

ELECTROCHEMISTRY LABORATORY

Dynamics of the porous carbonaceous O₂ electrode interface : a combined XPS and OEMS study Scan me!

A. Guéguen, E. J. Berg and P. Novák

Paul Scherrer Institut, Electrochemistry Energy Storage Section, CH-5232 Villigen PSI, Switzerland aurelie.gueguen@psi.ch

Online Electrochemical Mass Spectrometry (OEMS): O_2 and CO_2 gas detection

- Samples transferred using an air-tight transfer chamber

Scheme of the homemade Li-O₂ cell

Graphite SFG6

Discharge:

- low specific charge per mass of carbon
- **OEMS:** 2.06 e^{-} / O_{2} for SFG6

• XPS:

- thin interface (< 5-10 nm)
- presence of LiF, CO₃ CO₂ and CO species
- No evidence of Li₂O, Li₂O₂ or LiO₂
- different interface layers on both sides

Charge:

- OEMS:
 - $-O_2$ gas
 - CO₂ evolution at the end of charge
- **XPS:** spectra similar to those of the pristine electrode \rightarrow decomposition of the species

Binding energy [eV]

formed during previous discharge (e.g. LiF) Binding energy [eV]

Specific charge [mAh/g_{carbon}]

Amorphous Carbon Super C65

XPS

Binding energy [eV]

Discharge: higher specific charge than SFG6 \rightarrow higher amount of Li₂O₂, more side-reactions?

- **OEMS:** 2.06 e⁻ / $O_2 \rightarrow Li_2O_2$ formation
- XPS:
 - continuous formation of Li_2O_2 at the surface
 - thin interface (< 5-10 nm)
 - presence of LiF, CO₃ CO₂ and CO species \rightarrow parasitic reactions - similar interface layers on both sides

Charge: higher specific charge than during discharge \rightarrow parasitic reactions, shuttling?

- OEMS:
 - O₂ gas but less than expected
 - CO₂ evolution at the end of charge
- **XPS:** charge spectra similar to those of the pristine electrode \rightarrow decomposition of the species formed during previous discharge

Conclusion		
OEMS: - discharge: ~ $2e^{-} / O_{2} \rightarrow$ formation of $Li_{2}O_{2}$ - charge: CO_{2} evolution \rightarrow parasitic reactions	 XPS: - discharge: detection of Li₂O₂ on O 1s spectrum and other side-products, interface thickness - charge: decomposition of side-products formed during discharge 	Carbon: - Higher specific charge with Super C65 (higher specific surface area), higher amount of Li ₂ O ₂ - Both carbons: side reactions during discharge and charge forming thin passivating layer