High Sensitivity Flavor Physics Measurements at Low Energies

Doug Bryman

University of British Columbia Vancouver, BC Canada

PSI Zuoz Summer School 2014

15-16th Century Explorations into Unknown Waters

Vague but well motivated ideas of what to look for --- really searching in the dark....

Christoforo Colombo– 1492 search for East Indies...

Amerigo Vespucci– 1499 search for Asia ...

Ponce de Leon – 1513 search for the Fountain of Youth ...

CLICK HERE FOR LARGER

 AFRICA

Disney

2

World

21stCentury Explorations Into Unknown Waters

- High energy
- Dark matter
- Dark energy
- High precision, high sensitivity measurements at low energy: e.g. lepton flavor violation, universality tests, EDMs, CP violation...

Vague but well motivated ideas of what to look for --- really searching in the dark.... Here be dragons.

The 1265 Psalter world map.

Searches for BSM Physics so Far...

Current Conclusion:

No experimental tail sighted ... No definite theory (but if you find it, "we'll make one!")

Standard Model : A great story ... but definitely not the whole story...

- + Higgs (√)
- Cosmological issues: inflation, dark matter, dark energy, matter anti-matter asymmetry...
- Theoretical issues: gravity (CC), neutrino mass, flavor, hierarchy problem, strong CP,

The Flavor Puzzle Experiments ahead of theory

Quarks

• Weak states ⇔ mass states

• Quark, lepton flavors not conserved Unexplained observations (no theory of flavor):

- Three ("identical") generations
- Huge mass differences between and within the generations Exceptionally small neutrino mass
- Universality of interactions
- CP violation
- Symmetry between lepton and quark sectors (GUT, scale?)

6

Probing for new physics requires a wide field of view! "Precision" Flavor Physics at Low Energies

A small set of crucial rare particle decays extremely sensitive to new physics at high mass scales and new theories of flavor

Important Flavor-Changing Rare Processes $\mu \rightarrow e\gamma, \mu$ -e Conversion $K \rightarrow \pi v \bar{v}$ $b \rightarrow s\gamma, B \rightarrow \mu\mu, \tau \rightarrow \mu\gamma...$

Discoveries of new physics at the LHC and elsewhere would require a range of precision flavor physics experiments to home in on the new interpretation.

Experiments Seeking Insight into the Flavor Puzzle

New Physics at High Mass Scales – virtual effects
Unknown Couplings

State-of-the-art sensitivity Br<10⁻¹²

Exotic Searches New physics if seen. Experiments limit how far we can go	Charged Lepton Flavor Violation $\mu \rightarrow e\gamma, 3e$ $\mu^- N \rightarrow e^- N$ (" μ -e Conversion") $\tau \rightarrow e\gamma, \mu\gamma$ $K_L^0 \rightarrow \mu e, B_q \rightarrow \mu e$ Baryon and Lepton Number violation/GUTS $p \rightarrow \pi^0 e^+$ Lepton Number Violation/ Majorana mass $\beta\beta_{0\nu}$ Sterile neutrinos/mixing ν Oscillations
BSM Physics New physics if deviations from well- calculated SM predictions occur. Theory limits how far we can go.	$\begin{array}{l} CP/T \text{ Violation } e, \mu, n EDM \\ (g-2)_{\mu}, \mu^{-}H \\ \\ \frac{\pi^{+}(K^{+}) \rightarrow e^{+}\nu}{\pi^{+}(K^{+}) \rightarrow \mu^{+}\nu}, \frac{\tau^{+} \rightarrow e^{+}\nu\nu}{\tau^{+} \rightarrow \mu^{+}\nu\nu} & \text{Universality} \\ K^{+} \rightarrow \pi^{+}\nu\overline{\nu}, K_{L}^{0} \rightarrow \pi^{0}\nu\overline{\nu} \\ B \rightarrow \mu\mu, b \rightarrow s\gamma, \dots \end{array} $

Lepton Flavor Violation

Neutrino oscillations \rightarrow lepton flavor numbers not conserved but consequent SM charged lepton flavor violation too small to be observed.

9

- Observation means new physics.
- Some SUSY models predict BR($\mu \rightarrow e\gamma$) near the experimental limit (always!).

