
P R E S E N T E D B Y

Sandia National Laboratories is a multimission laboratory managed

and operated by National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-NA0003525.

MELCOR Code Coupling

Lar r y Humphries and Brad Beeny

Why code coupling with MELCOR?

MELCOR is a fully-integrated, system-level computer code
◦Prior to the development of MELCOR, separate effects codes within the Source Term Code
Package (STCP) were run independently
◦ Results were manually transferred between codes leading to a number of challenges

◦ transferring data

◦ ensuring consistency in data and properties

◦ capturing the coupling of physics

Advantages of using a fully-integrated tool for source term analysis
◦ Integrated accident analysis is necessary to capture the complex coupling between a myriad of
interactive phenomenon involving movement of fission products, core materials, and safety
systems.

◦A calculation performed with a single, integrated code as opposed to a distributed system of
codes reduces errors associated with transferring data downstream from one calculational tool to
the next.

◦Performing an analysis with a single integrated code assures that the results are repeatable.
◦Methods for performing uncertainty analysis with an integrated tool such as MELCOR are well
established.

◦Time step issues are internally resolved within the integral code

However, the rare need for coupling to MELCOR may still exist
◦Development of new models for possible future integration into the code
◦ Internal requirement for using a specific code to model a particular aspect of the source term
calculation.

2

Explicit Coupling with Control Functions - PVM3

PVM coupling is routinely used by at least one MELCOR licensee
◦ Coupling between RELAP and MELCOR v2 (containment and primary system simulated by different codes)

◦ Interface was updated, formalized, and documented in 2013.

PVM Coupling Requirements
◦ Parallel Virtual Machine (PVM) software

◦ PVMEXEC Program – Developed by Idaho National Laboratory (INL).

◦ PVM Library – The Parallel Virtual Machine (PVM) software library –maintained by Oak Ridge National Laboratory

◦ FORTRAN 2003 compliant compiler

MELCOR ‘READ’ and L-READ’ Control Functions

Change actual value of control function thru READ (for
REAL-valued) and L-READ (for LOGICAL-valued) option
during a MELCOR run
◦Requires a new file containing name of CF and new value
◦ New value type must match type of CF (REAL or LOGICAL)

◦ New file name specified on “EXEC_CFEXFILE” record

◦Can be used to simply turn-on or –off a valve without
stopping and restarting a calculation
◦Data file is immediately deleted after it is read by the CF

Similarly, a WRITE type CF was developed to write to a
changedata file.
◦Writes the time channel and a number of output variables to an
exchange file
◦Does not delete this output file
◦Skips writing to the file until the file has been deleted
externally.

Simple Explicit Coupling with Read/Write Control Functions5

Loop_A Loop_B

EXEC_CFEXFILE B2A.DAT

…

CF_ID 'CFreadTime' 1001 READ

CF_ID 'CFWRITEtime' 971 WRITE

CF_MSC 'CFreadTime'

CF_ARG 1 ! NARG CHARG

1 CF-VALU('CFreadTime') 1.00 0.0

EXEC_CFEXFILE 'B2A.DAT' - 'CFreadTime'

EXEC_CFEXWRITE '..\LOOPB\A2B.DAT'

EXEC_CFEXFILE A2B.DAT

…

CF_ID 'CFreadTime' 1001 READ

CF_ID 'CFWRITEtime' 971 WRITE

CF_MSC 'CFreadTime'

CF_ARG 1

1 CF-VALU('CFreadTime') 1.0 1.0

EXEC_CFEXFILE A2B.DAT - 'CFreadTime'

EXEC_CFEXWRITE '..\LOOPA\B2A.DAT'

A2B.DAT

B2A.DAT

MELCOR

Loop_A

MELCOR

Loop_B

CF971 (CFWRITEtime) CF1001 (CFReadTime)

CF971 (CFWRITEtime)CF1001 (CFReadTime)

• Reads exchange data

• Receives message for

next B2A.Dat edit

• Deletes B2A.Dat file

• Creates A2B.Dat file if it

doesn’t exist (or pauses

until file is deleted)

• Writes exchange data

• Passes message to Loop A

for when to expect next

edit to A2B.DAT

• Creates B2A.Dat file if it

doesn’t exist (or pauses

until file is deleted)

