

MELCOR Code Coupling

PRESENTED BY

Larry Humphries and Brad Beeny

Sandia National Laboratories is a multimission laboratory manage and operated by National Technology and Engineering Solutions Sandia LLC, a wholly owned subsidiary of Honeywell Internationa nc. for the U.S. Department of Energy's National Nuclear Securi Administration under contract DerAN0003255.

² Why code coupling with MELCOR?

MELCOR is a fully-integrated, system-level computer code

- Prior to the development of MELCOR, separate effects codes within the Source Term Code Package (STCP) were run independently
 - ° Results were manually transferred between codes leading to a number of challenges
 - transferring data
 - ensuring consistency in data and properties
 - ° capturing the coupling of physics

Advantages of using a fully-integrated tool for source term analysis

- Integrated accident analysis is necessary to capture the complex coupling between a myriad of interactive phenomenon involving movement of fission products, core materials, and safety systems.
- A calculation performed with a single, integrated code as opposed to a distributed system of codes reduces errors associated with transferring data downstream from one calculational tool to the next.
- Performing an analysis with a single integrated code assures that the results are repeatable.
- Methods for performing uncertainty analysis with an integrated tool such as MELCOR are well established.
- ° Time step issues are internally resolved within the integral code

However, the rare need for coupling to MELCOR may still exist

- Development of new models for possible future integration into the code
- Internal requirement for using a specific code to model a particular aspect of the source term calculation.

Explicit Coupling with Control Functions - PVM

PVM coupling is routinely used by at least one MELCOR licensee

- Coupling between RELAP and MELCOR v2 (containment and primary system simulated by different codes)
- Interface was updated, formalized, and documented in 2013.

PVM Coupling Requirements

- Parallel Virtual Machine (PVM) software
- PVMEXEC Program Developed by Idaho National Laboratory (INL).
- PVM Library The Parallel Virtual Machine (PVM) software library -maintained by Oak Ridge National Laboratory
- FORTRAN 2003 compliant compiler

MELCOR 'READ' and L-READ' Control Functions

Change actual value of control function thru READ (for REAL-valued) and L-READ (for LOGICAL-valued) option during a MELCOR run

- •Requires a new file containing name of CF and new value
- New value type must match type of CF (REAL or LOGICAL)
- New file name specified on "EXEC_CFEXFILE" record
- •Can be used to simply turn-on or –off a valve without stopping and restarting a calculation
- •Data file is immediately deleted after it is read by the CF

Similarly, a WRITE type CF was developed to write to a changedata file.

- •Writes the time channel and a number of output variables to an exchange file
- •Does not delete this output file

•Skips writing to the file until the file has been deleted externally.

⁵ Simple Explicit Coupling with Read/Write Control Functions

MELCOR Loop_A	 CF971 (CFWRITEtime) Creates A2B.Dat file if it doesn't exist (or pauses until file is deleted) Writes exchange data Passes message to Loop A for when to expect next edit to A2B.DAT CF1001 (CFReadTime) Reads exchange data Receives message for next B2A.Dat edit Deletes B2A.Dat file 	A2B.	 CAT CF1001 (CFReadTime) Reads exchange data if it exists (or pauses until it is created) Receives message for next A2B.Dat edit Deletes A2B.Dat file CF971 (CFWRITEtime) Creates B2A.Dat file if it doesn't exist (or pauses until file is deleted) Writes exchange data Passes message to Loop A for when to expect next edit to A2B.DAT
Loop_A			Loop_B
EXEC_CFEXFILE B2A.DAT 			EXEC_CFEXFILE A2B.DAT
CF_ID 'CFreadTime' 1001 READ			CF_ID 'CFreadTime' 1001 READ
CF_ID'CFWRITEtime'971WRITECF_MSC'CFreadTime'CF_ARG 1!NARGCHARG1CF-VALU('CFreadTime')1.000.0			CF_ID 'CFWRITEtime' 971 WRITE CF_MSC 'CFreadTime' CF_ARG 1 1 CF-VALU('CFreadTime') 1.0 1.0
EXEC_CFEXFILE 'B2A.DAT' - 'CFreadTime' EXEC_CFEXWRITE '\LOOPB\A2B.DAT'			EXEC_CFEXFILE A2B.DAT - 'CFreadTime' EXEC_CFEXWRITE '\LOOPA\B2A.DAT'