Sensitivity to new physics
$$\sim \frac{1}{M_{\rm H}^4}$$
 with $M_{\rm H} \sim 1 - 100 \text{ TeV}$

$\mu - e$ Conversion

Cirigliano IF Workshop 2013

At low energy, BSM physics is described by local operators; LFV and dipole moments probe strengths of different operators and their flavor structures

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

$$\Lambda \leftrightarrow M_{\text{BSM}} \qquad C_{i} \left[g_{\text{BSM}}, \ M_{a}/M_{b} \right]$$

Effective Operators for CP-violating EDMs and LFV processes:

Lavinac
Paradisi $\overline{l_i}\sigma^{\mu\nu}\gamma_5 l_i F_{\mu\nu}^{em}$ $l_i\sigma^{\mu\nu}l_j F_{\mu\nu}^{em}$ $\overline{l_i}\Gamma^a l_j \overline{q_k}\Gamma^a q_l$ $\overline{l_i}\Gamma^a l_j \overline{l_k}\Gamma^a l_l$ with dimensionless coefficients $\varepsilon \sim \frac{M_W^2}{M_{NP}^2} \frac{g_{NP}^2}{g_W^2} \delta_{CPV} \delta_{mix}$ ObservableOperatorLimit on ϵ \overline{eEDM} $\overline{e_L}\sigma^{\mu\nu}\gamma_5 e_R F_{\mu\nu}$ $\leq 1.1 \times 10^{10}$

eEDM	$\overline{e_L}\sigma^{\mu u}\gamma_5 e_R F_{\mu u}$	$\leq 1.1 imes 10^{-3}$
${ m B}(\mu o e \gamma)$	$\overline{\mu}\sigma^{\mu u}eF_{\mu u}$	$\leq 1.4 imes 10^{-4}$
${ m B}(au o \mu \gamma)$	$\overline{ au}\sigma^{\mu u}\mu\dot{F}_{\mu u}$	$\leq 2.2 imes 10^{-2}$
$B(K_L^0 \to \mu^{\pm} e^{\mp})$	$(\overline{\mu}\gamma^{\mu}P_{L}e)(\overline{s}\gamma^{\mu}P_{L}d)$	$\leq 2.9 imes 10^{-7}$

Flavour physics of leptons and dipole moments Eur.Phys.J.C57:13-182,2008

$\mu \rightarrow e\gamma$ and $\mu \rightarrow e$ Conversion Test Different Operators

D. Bryman Zuoz 2014

Model discriminating power by Measuring different processes.

Two operators:

$$\mathcal{L}_{CLFV} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(\kappa+1)\Lambda^2} \bar{\mu}_R \gamma_{\mu} e_L \bar{f} \gamma^{\mu} f$$

 κ controls relative strength of dipole vs vector operator Λ is the mass scale (TeV)

De Gouvea, Vogel

There may also be important connections between models for Charged Lepton flavor Violating reactions, g-2, and neutrino mass generation e.g. via Seesaw types I, II, III...

History of Lepton Flavor Violation Experiments

Decay topology

Accidental Coincidence of 2 Muon decays:

 $\mu \rightarrow e \nu \nu + \mu \rightarrow e \nu \nu \gamma$

Main background

 $\mu \rightarrow \mathbf{e} \ \nu \nu \gamma$

 $\mu \rightarrow e \gamma$ signal very clean

- $E_g = E_e = 52.8 \text{ MeV}$ $\theta_{\gamma e} = 180^{\circ}$
- e and γ in time

Background: Energy, spatial, timing resolutions Good pile-up rejection

 $\mu \rightarrow e \nu \nu \gamma$

$$\Delta B(\mu \to e\gamma) = \left(\frac{R_{\mu}}{d}\Delta t\right) \left(\frac{\Delta E_{e}}{m_{\mu}/2}\right) \left(\frac{\Delta E_{\gamma}}{15m_{\mu}/2}\right)^{2} \left(\frac{\Delta \theta}{2}\right)^{2} f\left(\theta_{\gamma}\right) \eta_{IVB}$$

e

S. Ritt 2006

M. Ahmed et al. 2002

Annihilation

in flight

MEG at PSI

- LXe for efficient γ detection
- Solenoidal magnetic spectrometer •
- New goal (~2020): <6x10⁻¹⁴ •

