UPM Research with MELCOR 2.x. PWR-W Applications

EMUG, Brugg Switzerland

April 2019

Kevin Fernández-Cosials, César Queral, Gonzalo Jiménez.

Kevin.fcosials@upm.es

Index

- 1. A Little bit of history.
- 2. UPM Models (PWR-W, AP1000)
- 3. Research on In-Vessel Retention with portable equipment after LBLOCA
- 4. Research on Instrumentation survival
- 5. Conclusions
- 6. References

MELCOR history in the UPM

- UPM-CSN (Spanish Nuclear Safety Council) agreement to collaborate in CSARP (July 2017)
- The translation of Trillo NPP from MELCOR 1.8.5 to MELCOR 2.1 has been performed as part of the agreement between CSN and UPM.
- Previous works with MELCOR 1.8.3:
 - A PWR-W model was developed in the UPM and used for European report project.
- Currently UPM is working with different NPPs models (PWR-W, BWR, PWR-Siemens, AP1000) in several projects.

- PWR-Siemens (Trillo NPP)
 - Translation of the model from MELCOR 1.8.5 to 2.1
 - A set of sequences were used to verify the model

April, 2019

- PWR-W main features
 - Primary System
 - Secondary System up to Turbine admison Valves
 - RWST
 - Accumulators
 - HPSI, LPSI and Recirculation.

Based on: F. Martin-Fuertes *et al.*, "Analysis of three severe accident sequences (AB, SGTR and V) in a 3 loop W-PWR 900 MWe NPP with the MELCOR code," *European Commission*, vol. EUR 16054, 1994

- PWR-W Containment
 - More than 40 CV
 - Connected two-way
 - Containment Spray included

April, 2019

- PWR-W Vessel and core
 - 28 Heat Structures
 - 35 CV
 - 6 Rings 13 Levels

April, 2019

- PWR-W Control
 - Safety Injection System Control Modeled
 - PZR Control
 - Pumps performance
 - SCRAM

April, 2019

Study of <u>FLEX Strategies</u> with the MELCOR code:

- Simulation of a Recirculation Failure after LBLOCA
- Comparison of Different Time Failures
- Comparison with ASTEC
- Study with RN package included
- Simulation of using portable equipment after recirculation Failure to inject into RCS.

LBLOCA with recirculation failure

- Injection with Portable Equipment into RCS
- Option B is selected and simulated with MELCOR 2.2

IYNCWiN18 Bariloche, Argentina

Correct Behavior of the Primary System and Containment pressure after LBLOCA

April, 2019

April, 2019

April, 2019

April, 2019

• Comparison with ASTEC (KWU) MBLOCA

- Cladding Melting (~3600 s vs ~3300 s after recirc Loss)
- Relocation in Lower Plenum (~ 4600 s vs ~ 5200 s after recirc Loss)
- Vessel Failure (~ 9000 s vs ~ 11600 s after recirc Loss)

Ref: Investigation of SAM measures during selected MBLOCA sequences along with Station Blackout in a generic Konvoi PWR using ASTECV2.0. Ignacio García Gomez-Toraño et al. Annals of Nuclear Energy Volume 105, July 2017, Pages 226-239

April, 2019

• Behavior of Core Temperature along different FLEX INJECTIONS

		Recirculation failure since recriculation begins											
		0 min	10 min	70 min	130 min	190 min	250 min	310 min	370 min	430 min			
	30 min												
	60 min												
FLEX	90 min	Calculation of the different Reponses against a)			
Invection	120 min	injection of water in a degraded care with pertable											
time since	150 min	injection of water in a degraded core with portable								le			
failure	180 min	equipment. (Also using different equipment)											
	210 min												
	240 min												
	>270 min												

April, 2019

• Behavior of Core Temperature along different FLEX INJECTIONS

European Melcor Users Group, Switzerland

April. 2019

• Behavior of Core Temperature along different FLEX Injections

Safe State				
PCT > 1477 K				
Fuel Melting				
Corium Relocation				
Vessel Failure				

G = 20 kg/s		Recirculation failure since recriculation begins									
		0 min	10 min	70 min	130 min	190 min	250 min	310 min	370 min	430 min	
FLEX Inyection time since failure	30 min	SS	SS	SS	SS	SS	SS	SS	SS	SS	
	60 min	FM	FM	SS	SS	SS	SS	SS	SS	SS	
	90 min	CR	CR	FM	FM	FM	CD	SS	SS	SS	
	120 min	CR	CR	FM	FM	FM	FM	FM	CD	CD	
	150 min	CR	CR	CR	FM	FM	FM	FM	FM	FM	
	180 min	CR	CR	CR	CR	CR	CR	FM	FM	FM	
	210 min	VF	CR	CR	CR	CR	CR	CR	CR	CR	
	240 min	VF	VF	VF	CR	CR	CR	CR	CR	CR	
	>270 min	VF	VF	VF	VF	VF	VF	VF	VF	VF	

European Melcor Users Group, Switzerland

• Behavior of Core Temperature along different FLEX Injections.

