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Part 1
Life without a Higgs boson



U(1)Q is a gauge (= local) symmetry and the photon 
is its carrier
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We have discovered a zoo of particles, yet simple 
rules govern their phenomenology:
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 Interactions and decays obey selection rules: 
electromagnetic charge Q is always conserved

 Spectrum degeneracy:  particles organized in multiples 
with same electromagnetic charge

 We feel a long-range force: electromagnetism

ω



W,Z

5

In the spectrum of fundamental particles there are 
also massive spin-1 fields: W±, Z0 

They can be thought of as the carriers 
of the ElectroWeak force

It is natural to conjecture that: W and Z are the gauge fields of a 
larger local SU(2)LxU(1)Y invariance



W,Z

5

In the spectrum of fundamental particles there are 
also massive spin-1 fields: W±, Z0 

They can be thought of as the carriers 
of the ElectroWeak force

It is natural to conjecture that: W and Z are the gauge fields of a 
larger local SU(2)LxU(1)Y invariance

Problems:

2.  W and Z are massive, and the EW force is not long-range

     What is the origin of the W,Z mass ?

1.  SU(2)LxU(1)Y is not a symmetry of the particles’ spectrum
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Solution: The SU(2)LxU(1)Y local symmetry is spontaneously broken 
by the vacuum via the Brout-Englert-Higgs mechanism

The problems of the mass and of the missing NG bosons can solve each other:

“ it is precisely these singularities [of the NG bosons] which 
maintain the gauge invariance of the theory, despite the 
fact that the vector meson acquires a mass ”

• F. Englert, R. Brout,  PRL 13 (1964) 321,  “Broken symmetry and the mass of gauge vector bosons”

• P. Higgs,  Phys. Lett. 12 (1964) 132,  “Broken symmetries, massless particles and gauge fields”

the choice of Coulomb gauge to quantize a gauge 
theory implies the existence of a time-like vector and thus 
invalidates Goldstone’s theorem based on manifest 
Lorentz covariance
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Solution: The SU(2)LxU(1)Y local symmetry is spontaneously broken 
by the vacuum via the Englert-Brout-Higgs mechanism

The (massless) NG bosons from the spontaneous symmetry breaking are 
‘eaten’ to form the longitudinal polarizations of the massive vector bosons

χa

SU(2)LxU(1)Y→U(1)Q

︴ ︴Aµ 

━━━ψ

SU(2)LxU(1)Y

Symmetry Breaking
sector
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Solution: The SU(2)LxU(1)Y local symmetry is spontaneously broken 
by the vacuum via the Englert-Brout-Higgs mechanism

The (massless) NG bosons from the spontaneous symmetry breaking are 
‘eaten’ to form the longitudinal polarizations of the massive vector bosons

χa

SU(2)LxU(1)Y→U(1)Q

︴ ︴Aµ 

━━━ψ

SU(2)LxU(1)Y

Englert and Higgs received the 2013 Nobel prize in Physics

 ... for the theoretical discovery of a mechanism that 
contributes to our understanding of the origin of mass of 
subatomic particles ” 

“

Longitudinal polarizations 
(three NG bosons)

Transverse 
polarizations 
(gauge fields)

Symmetry Breaking
sector



The vacuum               spontaneously breaks  SU(2)LxU(1)Y→U(1)Q (                     )

Σ(x) = exp (iσaχa(x)/v)

Σ → UL ΣU†
Y

a = 1, 2, 3

Q = T3L + Y�Σ� = 1
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χa

SU(2)LxU(1)Y→U(1)Q

︴ ︴Aµ 

━━━ψ

SU(2)LxU(1)Y

Symmetry Breaking
sector

( 2x2 matrix )

UL(x) = exp(iαa
L(x)σa/2)

UY (x) = exp(iαY (x)σ3/2)

SU(2)L acts on the left  

U(1)Y  acts on the right

The theory can be described by a manifestly gauge-invariant Lagrangian 
by including the NG fields:
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The          transform:χa(x)

 non-linearly under SU(2)LxU(1)Y

ex:  under SU(2)L
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The          transform:χa(x)

 non-linearly under SU(2)LxU(1)Y

ex:  under SU(2)L

 linearly under the unbroken U(1)Q subgroup:



the field      does transform linearly, but it is subject to the 
non-linear constraint
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The          transform:χa(x)

 non-linearly under SU(2)LxU(1)Y

ex:  under SU(2)L

 linearly under the unbroken U(1)Q subgroup:

Notice:  Σ
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It is natural then to define the covariant derivative:



DµΣ = ∂µΣ− ig2
σa

2
W a

µΣ+ ig1Σ
σ3

2
Bµ

Lmass =
v2

4
Tr

�
(DµΣ)

† (DµΣ)
�
+

aT
8
v2 Tr

�
Σ†DµΣσ3

�2

10

There are two kinetic terms invariant under SU(2)LxU(1)Y local transformations:

It is natural then to define the covariant derivative:
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There are two kinetic terms invariant under SU(2)LxU(1)Y local transformations:

It is natural then to define the covariant derivative:

in the unitary 
gauge
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There are two kinetic terms invariant under SU(2)LxU(1)Y local transformations:

It is natural then to define the covariant derivative:

in the unitary 
gauge

Experimentally:
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There are two kinetic terms invariant under SU(2)LxU(1)Y local transformations:

It is natural then to define the covariant derivative:

in the unitary 
gauge

Experimentally:

MUST BE SMALL
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if gauging is switched off the first term has 
a larger SU(2)LxSU(2)R global symmetry:
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if gauging is switched off the first term has 
a larger SU(2)LxSU(2)R global symmetry:

 The pattern of global non-linearly realized symmetry is SU(2)LxSU(2)R→SU(2)V 

complete analogy with chiral symmetry in QCD 

Lmass =
v2

4
Tr

�
(DµΣ)

† (DµΣ)
�
+

aT
8
v2 Tr

�
Σ†DµΣσ3

�2



v2

4
Tr

�
(∂µΣ)