Zuoz 2014 D. Bryman

arXiv:1303.0754

MEG Current result (2013) B <5.7 x 10⁻¹³ (90% c.l.) (Additional data to be analyzed)

signal PDF contours at 1, 1.64 and 2 sigma

Data 2009-2011

D. Bryman Zuoz 2014

MEG (2013) Upgrade Plan $\rightarrow 6x10^{-14}$

TABLE XI: Resolution (Gaussian σ) and efficiencies for MEG upgrade

PDF parameters	Forseen	Present MEG	Upgrade scenario
e ⁺ energy (keV)	(200)	306 (core)	130
$e^+ \theta$ (mrad)	(5)	9.4	5.3
$e^+ \phi$ (mrad)	(5)	8.7	3.7
e ⁺ vertex (mm) Z/Y(core)		2.4 / 1.2	1.6/0.7
γ energy (%) (w <2 cm)/(w >	(1.2)	2.4 / 1.7	1.1 / 1.0
γ position (mm) $u/v/w$		5/5/6	2.6 / 2.2 / 5
γ -e ⁺ timing (ps)	(65)	122	84
Efficiency (%)			
trigger		≈ 99	≈ 99
γ		63	69
e ⁺		40	88

17

$\mu \rightarrow 3e$ at PSI: Goal $< 10^{-16}$

Mu3e proposal

Phase I uses MEG beamline to provide ~ $10^8 \mu^+$ /s to get to 10^{-15} Phase II assumes construction of new high intensity beam at PSI spallation neutron source to reach 10⁻¹⁶

D. Bryman

Berger

Niklaus Berger – SMIPP 2012/13 – Slide 47

Pixel detector:

- 250 million (zero suppressed) channels
- ~ 2000 hits per 50 ns frame

Fibre tracker:

• ~ 10'000 (zero suppressed) channels

For a muon stop rate of $2 \times 10^{\circ}$ /s:

• Data rate ~ 150 Gbyte/s

Figure 17.2: Reconstructed mass resolution for signal events in the phase IA configuration.

Figure 17.9: Internal conversion background (colours) and signal (black dots) in the acoplanar momentum - reconstructed mass plane for the phase IA detector configuration.

	Phase IA	Phase IB	Phase II
Backgrounds:			
Michel	0	$< 2.5 \cdot 10^{-18}$	$5 \cdot 10^{-18}$
$\mu \rightarrow eee\nu\nu$	$1 \cdot 10^{-16}$	$1 \cdot 10^{-17}$	$1 \cdot 10^{-17}$
$\mu \rightarrow eee\nu\nu$ and accidental Michel	0	$< 2.5 \cdot 10^{-21}$	$7.5 \cdot 10^{-18}$
Total Background	$1\cdot 10^{-16}$	$1 \cdot 10^{-17}$	$2.3\cdot10^{-17}$
Signal:			
Track reconstruction and selection efficiency	26%	39%	38%
Kinematic cut (2σ)	95 %	95 %	95 %
Vertex efficiency $(2.5\sigma)^2$	98%	98%	98%
Timing efficiency $(2\sigma)^2$	-	90 %	90 %
Total efficiency	24%	33%	32~%
Sensitivity:			
Single event sensitivity	$4 \cdot 10^{-16}$	$3 \cdot 10^{-17}$	$7 \cdot 10^{-17}$
muons on target rate (Hz)	$2 \cdot 10^{7}$	$1 \cdot 10^{8}$	$2 \cdot 10^{9}$
running days to reach $1 \cdot 10^{-15}$	2600	350	18
running days to reach $1 \cdot 10^{-16}$	-	3500	180
running days to reach single event sensitivity	6500	11700	260

$\mu - e$ Conversion

$\mu^- N \rightarrow e^- N$ Experiments

Singles experiment allows ultra-high beam rates: observe peak at endpoint for μ decay-inorbit ~ 104 MeV/c

Intrinsic background (μ decay-in-orbit) known and calculable.

 $N(E_e)dE_e \simeq 0.4 \cdot 10^{-21} \left(1 - \frac{E_e}{E_{max}}\right)^5 dE_e$

Czarnecki et al. arXiv:1406.3575

PRD84,013006,2011

High resolution detector feasible. Proposed improvements > $10^4 \rightarrow Br < 10^{-16}$

JPARC: DeeMe

Sensitivity and Backgrounds

- Signal Sensitivity
 - S.E.S.: 2×10⁻¹⁴ (1 MW, 2×10⁷sec)
- Backgrounds
 - $R_{AP} < 9 \times 10^{-18}$
 - Detector live-time Duty = 1/20000

DIO Background	0.09
After-Proton Background	< 0.027 (<0.05 90%CL)
Cosmic-Muon Induced Electron BG	<0.018 (MC stat. limited)
Cosmic-Muon Induced Muon BG	<0.001
Radiative Muon Capture BG	<0.0009

Signal Region: 102.0 -- 105.6 MeV/c

$\mu^- N \rightarrow e^- N$ at 10^{-16}

Lobashov, Djilkibaev (1980→1989): Solenoid Pion Collector; flux x 1000.

