Zuoz #2

Note Title 2/10/20

Lecture 1 – Introduction to EFT in general

- -General philosophy
- -Explicit example
- -Matching, power counting etc

Lecture 2 – Varieties of EFT and advanced techniques

- -Survey and limits of EFT
- Techniques outside of textbooks

Lecture 3 - Gravity as an EFT

- -GR as a gauge theory
- -How to think about quantum gravity
- -Reliable aspects of gravity and QM

Teaching

Zuoz summer school - August 2014

Lecture 1: Introduction to EFT 1 NOTES

Why do quantum calculations work, QED example, EFT 1.0 Effective Lagrangians, EFT as a QFT, Example - the sigma model, power counting, matching at tree level, matching at one loop.

Lecture 2: Introduction to EFT 2 NOTES

Lecture 3: General Relativity as an Effective Field Theory NOTES

Supplementary material Excerpt on heat kernel methods from Dynamics of the Standard Model

RECENT CITATIONS

- Perturbative Quantum Gravity
 Comes of Age
- Effective constraint algebras with structure functions
- Supersymmetry from Typicality
- Production and evaporation of higher dimensional black holes
- ⊕ Rare top decay \$t\rightarrow
 c\gamma\$ in general THDM-III
- ⊕ Full three-body problem in

Dynamics of the Standard Model

Second Edition

JOHN F. DONOGHUE, EUGENE GOLOWICH AND BARRY R. HOLSTEIN

CAMBRIDG MONORAPHS OR PARTIELA PRYSICS, NUMBER PHYSICS AND COMMISSION

×

Tostura HE NO LE HE => LOCAUTY Expansion in Energy = "power counting" Construct - model Matching or measuring EFI as QFT Renormalized a non renormatizeable theory
-divergences local =) into coeff
-coeff determined by full-theory

Homework solution:

$$\phi = \frac{1}{\sqrt{2}} \left(\phi, \pm i \, \xi \right)$$

$$\mathcal{L} = \partial_{\nu} \phi^* \partial^{\nu} \phi + \mu^2 \phi^{-1} \phi - \lambda (\phi^* \phi)^2$$

$$\langle \phi \rangle = \sqrt{}$$

$$b = \frac{1}{E} \left(s + \sigma + j \chi \right)$$

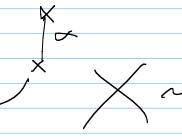
$$\mathcal{L} = \partial_{\nu}\sigma\partial^{\nu}\sigma + \partial_{\nu}\chi\partial^{\nu}\chi - \frac{\mu^{2}}{2}\sigma^{2} - \lambda v\sigma\chi^{2} - \frac{\lambda}{4}(\sigma^{2} + \chi^{2})^{2}$$

$$\times$$
 + \times + \times

$$Z = (N + \sigma)^2 (2 \times 2^n V)$$

$$\phi = \frac{1}{12}(N+\sigma)e^{i\chi}$$

$$\mathcal{L}_{eff} = \partial_{\nu} \chi \partial^{\nu} \chi - \frac{1}{\lambda v^4} (\partial_{\nu} \chi \partial^{\nu} \chi)^2$$



Rules of EFT

1) What are Low E DOF + symmatria?

2) Write most general local L, order in energy expansion

3) Strart with lowest order L, do QFT

4) Renormaly parameter

5) Match on measure

—) predictions

Jimite $M = \frac{q^2}{3v^2} + \frac{q^4}{3v^4} l_1(x) + \frac{\dot{q}^4}{3v^2} l_1 \frac{g^2}{3v^2}$ $= \frac{1}{3v^2} \left(1 + \frac{g^2}{3v^2} + \dots\right)$ $= \frac{1}{3v^2} \left(1 + \frac{g^2}$

 $V = \begin{pmatrix} 4 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 8 \end{pmatrix}$ $\frac{Q(D)}{M=0} Chual Pert Theory <math>V^{4=(3)}, (3)$ $M=0, Z=4, YY_{L}+Y_{R}Y_{R}$ $-) Y_{L}\rightarrow LY_{L}, Y_{R}\rightarrow RY_{L}, L, R \sim Su(2), Su(3)$ =) II, K, n Goldston boson <10. DOF $\mathcal{L} = \frac{F^2}{4} \ln \left(\partial_{\mu} U \right)^{\mu} U^{\dagger}$ $U = e^{i \frac{\pi}{2} \frac{1}{2}} \int_{-\infty}^{\infty} i \lambda \cdot d f$