† (∂µΣ)
�

Σ → ULΣU †
R

UR ∈ SU(2)R

UL ∈ SU(2)L

χa
MW =MZ g1=0

11

if gauging is switched off the first term has 
a larger SU(2)LxSU(2)R global symmetry:

 The pattern of global non-linearly realized symmetry is SU(2)LxSU(2)R→SU(2)V 

 The vacuum preserves a global SU(2)V ‘custodial’ symmetry (weak isospin)

complete analogy with chiral symmetry in QCD 

physical states come in multiplets of SU(2)V

the NG bosons        form a triplet of SU(2)V for
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The Lagrangian           gives an effective description valid below 
some cutoff scale:
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The Lagrangian           gives an effective description valid below 
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strength of the interaction 
grows with Energy2
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In absence of additional contributions to the scattering amplitude, the 

coupling strength becomes non-perturbative (                ) at energy 

scales 

A(2 → 2) = coupling2 g(E) =
E

v

g(E)= 4π

13

E ∼ Λs = 4πv

In general:
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Loop diagrams are divergent and need to be renormalized 

by higher-derivative operators

+

counterterm from 
4-derivative 
operator. Ex:
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Loop diagrams are divergent and need to be renormalized 

by higher-derivative operators

+

counterterm from 
4-derivative 
operator. Ex:

Operators are additively renormalized

1-loop O(p2)

1-loop  O(p4)
2-loops O(p2)
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. .
 .



─                controlling the derivative expansion

─                weak gauging expansion parameter

L = L(2) + L(4) + L(6) + . . .
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The Lagrangian of NG bosons is thus “non-renormalizable” and should

be thought of as a derivative expansion 

. .
 .

Expansion parameters:



relates the scattering of NG bosons to that of longitudinal vector bosons
                     (            ) at high energiesVLVL → VLVL V =W,Z E � mW
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The Equivalence Theorem
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The evidence for a spontaneously-broken SU(2)LxU(1)Y gauge 
symmetry is founded on the following facts: 
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µ g1,2 � 4π
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The evidence for a spontaneously-broken SU(2)LxU(1)Y gauge 
symmetry is founded on the following facts: 

[1]

there exists an energy window 
in which the EW effective theory applies 

[2]

this in turn implies

[3] WT
µ , ZT

µ
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ΛUV

mV
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scale at which             eventually 
become strongly interacting

to keep the theory perturbative new particles must 
come in before      to regulate the scattering amplitudes

Λs = 4πmV /g
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Energy

domain of validity of the 
effective theory

transverse modes must remain elementary up 
to (much) higher scales (shorter distances)

NOTICE: the longitudinal polarizations need not be elementary

(i.e. they can be composites of some new dynamics)
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Suppose an anomalous coupling is measured 
which can be parametrized by the operator
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if new physics arises 
at the 1-loop level
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LEP, Tevatron and LHC set limits on the 

anomalous TGC of order

Elementary nature of W,Z tested at LEP, Tevatron and LHC through 
Triple Gauge Couplings (TGC)  

Suppose an anomalous coupling is measured 
which can be parametrized by the operator



m∗

21

Strong bounds on `structure` scale       come also 
from modifications to the vector propagator

Ex:    S-parameter aS Tr
�
Wµν Σ σ3Bµν Σ†� ⊃ γµνZµν ( Z-photon mixing )

∼
�
g1g2 v2 + aS E2
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m∗ � 1.8 TeV

Strong bounds on `structure` scale       come also 
from modifications to the vector propagator

LEP

Ex:    S-parameter aS Tr
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Wµν Σ σ3Bµν Σ†� ⊃ γµνZµν ( Z-photon mixing )

O(1) correction at E ∼ mW
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A counter-example:  the ρ in QCD 

 Could the ρ be the gauge field of a larger spontaneously-
broken global symmetry SU(2)LxSU(2)HxSU(2)R→SU(2)V ?

3 NG bosons eaten to give mass to ρ 

3 NG bosons remain in the spectrum = the pions

Sakurai, Currents and Mesons, 1969
Schwinger, PRL 24B (1967) 473
Wess, Zumino, Phys. Rev. 163 (1967) 1727
Weinberg, Phys. Rev. 166 (1968) 1568
Bando et al., PRL 54 (1985) 1215

dim[SU(2)3] - dim[SU(2)] = 6

SU(2)LxSU(2)HxSU(2)R
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4πfπ = 1.2GeV
Λs = 4πmρ/gρππ = 1.6GeV

mρ = 0.77GeV
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A counter-example:  the ρ in QCD 

 Could the ρ be the gauge field of a larger spontaneously-
broken global symmetry SU(2)LxSU(2)HxSU(2)R→SU(2)V ?

3 NG bosons eaten to give mass to ρ 

3 NG bosons remain in the spectrum = the pions

Sakurai, Currents and Mesons, 1969
Schwinger, PRL 24B (1967) 473
Wess, Zumino, Phys. Rev. 163 (1967) 1727
Weinberg, Phys. Rev. 166 (1968) 1568
Bando et al., PRL 54 (1985) 1215

dim[SU(2)3] - dim[SU(2)] = 6

SU(2)LxSU(2)HxSU(2)R

 The ρ is not weakly coupled:

 There is no separation of scales scale at which ρL 
becomes strongly interacting

scale at which π ‘s
become strongly 
interacting



Part 2
The role of the Higgs boson
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What Higgs bosons are

massless excitations
(NG bosons)

radial excitations 
(massive)

V (Φ)
Higgs 
bosons

E

W,Z, h

EW condensate

QCD condensate
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Demystifying the Higgs boson

 “The Higgs boson gives mass to the elementary particles”



λψ =
mψ
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and the quantum excitation around it

False:  

Particles can have mass even in absence of 
a light Higgs boson (Technicolor)

The Higgs model predicts:



λψ =
mψ

v

25

Demystifying the Higgs boson

 “The Higgs boson gives mass to the elementary particles”

One has to distinguish between the vacuum 
and the quantum excitation around it

False:  

Particles can have mass even in absence of 
a light Higgs boson (Technicolor)

The Higgs model predicts:

 “The Higgs boson is at the origin of the mass in the Universe ”



