip MuPix8



**Detector Integration** 

#### The Road Map to the Mu3e Pixel Chip MuPix8



Detector Integration

DPG Spring Conference 2019 - Aachen

# The MuPix9 Chip



Standalone Slow Control Statemachine

- AMS aH18 (MPW)
- 20 Ωcm substrate
- Test of new NMOS in-pixel
  amplifier
- Test of serial powering infrastructure: shunt regulator
- Slow control statemachine

# The MuPix9 Chip



- AMS aH18 (MPW)
- 20 Ωcm substrate
- Test of new NMOS in-pixel
  amplifier
- Test of serial powering infrastructure: shunt regulator
- Slow control statemachine





- Bandgap and differential amplifer are functional
- PMOS shunt transistor is not working
- A new fully re-worked version is submitted





- Bandgap and differential amplifer are functional
- PMOS shunt transistor is not working
- A new fully re-worked version is submitted







- Bandgap and differential amplifer are functional
- PMOS shunt transistor is not working
- A new fully re-worked version is submitted





- Bandgap and differential amplifer are functional
- PMOS shunt transistor is not working
- A new fully re-worked version is submitted

#### MuPix9 – Pixel Matrix



- Pixel matrix is fully functional
- Breakdown at -60V reverse bias (design -120 V)
- Performance out-of-the-box: Time resolution:  $\sigma < 9$  ns Efficiency: ~86 %

#### MuPix9 – NMOS amplifier





MuPix8 PMOS Amplifer 80 Ωcm

- Efficiency reduced by resistivity 80 → 20 Ωcm
- Limited by noise
- PMOS amplifier is preferred

# MuPix9 - Requirements for Module Integration



- Ultra-low material design (0.1% X<sub>0</sub>)
- Powering, configuration and readout via a 2 layer aluminum flexprint
- Up to 9 chips per flexprint
- Power distribution is challenging  $\rightarrow$  minimisation of per chip signals

# **Flexprint Constraints**



- 12 differential lines per flexprint
- Use bus for common signals
- → 1 differential bus for slow control (SIN)
- MuPix8 shift register requires 5 inputs



## MuPix9 - Slow Control Statemachine



- Synthesized verilog code
- I<sup>2</sup>C like protocol
- Slow control data parser
- 32 bit data words:
  4 bit chip address (bus)
  4 bit command
  24 bit payload

## MuPix9 - Slow Control Statemachine



- Synthesized verilog code
- I<sup>2</sup>C like protocol
- Slow control data parser
- 32 bit data words:
  4 bit chip address (bus)
  4 bit command
  24 bit payload
- Broadcast: synchronous reset

# MuPix9 – Synchronous Reset





| ret cik   |      | ЦЦ | <br>ΙL | ļЦ     | ц, | Ц   | ЦL      | ЦЦ |  |  | Ļ |  | LI L | <u>, Ц</u> |  |  |
|-----------|------|----|--------|--------|----|-----|---------|----|--|--|---|--|------|------------|--|--|
| IN        |      |    |        | $\int$ |    | syn | c reset |    |  |  |   |  |      |            |  |  |
| slow clk1 | <br> |    |        | 1      |    |     |         | 1  |  |  |   |  |      |            |  |  |
| slow clk2 |      |    |        |        |    | ſ   |         |    |  |  |   |  |      |            |  |  |
| slow clk3 |      |    |        |        |    | ΓL  |         |    |  |  |   |  |      | l          |  |  |

- Phase of the state machine clock undefined on power up
- Synchronisation to control FPGA
- Synchronisation of all chips on the bus
- Successfully tested in the lab

# Summary and Outlook



- First step towards module integration
- MuPix9 is in the lab
- Focus on slow control
- Expansion of the MuPix9 slow control interface:
  - 64 bit input
  - more broadcast commands
- → Crucial input for MuPix10

Thank you!

#### Questions?

### **On-chip Power Domains**



#### MuPix9 – NMOS amplifier





- Efficiency reduced by resistivity 20 to 80 Ωcm
- Limited by noise
- PMOS amplifier is prefered