$$J = \overline{\psi}_{i} \mathcal{D} \psi - \psi_{i} \mathcal{M} \psi_{R} - \overline{\psi}_{R} \mathcal{M}^{\dagger} \psi_{L}$$

$$\mathcal{M} \rightarrow L \mathcal{M} \mathcal{R}^{\dagger} \qquad \mathcal{Q} \mathcal{L} \mathcal{D} \text{ when } \mathcal{M} = \begin{pmatrix} m_{n} & m_{d} \\ 0 & m_{d} \end{pmatrix}$$

$$\mathcal{L} = \overline{\mathcal{L}}^{3} \mathcal{T}_{R} \left(\partial_{n} \mathcal{U} \mathcal{J}^{n} \mathcal{U}^{\dagger} \right) + 2 \mathcal{B}_{F}^{2} \mathcal{T}_{R} \left(\mathcal{M} \mathcal{U}^{\dagger} + \mathcal{M}^{\dagger} \mathcal{U} \right)$$

$$\mathcal{L} = \overline{\mathcal{L}}^{3} \mathcal{T}_{R} \left(\partial_{n} \mathcal{U} \mathcal{J}^{n} \mathcal{U}^{\dagger} \right) + 2 \mathcal{B}_{F}^{2} \mathcal{T}_{R} \left(\mathcal{M} \mathcal{U}^{\dagger} + \mathcal{M}^{\dagger} \mathcal{U} \right)$$

$$\mathcal{M}_{M} \mathcal{M}_{M} \mathcal{M}_$$

Next order - Gasser Lentryler

$$\mathcal{L}_{4} = \sum_{i=1}^{10} L_{i}O_{i}$$

$$= \mathcal{L}_{1} \left[\operatorname{Tr} \left(D_{\mu}UD^{\mu}U^{\dagger} \right) \right]^{2} + L_{2} \operatorname{Tr} \left(D_{\mu}UD_{\nu}U^{\dagger} \right) \cdot \operatorname{Tr} \left(D^{\mu}UD^{\nu}U^{\dagger} \right)$$

$$+ L_{3} \operatorname{Tr} \left(D_{\mu}UD^{\mu}U^{\dagger}D_{\nu}UD^{\nu}U^{\dagger} \right) \quad \mathcal{C}$$

$$+ L_{4} \operatorname{Tr} \left(D_{\mu}UD^{\mu}U^{\dagger} \right) \operatorname{Tr} \left(\chi U^{\dagger} + U\chi^{\dagger} \right)$$

$$+ L_{5} \operatorname{Tr} \left(D_{\mu}UD^{\mu}U^{\dagger} \left(\chi U^{\dagger} + U\chi^{\dagger} \right) \right) + L_{6} \left[\operatorname{Tr} \left(\chi U^{\dagger} + U\chi^{\dagger} \right) \right]^{2}$$

$$+ L_{7} \left[\operatorname{Tr} \left(\chi^{\dagger}U - U\chi^{\dagger} \right) \right]^{2} + L_{8} \operatorname{Tr} \left(\chi U^{\dagger}\chi U^{\dagger} + U\chi^{\dagger}U\chi^{\dagger} \right)$$

$$+ iL_{9} \operatorname{Tr} \left(L_{\mu\nu}D^{\mu}UD^{\nu}U^{\dagger} + R_{\mu\nu}D^{\mu}U^{\dagger}D^{\nu}U \right) + L_{10} \operatorname{Tr} \left(L_{\mu\nu}UR^{\mu\nu}U^{\dagger} \right)$$

 $\chi = 28 M$

Table VII–1. Renormalized coefficients in the chiral lagrangian \mathcal{L}_4 given in units of 10^{-3} and evaluated at renormalization point $\mu = m_{\rho}$ [BiJ 12].

Coefficient	Value	Origin
\mathbf{L}_{1}^{r}	1.12 ± 0.20	$\pi\pi$ scattering
L_2^r L_2^r	2.23 ± 0.40 -3.98 ± 0.50	and $K_{\ell 4}$ decay
L_4^r	1.50 ± 1.01	F_K/F_π
L_5^r	1.21 ± 0.08	F_K/F_π
L_6^r	1.17 ± 0.95	F_K/F_π
L_7^r	-0.36 ± 0.18	meson masses
L_8^r	0.62 ± 0.16	F_K/F_π
L_9^r L_{10}^r	7.0 ± 0.2 -5.6 ± 0.2	rare pion decays

^aDetermined only with the additional assumption of η - η' mixing.