λψ =
mψ

v

mP ∼ ΛQCD � mq
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Demystifying the Higgs boson

 “The Higgs boson gives mass to the elementary particles”

One has to distinguish between the vacuum 
and the quantum excitation around it

False:  

Particles can have mass even in absence of 
a light Higgs boson (Technicolor)

The Higgs model predicts:

 “The Higgs boson is at the origin of the mass in the Universe ”

The bulk of the mass of the proton and 
neutron comes from the QCD dynamics

False:  
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Non-linear effective Lagrangian with a light Higgs

 Assumption:  h(x) is a scalar (spin-0) field, singlet of the custodial SU(2)V
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Non-linear effective Lagrangian with a light Higgs

 Assumption:  h(x) is a scalar (spin-0) field, singlet of the custodial SU(2)V

cV, c2V, cu,d, c3,4 are 
free parameters

cu,d assumed to be flavor 
universal to avoid large FCNCs
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Example of possible (arbitrary) assumption: Partial UV completion (PUVC)

at          coupling strength of the 
Higgs boson is of the same order 
as that of the NG bosons 

RC, Marzocca, Pappadopulo, Rattazzi  JHEP 10 (2011) 081 

E=Λ

http://dx.doi.org/10.1007/JHEP10(2011)081
http://dx.doi.org/10.1007/JHEP10(2011)081
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No power counting to estimate the new coefficients                             
w/o making NEW ASSUMPTIONS
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E2
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= E ·
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cV E
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= g(E)

g(Λ) ∼ g∗ ≡ Λ

v
cV = O(1)

Example of possible (arbitrary) assumption: Partial UV completion (PUVC)

at          coupling strength of the 
Higgs boson is of the same order 
as that of the NG bosons 

π

RC, Marzocca, Pappadopulo, Rattazzi  JHEP 10 (2011) 081 

E=Λ

http://dx.doi.org/10.1007/JHEP10(2011)081
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 if the scalar h is sufficiently light and narrow,                                  , 
all scattering amplitudes stay perturbative up to arbitrary energies

cV = c2V = cu,d = c3,4 = 1

mh �
√
8πv = 1.2TeV
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The choice                            
(vanishing higher-order terms)

defines the Higgs Model 
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 the scalar h and the three NG bosons      form a doublet of SU(2)L χa
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 in terms of H the theory is manifestly renormalizable
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 there is an unbroken SO(3) custodial symmetry: 

H =
�

w1 + i w2

w3 + i w4

�
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†
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�

i

(wi)2

V (H†
H)

�H†
H� = v

2

is SO(4)~SU(2)LxSU(2)R invariant

breaks SO(4)→SO(3)

The choice                            defines the Higgs Model cV = c2V = cu,d = c3,4 = 1

(vanishing higher-order terms)
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 First theory of this kind (an abelian SO(2) model) was constructed by P. Higgs

P. Higgs,  PRL 13 (1964) 508,  “Broken symmetries and the masses of gauge bosons”

P. Higgs pointed out the existence of 
a massive scalar (the Higgs boson) in 
addition to the eaten NG boson

VoLUME 1$, NUMBER 16 PHYSICAL REVIEW LETTERS 19OcTQBER 1964

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs
Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland

(Received 31 August 1964)

In a recent note' it was shown that the Gold-
stone theorem, ' that Lorentz-covaria. nt field
theories in which spontaneous breakdown of
symmetry under an internal Lie group occurs
contain zero-mass particles, fails if and only if
the conserved currents associated with the in-
ternal group are coupled to gauge fields. The
purpose of the present note is to report that,
as a consequence of this coupling, the spin-one
quanta of some of the gauge fields acquire mass;
the longitudinal degrees of freedom of these par-
ticles (which would be absent if their mass were
zero) go over into the Goldstone bosons when the
coupling tends to zero. This phenomenon is just
the relativistic analog of the plasmon phenome-
non to which Anderson' has drawn attention:
that the scalar zero-mass excitations of a super-
conducting neutral Fermi gas become longitudi-
nal plasmon modes of finite mass when the gas
is charged.
The simplest theory which exhibits this be-

havior is a gauge-invariant version of a model
used by Goldstone' himself: Two real' scalar
fields y„y, and a real vector field A interact
through the Lagrangian density

2 2
L =-&(&v ) -@'7v )1 2

2 2 ~ JL(,V—V(rp + y ) -P'1 2 P,v

where

V p =~ p -eA
1 jL(, 1 p, 2'

p2 +eA {p1'

F =8 A -BA
PV P, V V

e is a dimensionless coupling constant, and the
metric is taken as -+++. I. is invariant under
simultaneous gauge transformations of the first
kind on y, + iy, and of the second kind on A
Let us suppose that V'(cpa') = 0, V"(&p,') ) 0; then
spontaneous breakdown of U(1) symmetry occurs.
Consider the equations [derived from (1) by
treating ~y„ay„and A & as small quantities]
governing the propagation of small oscillations

about the "vacuum" solution y, (x) =0, y, (x) = y, :
s "(s (np )-ep A )=0,1 0 (2a)

(&'-4e,'V"(y,')f(&y, ) = 0, (2b)

s r"'=eq (s"(c,p, ) ep A-t.
V 0 1 0 p,

(2c)

Pv 2 2
8 B =0, 8 t" +e y 8 =0.

v 0 (4)

Equation (4) describes vector waves whose quanta
have (bare) mass ey, . In the absence of the gauge
field coupling (e =0) the situation is quite differ-
ent: Equations (2a) and (2c) describe zero-mass
scalar and vector bosons, respectively. In pass-
ing, we note that the right-hand side of (2c) is
just the linear approximation to the conserved
current: It is linear in the vector potential,
gauge invariance being maintained by the pres-
ence of the gradient term. '
When one considers theoretical models in

which spontaneous breakdown of symmetry under
a semisimple group occurs, one encounters a
variety of possible situations corresponding to
the various distinct irreducible representations
to which the scalar fields may belong; the gauge
field always belongs to the adjoint representa-
tion. ' The model of the most immediate inter-
est is that in which the scalar fields form an
octet under SU(3): Here one finds the possibil-
ity of two nonvanishing vacuum expectation val-
ues, which may be chosen to be the two Y=0,
I3=0 members of the octet. There are two
massive scalar bosons with just these quantum
numbers; the remaining six components of the
scalar octet combine with the corresponding
components of the gauge-field octet to describe

