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« Employ the cavity (lower drywell) flooding l ' ' l
as a SAM measure to promote melt » — ] |
fragmentation and quenching, and
formation of a coolable debris bed on the
drywell floor (ex-vessel coolability).
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Design features of a Nordic BWR

e Thermal power: 3900WMth
* Vessel diameter: 6.4m
* Small containment v

 Volume: 1/5 of that of PWR AR
* Inerted with N, for H, risk | T '
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« Pressure supression with wetwell—24{|
(condensation pool) s
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Three core meshing shemes

Coarse mesh Medium mesh Fine mesh
6rings X 18levels 15rings X 46levels 21rings X 60 levels
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Three core meshing shemes




MELCOR calculation results

Calculation matrix
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3113K Melting point of UO2
2800K Melting point of ZrO, and UQ, eutectic

Invessel Accident Progression zswf o e
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Fine TH nodalization for the core

More axial levels
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Gap rlease | o e :
CUADS T b Core support | P Vessel i ; Contaument § .
- activation " U platefailwre © f failure Loyt S
Corse TH nodes
Fine TH nodes
Main event Corse nodes Fine nodes
Initial accident 0 0
Downcommer low water level signal 0.30h 0.32h
ADS activation 0.47h 0.49h
Gap release 0.76h 0.81h
Core support plate failure 1.44h 2.20h
Vessel failure 6.07h 6.52h
Containment venting 10.75h 10.91h
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Results

e CV Temperature
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Results

* H, generation

» Fine TH nodalization leads to little more H2 generation.

» H2 from Zr oxidation is similar.

» Difference comes from stainless steel oxidation which is
Intense at plate failure of fine TH node case.
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Concluding Remarks

« A previous study discusses the effect of core nodalization on
the in-vessel progression of a Nordic BWR

» Three meshing schemes and two accident scenarios considered.
» Main events during the accident progression is slightly delayed in

finer mesh.

» H, generation is scenatio-based.

e A continuous study taking the TH nodalization into account

>
>

The TH nodalization for the 6-ring core mesh case is refined axially.

Main events is also slightly delayed with finer TH nodalization,
especially the core plate failure time.

The power distribution affects the water level and CV temperature
for finer case.

H2 generation is slightly affected.
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Perspectives

Refining the TH nodalization for the 15-ring core mesh case

IS tried, but the calculation time step decreases to 10-“s.

The TH nodalization seems not influtiential regarding the in-
vessel corium behaviour, therefore for our study interest, it
may be not necessary to have finer TH nodalization for the

core part.
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