Table VII–2. The radiative complex of pion and kaon transitions.

Pions	Kaons
$\begin{array}{c} \gamma \rightarrow \pi^+\pi^- \\ \gamma \pi^+ \rightarrow \gamma \pi^+ \\ \pi^+ \rightarrow e^+\nu_e \gamma \\ \pi^+ \rightarrow \pi^0 e^+\nu_e \\ \pi^+ \rightarrow e^+\nu_e e^+ e^- \end{array}$	$\begin{array}{l} \gamma \rightarrow K^-K^+ \\ \gamma K^+ \rightarrow \gamma K^+ \\ K^+ \rightarrow e^+ \nu_e \gamma \\ K \rightarrow \pi e^+ \nu_e \\ K^+ \rightarrow e^+ \nu_e e^+ e^- \end{array}$
	$K^+ \to \pi^0 e^+ \nu_e \gamma$

Table VII-4. The pion scattering lengths and slopes.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Experimental	Lowest $Order^a$	First Two Orders ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a_0^0	0.220 ± 0.005	0.16	0.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b_0^0	0.25 ± 0.03	0.18	0.26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a_0^2	-0.044 ± 0.001	-0.045	-0.041
$b_1^1 \qquad \qquad \qquad 0 \qquad \qquad 0.043$ $a_2^0 \qquad (17\pm 3)\times 10^{-4} \qquad \qquad 0 \qquad \qquad 20\times 10^{-4}$	b_2^2	-0.082 ± 0.008	-0.089	-0.070
$a_2^0 \qquad (17\pm 3)\times 10^{-4} \qquad \qquad 0 \qquad \qquad 20\times 10^{-4}$	a_1^1	0.038 ± 0.002	0.030	0.036
- '	b_1^1	_	0	0.043
$a_2^2 \qquad (1.3\pm 3)\times 10^{-4} \qquad \qquad 0 \qquad \qquad 3.5\times 10^{-4}$	a_2^0	$(17\pm3)\times10^{-4}$	0	20×10^{-4}
	a_2^2	$(1.3 \pm 3) \times 10^{-4}$	0	3.5×10^{-4}

 $[\]overline{{}^a}$ Predictions of chiral symmetry.

Table VII-3. Chiral predictions and data in the radiative complex of transitions.

Reaction	Quantity	Theory	Experiment
$\gamma \rightarrow \pi^+\pi^-$	$\langle r_{\pi}^2 \rangle \; (\text{fm}^2)$	0.45^{a}	0.45 ± 0.01
$\gamma ightarrow K^+K^-$	$\langle r_K^2 \rangle (\text{fm}^2)$	0.45	0.31 ± 0.03
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$h_V(m_{\pi}^{-1})$	0.027	0.0254 ± 0.0017
	h_A/h_V	0.441^{a}	0.441 ± 0.004
$K^+ \rightarrow e^+ \nu_e \gamma$	$(h_V + h_A)(m_K^{-1})$	0.136	0.133 ± 0.008
$\pi^+ \rightarrow e^+ \nu_e e^+ e^-$	r_A/h_V	2.6	2.2 ± 0.3
$\gamma \pi^+ \rightarrow \gamma \pi^+$	$(\alpha_E + \beta_M)(10^{-4} \text{fm})$	0	0.17 ± 0.02
	$(\alpha_E - \beta_M) (10^{-4} \text{fm})$	5.6	13.6 ± 2.8
$K o \pi e^+ \nu_e$	$\xi = f_{-}(0)/f_{+}(0)$	-0.13	-0.17 ± 0.02
	$\lambda_{+} \text{ (fm}^2\text{)}$	0.067	0.0605 ± 0.001
	$\lambda_0 \; (\mathrm{fm}^2)$	0.040	0.0400 ± 0.002

^aUsed as input.

 $[^]b \text{Vanishes}$ in the $N_c \to \infty$ limit.