Equation (2b) describes waves whose quanta have
(bare) mass 2po(V"(yo'))'"; Eqs. (2a) and (2c)
may be transformed, by the introduction of new
var iables

fl =A -(ey ) '8 (n, (p ),
p. 0 p, 1'

G =8 B -BB =F
IL(.V p. V V p, LL(V

into the form

508

cV = c2V = cu,d = c3,4 = 1The choice                            
(vanishing higher-order terms)

defines the Higgs Model 
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A closer look at the Higgs model reveals how special it is:

 the Higgs boson is elementary: first example of an 
elementary scalar in Nature
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A closer look at the Higgs model reveals how special it is:

 the Higgs boson is elementary: first example of an 
elementary scalar in Nature

 an elementary Higgs boson goes 
beyond the gauge paradigm:

λ4, λ
u,d

non-perturbativity

vacuum instability

       too small: 
vacuum unstable
mh

λ4(v)
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What have we 
learned on the origin 
of EWSB from Run1 

at the LHC ?



34

Theoretical Questions

• How far in energy can we extrapolate our theory ?

Do fundamental interactions among particles stay weak or 
do they get strong at high energy ?
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Theoretical Questions

• How far in energy can we extrapolate our theory ?

Do fundamental interactions among particles stay weak or 
do they get strong at high energy ?

• Is the newly-discovered Higgs boson elementary or composite ?

Are the Yukawa couplings and Higgs self-coupling new 
fundamental interactions, beyond the gauge paradigm ?
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Higgs couplings must be proportional to 
masses for the Higgs to moderate the 
energy growth of scattering amplitudes
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Extrapolate the SM up 
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logEResidual          dependence of Higgs 
trilinear coupling

For                                EW vacuum metastablemh = 125GeV

from: G. Degrassi et al.  JHEP 1208 (2012) 098
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The puzzle of Higgs lightness (aka the Hierarchy Problem)

If the Higgs boson is elementary, why it is so 
much lighter than the cutoff scale ?
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The Higgs boson is a composite of a new 
strong dynamics at the TeV (i.e. cutoff is low)

A #1:   Compositeness
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The puzzle of Higgs lightness (aka the Hierarchy Problem)

If the Higgs boson is elementary, why it is so 
much lighter than the cutoff scale ?

Q:

δm2
h =

�
6 y2

t −
3
4

�
3 g2

2 + g2
1

�
− 6 λ4

�
Λ2

8π2

The Higgs boson is a composite of a new 
strong dynamics at the TeV (i.e. cutoff is low)

couplings are not pointlike, 
but form factors: at energies 
higher than compositeness 

scale they vanish:

form factor

A #1:   Compositeness

mh ≈ Λcomp

Λcomp � a few TeV

Problem: from loops of 
pure composites

EWPT require
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A #2:   Symmetry protection
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The puzzle of Higgs lightness (aka the Hierarchy Problem)

If the Higgs boson is elementary, why it is so 
much lighter than the cutoff scale ?

Q:

A symmetry protects the Higgs mass term, 
new particles Φ cancel the SM loops

A #2:   Symmetry protection

+

Known examples: 

Supersymmetry top partners = stops

top partners = vector-like fermionsGlobal symmetry

(Higgs is a Nambu-
Goldstone boson) 



Λ ≈ mΦ
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The puzzle of Higgs lightness (aka the Hierarchy Problem)

If the Higgs boson is elementary, why it is so 
much lighter than the cutoff scale ?

Q:

+

the protecting symmetry must be broken in a soft way 

Only A-terms and soft masses

Global symmetry Collective breaking

Notice:

Supersymmetry

A symmetry protects the Higgs mass term, 
new particles Φ cancel the SM loops

(Higgs is a Nambu-
Goldstone boson) 

(Little Higgs theories)

A #2:   Symmetry protection



m2
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λ2
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λ� 4π
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The puzzle of Higgs lightness (aka the Hierarchy Problem)

If the Higgs boson is elementary, why it is so 
much lighter than the cutoff scale ?

Q:

A #3:   Higgs as a composite NG boson  (combines #1 and #2)

Loops of pure composites 
vanish due to NG symmetry

= 0

NG symmetry broken by 
elementary-composite couplings: 
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The puzzle of Higgs lightness (aka the Hierarchy Problem)

If the Higgs boson is elementary, why it is so 
much lighter than the cutoff scale ?

Q:

A #3:   Higgs as a composite NG boson  (combines #1 and #2)

Loops of pure composites 
vanish due to NG symmetry

= 0

NG symmetry broken by 
elementary-composite couplings: 

Known example: 
the EM mass of the pion π

Aµ

π ∆m2
π ≈ 3

αem

4π
m2

ρ



Part 3
Effective Lagrangian for a Higgs doublet



2. There is a gap between the NP scale      andm∗ mh
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How to live near the SM point

H = e
iπ/v
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0

v + h

�
1. The new boson is part of an SU(2)L doublet
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• At energies               , NP effects are well 
approximated by local operators 

2. There is a gap between the NP scale      andm∗ mh

L =
�

i

c̄i Oi(x)

E�m∗

c̄i(m∗) ∼
�

1

m∗

�d[O]−4

43

How to live near the SM point

H = e
iπ/v

�
0

v + h

�
1. The new boson is part of an SU(2)L doublet

Operators “generated” at       with coefficientsm∗
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Effective Lagrangian for a Higgs doublet

• Operators can be classified according to their dimension 

L = LSM +
�

i

c̄iOi ≡ LSM +∆L(6) +∆L(8) + . . .
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Effective Lagrangian for a Higgs doublet

• Operators can be classified according to their dimension 

L = LSM +
�

i

c̄iOi ≡ LSM +∆L(6) +∆L(8) + . . .