COMET at JPARC

$\mu^- N \rightarrow e^- N$ at 10^{-16}

Engineering runs >2016

COMET Phase I: Background Studies

- Proton Extinction
- Particle content, rates, especially pbars
- Others?

Backgrounds

- For $R_{\mu e} = 10^{-15}$ ~40 events / 0.41 bkg ~4 events / 0.41 bkg (LHC SUSY?)
- For R_{µe} = 10⁻¹⁶

Background	Size	Uncertainty	Source of Uncertainty
Muon Decay-In-Orbit	0.22	± 0.06	Acceptance and Energy Loss Modeling
Antiproton RPC	0.10	± 0.05	Cross-Section and Acceptance
Cosmic Rays	0.05	± 0.05	Statistics of Sample
Radiative Pion Capture	0.03	± 0.007	Acceptance and Reconstruction
Muon Decay-in-Flight	0.01	± 0.003	Cross-Section, Acceptance and Modeling
Pion Decay-in-Flight	0.003	± 0.0015	same
Beam Electrons	0.0006	± 0.0003	same
Radiative Muon Capture	$< 2 \times 10^{-6}$		Calculation
Sum	0.41	± 0.08	Added in Quadrature

numbers are changing at 10% level as experiment matures

R. Bernstein, FNAL

Mu2e IF Workshop 25 April 2013 24

Useful Advanced Measurements for μ -e Conversion Experiments

- •Extinction rate
- •Particle fluxes (e, μ , π ,K, \overline{p} ...)at detector (Comet phase I)
- p and n rates from μ Capture (in the works at PSI)
- •Cosmic rays could be done in a test setup?
- •Radiative pion capture -> 100MeVelectrons?
- •*P*bar background rate -> 100MeVelectrons?

•...

General questions for high sensitivity μ -e Conversion Experiments

- •What are the uncertainties and risk factors in the background, acceptance estimates?
- •How are the backgrounds to be measured during the experiment?
- •How is a blind analysis to be done?
- •What would make a believable signal?

E. Goudzoski

Future LFV in Kaon Decays: NA62

Triggering on lepton pairs

NA62 three-track decay rate upstream CHOD: F_{3track} = 640 kHz
→ Too high to collect all three-track decays (as NA48/ 2 did)

Available L0 trigger primitives:

 ❖ Q_N: at least N hodoscope quadrants;
 ❖ LKR_N(x): at least N LKr clusters with energy E>x GeV;
 ❖ MUV : bits in at least N MUV2 pade

MUV_N: hits in at least N MUV3 pads.

Possible L0 triggers for LFV searches:

ee pair: $Q_2 \times LKR_2(15)$ μe pair: $Q_2 \times LKR_1(15) \times MUV_1$ $\mu \mu$ pair: $Q_2 \times MUV_2$

 $K_L^0 \to \mu e$

S.E.S 10^{-12}

Total lepton pair L0 rate (dominated by $K^+ \rightarrow \pi^+\pi^-$): F = few × 10 kHz \rightarrow Charge-blind lepton pair collection is feasible E. Goudzovski/CLFV/Lecce, 7 May 2013

LFV τ Decays

$\tau \rightarrow \mu, \tau \rightarrow e, \mu \rightarrow e$ Rates are Model Dependent!

Third generation effects could dominate.