G = 20 kg/s			Recirculation failure since recriculation begins							
		0 min	10 min	70 min	130 min	190 min	250 min	310 min	370 min	430 min
FLEX Inyection time since failure	30 min	SS	SS	SS	SS	SS	SS	SS	SS	SS
	60 min	FM	FM	SS	SS	SS	SS	SS	ss	SS
	90 min	CR	CR	FM	FM	FM	CD	SS	SS	SS
	120 min	CR	CR	FM	FM	FM	FM	FM	CD	CD
	150 min	CR	CR	CR	FM	FM	FM	FM	FM	FM
	180 min	CR	CR	CR	CR	CR	CR	FM	FM	FM
	210 min	VF	CR	CR	CR	CR	CR	CR	CR	CR
	240 min	VF	VF	VF	CR	CR	CR	CR	(CR)	CR
	>270 min	VF	VF	VF	VF	VF	VF	VF	VF	VF

Behavior of Core Temperature along different FLEX Injections:

- After 270 min without injection, it is not posible to avoid vessel Failure
- If more than 25 tons of corium are relocated in the Lower Plenum, vessel failure is very likely (same conclusion as ASTEC).
- It is better to inject in the RCS as soon as possible, more than delaying the failure of the recirculation.

Behavior of Core Temperature along different FLEX Injections.

- Enveloping Strategy to overcome lack of convergence
- Inference of accident progression if too small DT.
- MELCOR 2.2 used (more stable)
- DT max study provided 0.01 sec as the most stable
- Lack of convergence (small DT) cannot be esily predicted, sometimes causing Failure in apparently non-problematic scenarios.
- Reflooding of the hot core decreases the DT up to 1E-06 during the process.
- No problem detected in cases without Hot core reflooding.

Study of <u>Instrumentation Survival</u> with the MELCOR code:

- LBLOCA with Recirculation Failure (SBO) is simulated.
- Instrumentation Survival during a Severe Accident
- Use of a subdivided containment to localize each instrument and obtain "local conditions"
- Developing a strategy for instrumentation Reading based on survivability.

Study of Instrumentation Survival with the MELCOR code:

- Containment subdivided in several Rooms to provide a higher resolution on Temperature.
- Other studies have similar objectives and outcomes

Ref: J. L. Rempe, D. L. Knudson, and R. J. Lutz, "Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario," 2015

April, 2019

Study of Instrumentation Survival with the MELCOR code:

- Definition of different Damage Conditions of the Instrumentation
- Dose not taken into account in the present study (future research lines)

Damage Condition 0	Normal Operating Conditions
Damage Condition 1	Anomalous operating conditions I. The operating conditions are challenging or above the design, but useful measurements in tendency and values are still obtained.
Damage Condition 2	Anomalous operating conditions II. The limit is greatly surpassed, and measurements on value are no longer valid. The information on tendency and order of magnitude is still useful.
Damage Condition 3	Damage Operating Conditions. The instrument measurements are only reliable in terms of tendencies, not values or orders of magnitude.
Damage Condition 4	Destruction Conditions . The measurements lack of any value and they should not be used at all.

Study of Instrumentation Survival with the MELCOR code:

- LBLOCA with SBO at 5200 sec
- Different temperatures for different locations and containment compartments

April, 2019

Study of Instrumentation Survival with the MELCOR code:

- Damage condition Evolution of the different instrumentation systems.
- Actions within the SAMGs make use of this instrumentation but no regard on which is the most reliable instrument.

April, 2019

Time [s]

PWR-W MELCOR Conclusions

- 1. PWR-W MELCOR Model used in the UPM is allowing the study of different accidents.
- 2. A SA scenario involving Portable equipment is simulated adequately with MELCOR 2.2
- 3. An enveloping strategy and careful choosing of parameters is used to determine the damage condition of the core and vessel and retain numerical stability.
- 4. A detailed containment and RCS nodalization allows to obtain "local" conditions of the instrumentation, which permits the study of the instrumentation survivability.

PWR-W MELCOR Main References

- 1. J. L. Rempe, D. L. Knudson, and R. J. Lutz, "Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario," 2015
- 2. Investigation of SAM measures during selected MBLOCA sequences along with Station Blackout in a generic Konvoi PWR using ASTECV2.0. Ignacio García Gomez-Toraño et al. Annals of Nuclear Energy Volume 105, July 2017, Pages 226-239
- 3. D. J. Hanson, W. C. Arcieri, and L. W. Ward, "Assessing information needs and instrument availability for a pressurized water reactor during severe accidents," *Nuclear Engineering and Design*, vol. 148, no. 2–3, pp. 233–252, Jul. 1994
- F. Martin-Fuertes *et al.*, "Analysis of three severe accident sequences (AB, SGTR and V) in a 3 loop W-PWR 900 MWe NPP with the MELCOR code," *European Commission*, vol. EUR 16054, 1994
- 5. J. L. Rempe and D. L. Knudson, "TMI-2 A Case Study for PWR Instrumentation Performance During a Severe Accident. INL/EXT-13-28043," 2013
- 6. N. Chikhi, J. Fleurot, Revisiting the QUENCH-11 integral reflood test with a new thermal– hydraulic model: Existence of a minimum injection rate Ann. Nucl. Energy, 49 (2012), pp. 12-22

Thank you very much for your attention

April, 2019