Leading effects from dim-6 operators

59 independent operators for 1 SM family

Buchmuller and Wyler NPB 268 (1986) 621

...

Grzadkowski et al. JHEP 1010 (2010) 085

For a review see:  
RC, Ghezzi, Grojean, Muhlleitner, Spira JHEP 1307 (2013) 035



∆L(6) = ∆LSILH +∆Lcc +∆Ldipole +∆LV ++∆L4ψ

45

Effective Lagrangian for a Higgs doublet
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Effective Lagrangian for a Higgs doublet

∆LSILH =
c̄H

2v2
∂µ

�
H

†
H
�
∂µ

�
H

†
H
�
+

c̄T

2v2

�
H

†←→
D

µ
H

��
H

†←→
D µH

�
− c̄6 λ

v2

�
H

†
H
�3

+
�
c̄u

v2
yu H

†
H q̄LH

c
uR +

c̄d

v2
yd H

†
H q̄LHdR +

c̄l

v2
yl H

†
H L̄LHlR + h.c.

�

+
ic̄W g

2m2
W

�
H

†σi
←→
D

µ
H

�
(Dν

Wµν)
i +

ic̄B g
�

2m2
W

�
H

†←→
D

µ
H

�
(∂ν

Bµν)

+
ic̄HW g

m
2
W

(Dµ
H)†σi(Dν

H)W i

µν +
ic̄HB g

�

m
2
W

(Dµ
H)†(Dν

H)Bµν

+
c̄γ g

�2

m
2
W

H
†
HBµνB

µν +
c̄g g

2
S

m
2
W

H
†
HG

a

µνG
aµν

+
ic̃HW g

m
2
W

(Dµ
H)†σi(Dν

H)W̃ i

µν +
ic̃HB g

�

m
2
W

(Dµ
H)†(Dν

H)B̃µν

+
c̃γ g

�2

m
2
W

H
†
HBµνB̃

µν +
c̃g g

2
S

m
2
W

H
†
HG

a

µνG̃
aµν

16 operators
(12 CP even, 4 CP odd)

Optimal basis to test light composite Higgs
Giudice, Grojean, Pomarol, Rattazzi  JHEP 0706 (2007) 045
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Effective Lagrangian for a Higgs doublet

∆Lcc =
ic̄Hq

v2
(q̄Lγ

µ
qL)

�
H

†←→
D µH

�
+

ic̄
�
Hq

v2

�
q̄Lγ

µσi
qL

� �
H

†σi
←→
D µH

�

+
ic̄Hu

v2
(ūRγ

µ
uR)

�
H

†←→
D µH

�
+

ic̄Hd

v2

�
d̄Rγ

µ
dR

� �
H

†←→
D µH

�

+

�
ic̄Hud

v2
(ūRγ

µ
dR)

�
H

c †←→
D µH

�
+ h.c.

�

+
ic̄HL

v2

�
L̄Lγ

µ
LL

� �
H

†←→
D µH

�

6 current-current operators
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Effective Lagrangian for a Higgs doublet

∆Ldipole =
c̄uB g

�

m
2
W

yu q̄LH
cσµν

uR Bµν +
c̄uW g

m
2
W

yu q̄Lσ
i
H

cσµν
uR W

i
µν +

c̄uG gS

m
2
W

yu q̄LH
cσµνλa

uR G
a
µν

+
c̄dB g

�

m
2
W

yd q̄LHσµν
dR Bµν +

c̄dW g

m
2
W

yd q̄Lσ
i
Hσµν

dR W
i
µν +

c̄dG gS

m
2
W

yd q̄LHσµνλa
dR G

a
µν

+
c̄lB g

�

m
2
W

yl L̄LHσµν
lR Bµν +

c̄lW g

m
2
W

yl L̄Lσ
i
Hσµν

lR W
i
µν + h.c.

8 dipole operators



∆L(6) = ∆LSILH +∆Lcc +∆Ldipole +∆LV ++∆L4ψ

48

Effective Lagrangian for a Higgs doublet

∆LV =
c̄2W
m2

W

(DµWµν)
i (DρW

ρν)i +
c̄2B
m2

W

(∂µBµν) (∂ρB
ρν) +

c̄2G
m2

W

(DµGµν)
a (DρG

ρν)a

+
c̄3W g3

m2
W

�ijkW i ν
µ W j ρ

ν W k µ
ρ +

c̄3G g3S
m2

W

fabcGa ν
µ Gb ρ

ν Gc µ
ρ

+
c̃3W g3

m2
W

�ijkW i ν
µ W j ρ

ν W̃ k µ
ρ +

c̃3G g3S
m2

W

fabcGa ν
µ Gb ρ

ν G̃c µ
ρ

7 operators built with gauge fields only
(5 CP even, 2 CP odd)
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Effective Lagrangian for a Higgs doublet

∆LV =
c̄2W
m2

W

(DµWµν)
i (DρW

ρν)i +
c̄2B
m2

W

(∂µBµν) (∂ρB
ρν) +

c̄2G
m2

W

(DµGµν)
a (DρG

ρν)a

+
c̄3W g3

m2
W

�ijkW i ν
µ W j ρ

ν W k µ
ρ +

c̄3G g3S
m2

W
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µ Gb ρ

ν Gc µ
ρ

+
c̃3W g3

m2
W

�ijkW i ν
µ W j ρ

ν W̃ k µ
ρ +

c̃3G g3S
m2

W

fabcGa ν
µ Gb ρ

ν G̃c µ
ρ

7 operators built with gauge fields only
(5 CP even, 2 CP odd)

22 four-fermion operators
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Estimating the coefficients at       

g∗
m∗

≡ 1

f

1

m∗
- each extra (covariant) derivative costs a factor 

- each extra power of H(x) costs a factor 

SILH power counting
Giudice et al. JHEP 0706 (2007) 045
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yψ
v2