Regions of a single field

- previous - heavy partiel

- also - heavy regions of light field

- Wilson

Montrelatistic EFT (H.Q.ET), NRQCD -
- anti-particle heavy $Y = \begin{pmatrix} u \\ e \end{pmatrix} 2$ $I = \underbrace{i}_{2} \underbrace{J}_{4} \underbrace{J}_{4}$ $J = \underbrace{u}_{2}(x,t) \underbrace{I}_{1} \underbrace{J}_{0} - \underbrace{I}_{2}(x,t) \underbrace{J}_{4} + \underbrace{J}_{3} \underbrace{J}_{0} \underbrace{\sigma^{r}_{1} F_{nV}}_{nV}) \underbrace{J}_{1} \underbrace{J}_{1}$

=) full EFT

SCET - multipl loweringy field (T. Becher, lecture) k2 ~ Q2 Hard region (OPE) 1p' h2 nO p 1/p collinear region h-0 h//p' 1, k ~ 0 all components small soft Double counting? Method of regions Overlap region - 'zero bin subtraction'

Background Field Method

- keep fields explicit

- generate

renormaly

powerful construction

I then take matrix elements

 $\frac{\mathcal{A}_{W}}{\mathcal{A}_{W}} = \frac{\mathcal{A}_{W}}{\mathcal{A}_{W}} = \frac{\mathcal{$

$$\frac{QED}{J} = \frac{D^*D^*D^m\phi}{D^m\phi} = -\frac{\phi^*D^m\phi}{D^m\phi} = \frac{D^m\phi}{D^m\phi} = \frac{D^m$$

Pert thery
$$Th \ln \left| \mathbb{I} \left(1 + \frac{1}{1!} N \right) \right| = Th \ln \mathbb{I} + Th \left(\frac{1}{1!} N + \frac{1}{2!} \frac{1}{1!} N_{1!}^{-1} N + \cdots \right)$$

$$\left(N \left| \frac{1}{2!} \right| N \right) = D_{F} (N - y)$$

I = D=(0) An A" + -1 Say A=(x-1) Ang) D=(y-x) {2, A}

Derivatives onto field

$$\Delta_F(0) = 0$$

$$\Delta_F(x)\partial_\mu \Delta_F(x) = \frac{1}{2}\partial_\mu \Delta_F^2(x)$$

$$\Delta_F(x)\partial_\mu \partial_\nu \Delta_F(x) = [d\partial_\mu \partial_\nu - g_{\mu\nu}\Box] \frac{\Delta_F^2(x)}{4(d-1)}$$

$$\partial_\mu \Delta_F(x)\partial_\nu \Delta_F(x) = [(d-2)\partial_\mu \partial_\nu + g_{\mu\nu}\Box] \frac{\Delta_F^2(x)}{4(d-1)} .$$

$$S = \int dx \frac{1}{4e^{2}} \int_{nv} F^{nv} + \int dx dy \int_{nv} F_{nv}(y) \int_{nv} (y)$$

$$D_{x}(x-y) = \frac{\delta^{4}(x-y)}{16\pi^{2}} \left[\frac{2}{\epsilon} - - \right] + \frac{1}{96\pi^{2}} \int_{nv} (y) \frac{1}{2} \left[\frac{g(x-y)}{2} + \frac{1}{2} + \frac{1}{2} \left[\frac{g(x-y)}{2} + \frac{1}{2} + \frac{1}{2} \left[\frac{g(x-y)}{2} + \frac{1}{2} + \frac{1}{$$

$$S = \int d^4x \, F_{n\nu} \left[\frac{1}{4e^2(n)} - b \ln \frac{n}{2} \right] F^{n\nu}$$

$$\langle x | f_n D_{/2} | q \rangle = L(x-y)$$

, ,

Higgs 66-2H, HH, HHH, H-788 $M_{\pm} >> M_{H} <$ $L = M_{t}(1+H_{f}) = M_{t}(H) =$ 2 - e ln M2 (H) (gar g? - & F) I=1F? + & ln(N+H) Fr F 1 25 ln(1+H) FA FANN

H Show 6 A A Cancel at theheld Example T model at I loop

Jogic TI = TI + STI = I loop of many processes

A furthering

L= Il

L= I(I) + D[d, d'+0] A

T(1+1)

Prenom.

 $\mathcal{L}_{1loop} = \frac{N^{2} \operatorname{Tr} \left(\partial_{\nu} \mathcal{U} \right)^{n} \mathcal{U}^{\dagger} \right)}{4} + l_{1} \left(\operatorname{Tr} \mathcal{L} \right)^{2} + - \frac{1}{1287} \operatorname{Tr} \left(\partial_{\nu} \mathcal{U} \right)^{n} \mathcal{U}^{\dagger} \right) \ln \mathcal{L}_{1} \operatorname{Tr} \left(\partial_{\nu} \mathcal{U} \right)^{n} \mathcal{U}^{\dagger} \right)$

log for all processes!

Summary BFM

- keep field explicit in cole.

- generating Left

- useful