• Writes exchange data

• Passes message to Loop A

for when to expect next

edit to A2B.DAT

• Reads exchange data if it

exists (or pauses until it

is created)

• Receives message for

next A2B.Dat edit

• Deletes A2B.Dat file

Simple Coupling Test Problem6

Loop A Loop B

Flow direction Down Up

Output to

other loop

Heat Fluxes Temperature

Phase Inlet Atmosphere Pool

Heat Direction Heat Out Heat In

Tinlet 560 K 300+20 *sin(t*2*p/50))

Pipe1

Pipe2

Pipe3

Pipe4

Pipe5

PipeB1

PipeB2

PipeB3

PipeB4

PipeB5

Pipe1

Pipe2

Pipe3

Pipe4

Pipe5

Loop B Loop ALoop A

H
e
a
t

fl
u
xH

e
a
t flu

x

Data Exchange

Timing of coupled calculation7

Loop B is running faster than Loop A

In coupled calculation

(Larger time step)

Integral calculation running faster

than coupled calculation

DT Inlet Temperature – Outlet temperature8

C
o
u
p
le

d
 C

a
lc

u
la

ti
o
n

In
te

g
ra

l
C
a
lc

u
la

ti
o
n

Mass Flow Loop A & Loop B9

C
o
u
p
le

d
 C

a
lc

u
la

ti
o
n

In
te

g
ra

l
C
a
lc

u
la

ti
o
n

Loop B HS Response10

Data Exchange Files11

CF_ID CFREADTIME 303.5000000000

CF_ID TOUTERS 443.8691619685 438.0188212212 435.2802719149 435.7085004724 438.7645643772

B2A.DAT

A2B.DAT

CF_ID CFREADTIME 303.5000000000

CF_ID FLUXES -136466.4513476432 -137075.4226302063 -137642.2671272269 -138141.1221339761 -138557.0256977761

Driver Program Routine

T=0.0; READtime=0.5

DO While(T<= 2000.0)

T=T+0.5

! Run time advancement in driver code

! …

! Interface with MELCOR

IF(T>=Readtime) THEN !CFWRITE

CALL CFWRITE(IERR)

ENDIF !CFWRITE

IF(T>=ReadTime)THEN !READ from File

CALL CFREAD(IERR)

ENDIF

ENDDO

12

Writing Routine13

Subroutine CFWRITE(IERR)

integer(4) ::IERR

50 INQUIRE (FILE=CFEXWRITE, OPENED=LOPEN, IOSTAT=ISTAT, EXIST=LEXIST)

IF(LEXIST) GOTO 50 !Potential for infinite loop as written

OPEN (unitWRITE,FILE=CFEXWRITE,STATUS='NEW',FORM='FORMATTED',IOSTAT=ie)

WRITE (unitWrite,'(''CF_ID ''A, X,100(X,F20.10))') 'CFREADTIME', T+1.0

WRITE (unitWrite,'(''CF_ID ''A, X,100(X,F20.10))') 'MASSIN', MASSIN

CLOSE(UnitWrite)

END Subroutine CFWRITE

Reading Routine

Subroutine CFREAD(IERR)

integer(4) ::IERR

20 INQUIRE (FILE=CFEXFILE, IOSTAT=ie,
EXIST=LEXIST)

IF(T>ReadTime.and. ie/=0)then

Goto 20

ENDIF

IF(LEXIST.and. (T>=READtime .or. OldReadTime==-
999999.0)) then

OPEN(unitREAD,FILE =
CFEXFILE,STATUS='OLD',FORM='FORMATTED',IOSTA
T=ie)

!Read/parse Records in data exchange file

1 READ (unitREAD,'(A)',ERR=9999,END=9999)
RECORD

IF(RECORD == '') GOTO 1

call exec_analyzecard (RECORD,NUMFLD)

READ_CFNAME = characters(2)

IF(trim(ucase(READ_CFNAME))=='CFREADTIME')
then

OldReadTime=ReadTime

ReadTime=REALS(3)

ENDIF

! Parse other variables here

GOTO 1 !go back and read next line

ENDIF

RETURN

9999 IERR=200

CLOSE (unitREAD,STATUS='DELETE',IOSTAT=ie)

!If the time read from the com file < the expected read time,
revert

If(readTime<OldReadtime)then

ierr=200

readTime=OldReadTime

endif

return

END Subroutine CFREAD

14