(H†H)ψ̄Hψ + h.c.
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Estimating the coefficients at       

g∗
m∗

≡ 1

f

1

m∗
- each extra (covariant) derivative costs a factor 

- each extra power of H(x) costs a factor 

SILH power counting
Giudice et al. JHEP 0706 (2007) 045

For a strongly-interacting light Higgs (SILH):

cV = 1− c̄H/2

cψ = 1− (c̄H/2 + c̄ψ)

c̄H , c̄ψ ∼ O

�
v2

f2

�Example:
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m∗Estimating the coefficients at       

c̄H , c̄T , c̄6, c̄ψ ∼ O

�
v2

f2

�
, c̄W , c̄B ∼ O

�
m2

W

m2
∗

�
, c̄HW , c̄HB , c̄γ , c̄g ∼ O

�
m2

W

16π2f2

�

c̄Hψ, c̄
�
Hψ ∼ O

�
λ2
ψ

g2∗

v2

f2

�
, c̄Hud ∼ O

�
λuλd

g2∗

v2

f2

�
, c̄ψW , c̄ψB , c̄ψG ∼ O

�
m2

W

16π2f2

�



×
g2
�G

g2
∗

c̄W , c̄B ∼ m2
W

m2
∗

g∗ ∼ g

c̄γ , c̄g ∼ m2
W

16π2f2

50

Extra symmetry protections might be at work in the UV theory

 Ex:  in the MSSM

R-parity × g2

16π2

 Ex:  if the Higgs is a pNGB

Goldstone symmetry

m∗Estimating the coefficients at       

c̄H , c̄T , c̄6, c̄ψ ∼ O

�
v2

f2

�
, c̄W , c̄B ∼ O

�
m2

W

m2
∗

�
, c̄HW , c̄HB , c̄γ , c̄g ∼ O

�
m2

W

16π2f2

�

c̄Hψ, c̄
�
Hψ ∼ O

�
λ2
ψ

g2∗

v2

f2

�
, c̄Hud ∼ O

�
λuλd

g2∗

v2

f2

�
, c̄ψW , c̄ψB , c̄ψG ∼ O

�
m2

W

16π2f2

�
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Strong-coupling vs form-factor effects

∆LSILH =
c̄H

2v2
∂µ

�
H

†
H
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∂µ

�
H

†
H
�
+

c̄T

2v2

�
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µ
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†←→
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†
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µ
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�
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H
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µ
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(∂ν
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+
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m
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�

m
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+
c̄γ g
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H
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2
S
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2
W

H
†
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a
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,
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�
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f2
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Parametrize corrections to 
tree-level Higgs couplings:

Probe Higgs 
interaction strength  

Strong-coupling vs form-factor effects
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Parametrize corrections to 
tree-level Higgs couplings:
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Parametrize corrections to 1-loop 
Higgs couplings ( hγZ, hγγ, hgg ):

Strong-coupling vs form-factor effects
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Parametrize corrections to 1-loop 
Higgs couplings ( hγZ, hγγ, hgg ):

If Higgs is PNGB, hγγ, hgg 
protected by shift symmetry:

Form factor effect

Strong-coupling vs form-factor effects
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Modify h→WW, ZZ  (total rates 
and differential distributions):

Strong-coupling vs form-factor effects
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Probe NP scale 
(form factor)

Modify h→WW, ZZ  (total rates 
and differential distributions):

Strong-coupling vs form-factor effects
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• Loops of light (SM) particles induce the RG 
flow (and mixing) of the coefficients
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RG evolution of coefficients
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low-energy scale
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Elias-Miró et al. JHEP 1308 (2013) 033; JHEP 1311 (2013) 066
Jenkins et al. JHEP 1310 (2013) 087; JHEP 1401 (2014) 035
Alonso et al. JHEP 1404 (2014) 159



• Loops of light (SM) particles induce the RG 
flow (and mixing) of the coefficients

55

RG evolution of coefficients

c̄i(m∗)

c̄i(µ)

c̄i(µ) =

�
δij + γ(0)

ij

αSM (µ)

4π
log

µ

m∗

�
c̄j(m∗)

c̄i

m∗

µ

range of validity 
of eff. Lagrangian

UV theory
matching

RG 
evolution

low-energy scale
(exp’s done here)

Elias-Miró et al. JHEP 1308 (2013) 033; JHEP 1311 (2013) 066
Jenkins et al. JHEP 1310 (2013) 087; JHEP 1401 (2014) 035
Alonso et al. JHEP 1404 (2014) 159

- By dimensional analysis: 1-loop RG come from diagrams 
with 1 insertion of a dim-6 operator
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- By dimensional analysis: 1-loop RG come from diagrams 
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- dim-6 operators can mix with dim-6 and dim-4 (through 
mH insertions) operators 
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RG evolution of coefficients

Examples:

• In case of strong dynamics, leading effects come from 
loops of composite particles (i.e. Higgs, top quarks, ...)

1. Running of
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RG evolution of coefficients

Examples:

• In case of strong dynamics, leading effects come from 
loops of composite particles (i.e. Higgs, top quarks, ...)

1. Running of

short-distance (local) correction

long-distance (threshold) correction

+
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RG evolution of coefficients

Examples:

• In case of strong dynamics, leading effects come from 
loops of composite particles (i.e. Higgs, top quarks, ...)

1. Running of

short-distance (local) correction

long-distance (threshold) correction

+
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RG evolution of coefficients

Examples:

• In case of strong dynamics, leading effects come from 
loops of composite particles (i.e. Higgs, top quarks, ...)

2. Running of

c̄H
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RG evolution of coefficients

Examples:

• In case of strong dynamics, leading effects come from 
loops of composite particles (i.e. Higgs, top quarks, ...)

2. Running of

Small but leading effect since        
due to custodial invariance

c̄H
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Q: Which operators are constrained by Higgs searches only ?

In total:

17+4

8+3

Elias-Miro, Espinosa, Masso, Pomarol 
JHEP 1311 (2013) 066 

Pomarol, Riva JHEP 01 (2014) 151
affect Higgs physics only

involve the Higgs

dim-6 operators59



                 at LEP2

    , top decays

b→sγ

tt̄

e+e−→ff̄
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Q: Which operators are constrained by Higgs searches only ?