Belle II Sensitivity to LFV

Decay channel	Belle limit	BABAR LIMIT	Belle II proj. (5 ab^{-1})	Belle II proj. (50 ab^{-1})	$ \begin{array}{c} {\rm SUPERB~PROJ.}^1 \\ {\rm (75~ab^{-1})} \end{array} $
$\tau \rightarrow \mu \gamma$	4.5 · 10 8 [26]	$4.4 \cdot 10^{-8}$ [27]	$10 \cdot 10^{-9} [42, 43]$	$3\cdot 10^{-9}$ [42,43]	$1.8 \cdot 10^{-9} [96]$
$\tau \rightarrow e \gamma$	$12 \cdot 10^{\circ} [26]$	$3.3 \cdot 10^{\circ} [27]$	0 10 9 10 101	1 10 9 110 101	$2.3 \cdot 10^{-9}$ [96]
$\tau \rightarrow \mu \mu \mu$ $\tau \rightarrow eee$	$2.1 \cdot 10^{-6} [34]$ 2.7 · 10 ⁸ [34]	$3.3 \cdot 10 \circ [28]$ 2.9 \cdot 10 \cdot 8 [28]	$3 \cdot 10 = [42, 43]$	$1 \cdot 10 = [42, 43]$	2 · 10 · [96] 2 · 10 ¹⁰ [96]
$\tau \rightarrow \mu \eta$	$2.3 \cdot 10^{-8}$ [25]	$15 \cdot 10^{-8}$ [33]	5 · 10 9 [42,43]	$2 \cdot 10^{-9}$ [42,43]	$4 \cdot 10^{-10}$ [96]
$\tau \rightarrow e \eta$	4.4 · 10 8 [25]	$16 \cdot 10^{-8}$ [33]	and other an address of	De CLA RODALDA	$6 \cdot 10^{-10}$ [96]
$\tau \rightarrow \mu K_S^0$	$2.3 \cdot 10^{-8}$ [35]	4.0 · 10 ⁸ [31]			$2 \cdot 10^{-10}$ [96]
$\tau \rightarrow e K_S^0$	$2.6 \cdot 10^{-8}$ [35]	$3.3 \cdot 10^{-8}$ [31]			$2 \cdot 10^{-10}$ [96]

Table 3.3: Measured and projected limits on selected lepton flavour violating τ decays (90 % *C.L.*). ¹ The SuperB projections assumed a polarized electron beam; they also assumed that all backgrounds except initial state radiation can be suppressed to the desired level. The SuperB project was canceled in November 2012.

LFV at the LHC

LFV topics at ATLAS

• SUSY \widetilde{v}_{τ} to eµ/et/µt search

✓ 7TeV 35pb⁻¹, publication on PRL : Phys. Rev. Lett.106,251801

✓ 7TeV 1fb⁻¹, publication on EPJC: EPJC Vol.71, 12(2011)1809

✓ 7TeV 5fb⁻¹, publication on PLB : <u>PLB_29354</u>

• Z' \rightarrow eµ search

 $\checkmark 7 \text{TeV}$ 35pb⁻¹, published together with $\widetilde{\nu}_{\text{r}}$ on PRL

 \checkmark 7TeV 1fb⁻¹, published together with $\widetilde{\nu}_{_{t}}$ on EPJC

• stop →eµ continuum search

✓ 7TeV 2fb⁻¹, publication on EPJC: Eur. Phys. J. C (2012) 72:2040

• (\geq)4-lepton search

✓ 7TeV, 5fb⁻¹, published on JHEP: JHEP12(2012)124

✓ 8TeV, 21fb⁻¹, conference note for Moriond: ATLAS-CONF-2013-036

µ+displaced vertex

✓ 7TeV 35pb⁻¹, published on PLB: Physics Letters B 707 (2012) 478-496

✓ 7TeV 5fb⁻¹, published on PLB: Physics Letters B 719 (2013) 280-298

Limits to new physics

Liu CLVF 2013

D. Bryman Zuoz 2014
LHCb

Joining the LFV Club

Becoming $\mathcal{B}(\tau^- \to \mu^+ \mu^- \mu^-) < 8.3(10.2) \times 10^{-8} \text{ at } 90\% (95\%) \text{ CL}$ Competitive. $\mathcal{B}(\tau^- \to \bar{p}\mu^+\mu^-) < 4.6(5.9) \times 10^{-7}$ at 90% (95%)CL New $\mathcal{B}(\tau^- \to p \mu^- \mu^-) < 5.4(6.9) \times 10^{-7}$ at 90% (95%)CL $\mathcal{B}(D^+ \to \pi^- \mu^+ \mu^+) < 2.2(2.5) \times 10^{-8} \text{ at } 90\% (95\%) \text{ CL}$ Best $\mathcal{B}(D_s \to \pi^- \mu^+ \mu^+) < 1.2(1.4) \times 10^{-7} \text{ at } 90\% (95\%) \text{ CL}$ So far. $\mathcal{B}(B^- \to D^+ \mu^- \mu^-) < 6.9 \times 10^{-7} \text{ at } 95\% \text{ CL}$ Best $\mathcal{B}(B^- \to D^* \mu^- \mu^-) < 2.4 \times 10^{-6}$ at 95% CL New $\mathcal{B}(B^- \to \pi^+ \mu^- \mu^-) < 1.3 \times 10^{-8}$ at 95% CL Best So far. $\mathcal{B}(B^- \to D_e^+ \mu^- \mu^-) < 5.8 \times 10^{-7} \text{ at } 95\% \text{ CL}$ $\mathcal{B}(B^- \to D^0 \pi^+ \mu^- \mu^-) < 1.5 \times 10^{-6}$ at 95% CL D. Bryman Zuoz 2014 37