Simple Coupling Test Problem

	Loop A	Loop B
Flow direction	Down	Up
Output to other loop	Heat Fluxes	Temperature
Phase Inlet	Atmosphere	Pool
Heat Direction	Heat Out	Heat In
Tinlet	560 K	300+20 *sin(t*2*p/50))

Timing of coupled calculation

ΔT Inlet Temperature – Outlet temperature

Mass Flow Loop A & Loop B

Coupled Calculation

Integral Calculation

Loop B HS Response

11 Data Exchange Files

B2A.DAT

CF_ID CFREADTIME 303.500000000 CF_ID TOUTERS 443.8691619685 438.0188212212 435.2802719149 435.7085004724 438.7645643772

A2B.DAT

CF_ID CFREADTIME 303.5000000000 <u>CF_ID FLUXES -136466.451347</u>6432 -137075.4226302063 -137642.2671272269 -138141.1221339761 -138557.0256977761

Driver Program Routine

T=0.0; READtime=0.5 DO While(T<= 2000.0) T=T+0.5

! Run time advancement in driver code

! ...

! Interface with MELCOR

```
IF(T>=Readtime) THEN !CFWRITE
CALL CFWRITE(IERR)
ENDIF !CFWRITE
IF(T>=ReadTime)THEN !READ from File
CALL CFREAD(IERR)
ENDIF
ENDDO
```

¹³ Writing Routine

Subroutine CFWRITE(IERR)

integer(4) ::IERR

50 INQUIRE (FILE=CFEXWRITE, OPENED=LOPEN, IOSTAT=ISTAT, EXIST=LEXIST) IF(LEXIST) GOTO 50 !Potential for infinite loop as written OPEN (unitWRITE,FILE=CFEXWRITE,STATUS='NEW',FORM='FORMATTED',IOSTAT=ie) WRITE (unitWrite,'("CF_ID "A, X,100(X,F20.10))') 'CFREADTIME', T+1.0 WRITE (unitWrite,'("CF_ID "A, X,100(X,F20.10))') 'MASSIN', MASSIN CLOSE(UnitWrite)
END Subroutine CFWRITE

Reading Routine

Subroutine CFREAD(IERR)

integer(4) ::IERR

20 INQUIRE (FILE=CFEXFILE, IOSTAT=ie, EXIST=LEXIST)

IF(T>ReadTime.and. ie/=0)then

Goto 20

ENDIF

```
IF(LEXIST.and. (T>=READtime .or. OldReadTime==-999999.0)) then
```

```
OPEN(unitREAD,FILE =
CFEXFILE,STATUS='OLD',FORM='FORMATTED',IOSTA
T=ie)
```

!Read/parse Records in data exchange file

1 READ (unitREAD,'(A)',ERR=9999,END=9999) RECORD

IF(RECORD == ") GOTO 1

call exec_analyzecard (RECORD,NUMFLD)

 $READ_CFNAME = characters(2)$

IF(trim(ucase(READ_CFNAME))=='CFREADTIME')

OldReadTime=ReadTime ReadTime=REALS(3)

ENDIF

Parse other variables here GOTO 1 !go back and read next line ENDIF RETURN

9999 IERR=200

CLOSE (unitREAD,STATUS='DELETE',IOSTAT=ie) !If the time read from the com file < the expected read time, revert

If(readTime<OldReadtime)then

ierr=200

readTime=OldReadTime

endif

return

END Subroutine CFREAD