In total:

17+4

8+3

Elias-Miro, Espinosa, Masso, Pomarol 
JHEP 1311 (2013) 066 

Pomarol, Riva JHEP 01 (2014) 151

All other operators 
already constrained by: stronger

weaker

EW observables at LEP1

Electric dipole moments (EDMs)

Muon, electron (g-2)

Triple gauge couplings (TGC)

CKM unitarity by KLOE and β-decay

See:

Pomarol, Riva JHEP 01 (2014) 151

RC, Ghezzi, Grojean, Muhlleitner, 
Spira JHEP 07 (2013) 035

and references therein
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shifts all Higgs couplings

shift

modify inclusive rates and 
differential distributions 
(constrained by fit to Higgs 
couplings)

h → γγ

h → Zγ

gg → h

affect

gg → hh yet un-probed
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Λ � 4πv

Λ � 4πv/
�
δci

δci

δci � 20−30%

mh = 125GeV λ4
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Conclusions

 Without the Higgs boson, our description of Nature is effective and 
valid up to

 The Higgs boson delays the onset of strong coupling to 
   The smaller     , the higher the scale to which we can extrapolate the
   theory

 Current data do not show any sign of a strong coupling scale:

-                    is in the range in which      remains perturbative and
  the vacuum is (meta)stable

- Higgs couplings are close to their SM values:
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Conclusions

 Higgs Effective Lagrangian is the tool for future precision physics      
(in absence of discovery of new particles !)

 Dimension-6 operators classified many years ago, yet much 
theoretical work still needed in the applications

 One must always check that any effective Lagrangian is used within 
its range of validity

 Dimension-6 analysis of Higgs physics:
   - 1 yet un-probed direction to New Physics (Higgs trilinear coupling)
   - many directions already closed by past experiments 
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The Higgs as a composite pseudo-NG boson

strong
sector

Aµ 

ψ

h

G → G’ The Higgs doublet H is the NG boson associated 
to the global symmetry G → G’ of a new strong 
dynamics

[ Georgi & Kaplan, `80 ]

Minimal example (with custodial symmetry):

Agashe, RC, Pomarol,  NPB 719 (2005) 165 

RC,  DaRold, Pomarol, PRD 75 (2007) 055014; Carena, 
Ponton, Santiago,  Wagner, PRD 76 (2007) 035006; 
Hosotani, Oda, Ohnuma, Sakamura, PRD 78 (2008) 
096002;     Hosotani, Tanaka, Uekusa, PRD 82 (2010) 
115024; Redi, Gripaios,  JHEP 1008:116 (2010); 
Hosotani, Noda, Uekusa,  Prog. Theor. Phys 123 (2010) 
123; Panico, Safari, Serone,  JHEP 1102:103 (2011)

SO(5) → SO(4) ~ SU(2)L x SU(2)R four real NG bosons:

4 of SO(4) = real (2,2) of SU(2)L x SU(2)R

= complex 2 of SU(2)L

At high energies SO(4) is linearly realized
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and the SO(4)’ preserved in the true vacuum
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doublet H
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Σ = eiσiχi(x)/v
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+ . . .

�

Expanding along the vacuum:

Higgs couplings to gauge bosons fixed by the coset, 
and predicted in terms of 1 parameter (   )ξ



At least two                  models implementing the Higgs Effective Lagrangian:FeynRules
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 MC event generators

http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY

RC, Ghezzi, Grojean, Muhlleitner, Spira  arXiv:1403.3381

 Higgs decay rates and BRs

eHDECAY   [based on HDECAY v5.10]

http://feynrules.irmp.ucl.ac.be/wiki/HEL
Alloul, Fuks, Sanz  arXiv:1310.5150

http://feynrules.irmp.ucl.ac.be
P. Artoisenet et al.  JHEP 1311 (2013) 043 

“Higgs Characterization Model”

“Higgs Effective Lagrangian”

Implementing the Effective Lagrangian into software tools

http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/
http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/
http://arXiv.org/abs/arXiv:1403.3381
http://arXiv.org/abs/arXiv:1403.3381
http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/
http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/
http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/
http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/


Γ(ψ̄ψ)

Γ(ψ̄ψ)SM

� 1− c̄H − 2 c̄ψ ,

Γ(h → W (∗)W ∗)

Γ(h → W (∗)W ∗)SM

� 1− c̄H + 2.2 c̄W + 3.7 c̄HW ,

Γ(h → Z(∗)Z∗)

Γ(h → Z(∗)Z∗)SM

� 1− c̄H + 2.0
�
c̄W + tan2θW c̄B

�

+ 3.0
�
c̄HW + tan2θW c̄HB

�
− 0.26 c̄γ ,

Γ(h → Zγ)

Γ(h → Zγ)SM

� 1− c̄H + 0.12 c̄t − 5 · 10−4 c̄c − 0.003 c̄b − 9 · 10−5 c̄τ

+ 4.2 c̄W + 0.19
�
c̄HW − c̄HB + 8 c̄γ sin

2θW
� 4π
√
α2αem

,

Γ(h → γγ)

Γ(h → γγ)SM

� 1− c̄H + 0.54 c̄t − 0.003 c̄c − 0.007 c̄b − 0.007 c̄τ

+ 5.04 c̄W − 0.54 c̄γ
4π

αem

,

Γ(h → gg)

Γ(h → gg)SM

� 1− c̄H − 2.12 c̄t + 0.024 c̄c + 0.1 c̄b + 22.2 c̄g
4π

α2
.

