# ZEBRA internship (1 day)

### Structure of Sodiumnitroprusside

Single Crystal Diffractometer TriCS@SINQ, 1 day

Sodiumnitroprusside (Na<sub>2</sub>(Fe{(CN)<sub>5</sub>NO]} 2H<sub>2</sub>O, SNP) is a material which is changing its structural properties when illuminated with light at low temperature. This has been demonstrated by neutron diffraction investigations. Neutron diffraction is interesting as N and O have different scattering lengths for neutrons. This is especially interesting as the electron configuration is not changed significantly, making X-ray diffraction much less sensitive.

We measure in this practicum the ground state structure of the molecule.

Goal is to demonstrate how such a measurement can be performed using a single crystal neutron diffraction instrument, for simplicity at room temperature.

Some structural information on SNP:

3 Fe(CN)5NO 2-MS2 MS1 0 0 0.0 0.2 0.4 0.6 0.8 1.0 reaction path parameter

**Figure 1:** SNP can transform its structure when illuminated with light by turning the NO-bond by 180°. It goes from the ground state by a metastable state MS2 to the metastable state MS1.

| TABLE II. Structural parameter    | rs of the mix | ted st        | ate ( | 3S + SI  | in  |
|-----------------------------------|---------------|---------------|-------|----------|-----|
| SNP for the data set with 40% pop | pulation of S | I afte        | r fin | al refin | 1e- |
| ment. The isotropic displacement  | parameters    | $U_{\rm iso}$ | are   | given    | in  |
| 10 <sup>-3</sup> Å <sup>2</sup> . |               |               |       |          |     |

| Atom       | Occupation | x          | у         | z         | $U_{\rm iso}$ |
|------------|------------|------------|-----------|-----------|---------------|
| Na1        | 1          | 0.5        | 0         | 0.2455(9) | 12(3)         |
| Na2        | 1          | 0          | 0         | 0.3781(9) | 10(3)         |
| Fe         | 1          | 0.4972(10) | 0.2787(4) | 0.5       | 5(1)          |
| C1         | 1          | 0.2483(14) | 0.1826(6) | 0.5       | 10(2)         |
| N1         | 1          | 0.0979(10) | 0.1233(5) | 0.5       | 11(1)         |
| C2         | 1          | 0.6067(9)  | 0.1789(4) | 0.5880(3) | 6(1)          |
| N2         | 1          | 0.6672(6)  | 0.1194(3) | 0.6420(3) | 11(1)         |
| C3         | 1          | 0.3448(9)  | 0.3613(4) | 0.5893(3) | 7(1)          |
| N3         | 1          | 0.2498(7)  | 0.4054(3) | 0.6443(2) | 12(1)         |
| N4         | 0.824(18)  | 0.7271(12) | 0.3568(5) | 0.5       | 8(3)          |
| <b>O</b> 1 | 1.20(4)    | 0.8863(15) | 0.4065(7) | 0.5       | 16(3)         |
| D1         | 0.80(3)    | 0.1872(15) | 0.1971(8) | 0.7151(6) | 29(3)         |
| D2         | 0.81(3)    | 0.0642(15) | 0.1241(7) | 0.7767(5) | 27(3)         |
| O2         | 1          | 0.1723(11) | 0.1206(5) | 0.7311(4) | 10(2)         |





- We first align the crystal optically in the center of an Euler Ian Cradle, which allows turning the crystal for experiment into any direction to bring the scattering vector t into reflection position.
- 2. We collect a small data set (10-30 reflections depending on the time available), which takes approximately 5 minutes per reflection.

3. We refine the structure using the software package JANA2006. This refinement will be based on a full data set collected previously (1850 observations).

The participants should go back with the availability to perform in the future a single crystal diffraction experiment with minor advice.

## **Our Instrument: TriCS**



The crystal single diffraction neutron instrument ZEBRA covering the q-range presently most is ZEBRA. It is positioned at the thermal beam tube R42 equipped with 2 focusing monochromators: Ge<sub>311</sub>  $C_{002}$ and for short  $(1.18\text{\AA})$  and long  $(2.3\text{\AA})$ wavelength with the sample position 105 cm off from the last

shielding (borated polyethylene). We will use a single detector, align the crystal and measure a few reflections at room temperature





**Figure 3:** SNP crystal illuminated at low temperature. The illuminated areas are absorbing the visible light. We are using a crystal of 5 by 5 by 5 mm<sup>3</sup>.

# Literature

## SINQ – the Swiss Neutron Spallation Source

Blau B, Clausen KN, Gvasaliya S, Janoschek M, Janssen S, Keller L, Roessli B, Schefer J, Tregenna-Piggott P, Wagner W, Zaharko O:
The Swiss Spallation Neutron Source SINQ at Paul Scherrer Institut *Neutron News* 20, 5 (2009).
W.E. Fischer, Physica B **234-236**, 1202-1208 (1997)

## Photocrystallography

J. Schefer, D. Schaniel, Th. Woike and V.Petříček Neutron photocrystallography: simulation and experiment Z. Kristallographie, Volume **223**,4-5 (2008) 259-264

#### System Investigated

D. Schaniel, Th. Woike, J.Schefer , V. Petříček, K. W. Krämer, 5 and H. U. Güdel Neutron diffraction shows a photoinduced isonitrosyl linkage isomer in the metastable state SI of Na<sub>2</sub>[Fe(CN)<sub>5</sub>NO]<sup>•</sup>2D<sub>2</sub>O. Physical Review **B 73**, 174108-1-5 (2006)

#### **The Instrument TriCS**

J. Schefer, M. Könnecke, A. Murasik, A. Czopnik, Th. Strässle, P. Keller and N. Schlumpf, Single Crystal Diffraction Instrument TriCS at SINQ Physica **B 283-284** (2000) 168-169

#### The Software

Jana2006: <u>http://www-xray.fzu.cz/jana/jana.html</u>

# Precautions

Do not touch the crystal without gloves. SNP contains CN and is therefore toxic. SNP may not be exposed to vacuum abov 250K as the crystal water would evaporate.

# Technical

Location: PSI Villigen, SINQ Guesthouse: please contact <u>hostel@psi.ch</u>

# Preparation you can make:

- Load Jana2006 on your labtop
- Look for an data input file (cif-files). Our publications are on the web

#### **Contact Persons:**

Dr. Jürg Schefer, Tel. 056 310 4347, <u>Jurg.Schefer@psi.ch</u> Dr. Oksana Zaharko, Tel. 056 310 4633, <u>Oksana.Zaharko@psi.ch</u>