

Study on the Nodalization Effect of MELCOR for Simulation of Nordic BWR

Yangli Chen, Huimin Zhang, Walter Villanueva, Weimin Ma, and Sevostian Bechta

Division of Nuclear Power Safety Royal Institute of Technology (KTH) Stockholm, Sweden

- Motivation
- Features of Nordic BWR
- MELCOR models
- Simulation results
- Concluding remarks and perspectives

Analysis of current SAMG of Nordic BWRs

- Employ the cavity (lower drywell) flooding as a SAM measure to promote melt fragmentation and quenching, and formation of a coolable debris bed on the drywell floor (ex-vessel coolability).
- MELCOR provides the initial and boudary condition for a coupled calculation

- Thermal power: 3900WMth
- Vessel diameter: 6.4m
- Small containment
 - Volume: 1/5 of that of PWR
 - Inerted with N₂ for H₂ risk
 - Pressure supression with wetwell (condensation pool)
- Forest of penetrations

- MELCOR 2.2.9541 is used for the integral simulation of the whole plant.
- A 2D axisymmetric geometry is used to model the RPV.
- A hemisphereical shape is used to model the lower head.
- Penetrations failure deactivated.
- Scenarios: Station Blackout (SBO); SBO combined with LBLOCA.

Three core meshing shemes

Calculation matrix

- Station Blackout (SBO)
- SBO with large break LOCA at steamline with area of 0.1m²

	SBO	SBO+LOCA
6-ring	SBO-6	LOCA-6
15-ring	SBO-15	LOCA-15
21-ring	SBO-21	LOCA-21

• Accident progression

• SBO

Reference:

Y. Chen, H. Zhang, W. Villanueva, W. Ma, and S. Bechta, 'A sensitivity study of MELCOR nodalization for simulation of in-vessel severe accident progression in a boiling water reactor', Nuclear Engineering and Design, vol. 343, pp. 22–37, 2019.

• More axial levels

Accident progression

Main event	Corse nodes	Fine nodes
Initial accident	0	0
Downcommer low water level signal	0.30h	0.32h
ADS activation	0.47h	0.49h
Gap release	0.76h	0.81h
Core support plate failure	1.44h	2.20h
Vessel failure	6.07h	6.52h
Containment venting	10.75h	10.91h

• CV Water level

Axial power profile

• H₂ generation

- ➢ Fine TH nodalization leads to little more H₂ generation.
- \succ H2 from Zr oxidation is similar.
- Difference comes from stainless steel oxidation which is intense at plate failure of fine TH node case.

- A previous study discusses the effect of core nodalization on the in-vessel progression of a Nordic BWR
 - Three meshing schemes and two accident scenarios considered.
 - Main events during the accident progression is slightly delayed in finer mesh.
 - \succ H₂ generation is scenatio-based.
- A continuous study taking the TH nodalization into account
 - \succ The TH nodalization for the 6-ring core mesh case is refined axially.
 - Main events is also slightly delayed with finer TH nodalization, especially the core plate failure time.
 - The power distribution affects the water level and CV temperature for finer case.
 - ➢ H2 generation is slightly affected.

- Refining the TH nodalization for the 15-ring core mesh case is tried, but the calculation time step decreases to 10⁻⁴s.
- The TH nodalization seems not influtiential regarding the invessel corium behaviour, therefore for our study interest, it may be not necessary to have finer TH nodalization for the core part.

This research is supported by: SSM (Sweden) ENSI (Switzerland)