α2 ≡
√
2GFm2

W

π

αem ≡ αem(q2 = 0)
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A closer look to eHDECAY
RC, Ghezzi, Grojean, Muhlleitner, Spira  arXiv:1403.3381

http://arXiv.org/abs/arXiv:1403.3381
http://arXiv.org/abs/arXiv:1403.3381


 EW corrections do not factorize and can be included at               , i.e. 
neglecting

 Decay rates computed by making a multiple perturbative 
expansion in           ,          ,

Γ(ψ̄ψ)
��
SILH

= ΓSM

0 (ψ̄ψ)

�
1− c̄H − 2c̄ψ +

2

|ASM

0 |2
Re

�
A∗SM

0 ASM

1,ew

�� �
1 + δψ κQCD

�

(E/Λ) (v/f) (αSM/4π)

O(α2/4π)

O[(α2/4π)(v
2
/f

2)]
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Part 4
Validity of the EFT description
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• So far Higgs searches have focussed on single-Higgs 
on-shell production and decay

gives information on on-shell couplings 
at a fixed scale

On shell:



• Next frontier:  measure 2→2 scattering processes to probe 
directly the strength of SSB dynamics at energies
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f̄
< g∗ ≤ 4π

E2

m2
∗
∼ g(E)2

g2∗

74

Validity of the EFT description

m∗

Inspired by:
R. Rattazzi, talk at “BSM physics 
opportunities at 100TeV”, Cern 2014” 

Interesting 
energy window:

Interesting 
coupling range:

In general: dim-8 operators 
further suppressed by

For:
best sensitivity on

largest energy probed

Parameter space 
under scrutiny within 
the validity of EFT



Example #1:   Double Higgs production via VBF (               )VLVL → hh

cV = 1− c̄H
2

c2V = 1− 2c̄H

c3 = 1− 3

2
c̄H + c̄6

A = c
2
V
m2

h

v2
(1 +O(δ2, δ3))− c

2
V

ŝ
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QCD corrections than is the V + H invariant mass distribution [30]. We present in
Fig. 3 the results of an NLO calculation using MCFM [31]. Although the pVT distribution
is more sensitive to NLO corrections, the constraint on the coefficient of an effective
operator that we can obtain with LHC Run 1 data at 8 TeV is still quite insensitive
to the QCD higher order corrections. However, this will be an important effect when
reaching c̄W ∼ O(10−3). Since such effects tend to broaden the p

V
T distribution in the

SM, the inclusion of NLO would only strengthen the bounds reported here and as such
will not modify our conclusions, which are reached under conservative assumptions.

Details of the cuts implemented for the 0-,1- and 2-lepton ATLAS analysis can be
found in Appendix B. Fig. 4 is an example of the p

T
V distribution for the 2-lepton signal

in the bins used by the ATLAS search, for various values of c̄W .
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Figure 4: Simulation of the p
V
T distribution in (V → 2�) + (H → b̄b) events at the LHC

after implementing ATLAS cuts, as obtained using MadGraph v2.1.0 interfaced with

Pythia and Delphes v3, combined with the dimension-6 model implementation developed

in [25]. The solid distribution is the SM expectation, and the red-dotted and blue-dashed

lines correspond to the distributions with c̄W =0.1 and 0.05, respectively.

We see that the number of events in the last (overflow) bin increases rapidly with
c̄W . Since the background overwhelms any signal in the lower bins, henceforth we focus
exclusively on this overflow bin where the signal-to-background ratio is highest. A χ2 fit
to the observed data gives the 95% CL range

c̄W ∈ [−0.07, 0.07] ,

which improves upon the D0 constraint (3.1), as expected. The contribution to the
χ2 function from this constraint is shown as the dashed blue line in the left panel of
Fig. 2. For comparison, using the signal strength given for each of the 0-, 1- and 2-lepton
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Figure 5: The 95CL (solid) and 99CL (dashed) combined observed limits on the coefficients
cW and c

HB
(with cB = −cW and all other operators set to zero) from our analysis of Higgs

searches in the bb+0l, 1l, 2l final states in ATLAS. We employ a cut
√
ŝ < 1.2 TeV. We compare

the exclusion with LEP2 limits on TGCs (red contour).

from TGC measurements is to limit ourselves to a generic class of theories where the operator
O3W = �abc

3! W
aν
µ W b

νρW
cρµ is small. Under this assumption, the 95% C.L. bounds from TGCs

are [47]14

− 0.05 � (
cW − cB

2
)
m2

W

Λ2
� 0.05 , −0.12 � c

HB

m2
W

Λ2
� 0.10 (33)

Note that this upper bound on cW from LEP corresponds to a suppression scale � 350 GeV,
larger than relevant LEP2 energies.

On the other hand, as discussed above, the constraints from Higgs observables at high-
energy that we have derived here are typically beyond the validity of the EFT expansion, but
they can make sense for the direction OW − OB, in the case of strongly interacting fermions.
Non-minimally coupled theories could in principle generate tree-level effects for cHB, but it is
difficult to argue along the lines of Section 3 to say whether the coefficient of these operators
can or cannot be enhanced with respect to the inverse cutoff. We assume for completeness that
a class of theories exists where the coefficients of the operator OHB can be very large, and that
the validity of the EFT description can be extrapolated up to the breakdown of perturbative
unitarity. The resulting bounds from present Higgs data, valid only in this class of theories, are
shown in Fig. 5. We employ a cut

√
ŝ < 1200 GeV corresponding to

√
4πmW /

√
0.05, keeping

14In our basis, the TGC parameters of Ref. [34] are modified as δgZ1 = cW / cos θ2W and δκγ = cHB . As noticed
in Ref. [23], under the assumption that c3W = 0, there is no quantitative difference between a fit to TGCs in the
context of dimension-6 operators (that neglects terms higher order in the Wilson coefficients) and the fit of the
LEP2 collaboration [47], which we use in this article.
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from:  Riva et al.  arXiv:1406.7320
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Example #3:   Telling the top loop from a point
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Figure 2: Figures (a)-(c) show the 95% CL contours obtained from the χ2 in Eq. (2.12) for

different choices of the actual parameters κ0
t and κ0

g, or equivalently of µ0
incl and R0. The

colors blue, red and black correspond to κ0
t = 0.8, 1.0 and 1.2, respectively, or equivalently to

the indicated values of R0 = R(κ0
t ,
�
µ0
incl − κ0

t ). The gray band is obtained by considering

only the inclusive measurement. The SM point is indicated by the black star. Figure (d)

shows the variation of the 95% CL contours for different choices of the renormalization and

factorization scale µ. For all plots we assumed an integrated luminosity of
�
L dt = 3 ab−1

and
√
s = 14TeV.
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