Search for the Lepton-Flavor-Violating Decays $B_s^0 \to e^{\pm} \mu^{\mp}$ and $B^0 \to e^{\pm} \mu^{\mp}$

Search for LFV e.g. involving lepto-quarks (Pati, Salam (1974); multigenerational effects....

TABLE II. Expected (background only) and observed limits on the $B_{(s)}^0 \rightarrow e^{\pm} \mu^{\mp}$ branching fractions.

Mode	Limit	90% C.L.	95% C.L.
$B_s^0 \rightarrow e^{\pm} \mu^{\mp}$	Expected	$1.5 imes 10^{-8}$	$1.8 imes 10^{-8}$
	Observed	$1.1 imes 10^{-8}$	1.4×10^{-8}
$B^0 \rightarrow e^{\pm} \mu^{\mp}$	Expected	3.8×10^{-9}	4.8×10^{-9}
	Observed	$2.8 imes 10^{-9}$	3.7×10^{-9}

R. Aaij et al. (LHCb Collaboration) Phys. Rev. Lett. 111, 141801 (2013)

 $m_{LQ_s}(B_s^0 \to e\mu) > 107(101) TeV/c^2 @ 90(95)\% CL$ $m_{LQ_d}(B^0 \to e\mu) > 135(126) TeV/c^2 @ 90(95)\% CL$

D. Bryman Zuoz 2014

CMS LFV Searches

Lusito CLFV 2013

Outline

1 Motivation

- Physics motivations
- The CMS detector

2 Narrow resonances

- Search for narrow resonances in dilepton mass spectra

3 Heavy neutrinos

- Search for heavy lepton partners of neutrinos in pp collisions at s = 7 TeV, in the context of the Type III seesaw mechanism.
- Search for heavy Majorana neutrinos in $\mu^\pm\mu^\pm + {\rm jets}$ and $e^\pm e^\pm + {\rm jets}$ in pp collisions at ${\it S}$ = 7 TeV
- Heavy neutrino and right-handed W of the left-right symmetric model

4 Leptonic-RPV SUSY searches

- Search for RPV supersymmetry with three or more leptons and b-tags
- Search for stop in R-parity-violating supersymmetry with three or more leptons and b-tags

Experimental strategy

Heavy Majorana Neutrino

Some LFV Limits and Prospects

Future Possibilities Planned

6x10-14 (PSI)

<10-9 (KEK Belle II)

~10-9 LHCb

10-11 NA62

10-12 NA62

10-12 NA62

10-9 (LHCB)?

40

Present limit

Reaction $\mu + \rightarrow e + \gamma$ < 5.7 × 10-13

 $\mu + \rightarrow e + e + e - < 1.0 \times 10 - 12$ 10-16 (PSI) $\mu - Ti \rightarrow e - Ti$ < 4.6 × 10-12 Si/Al 10-14 \rightarrow 10-16 μ -Au \rightarrow e-Au < 7 × 10–13 (Fermilab, JPARC)

 $\mu + e^- \rightarrow \mu - e^+ < 8.3 \times 10^{-11}$

 $\tau \rightarrow ev$

 $\tau \rightarrow \mu \gamma$ < 4.4 × 10-8

 $\tau \rightarrow \mu\mu\mu$ < 2.1 × 10-8

 $\pi^0 \rightarrow \mu e$ < 8.6 × 10–9

 $K^{0}_{I} \rightarrow \mu e < 4.7 \times 10^{-12}$

 $K + \rightarrow \pi + \mu + e^{-} < 2.1 \times 10^{-}10$

< 1.2 × 10-5

D. Bryman Zuoz 2014

 $\tau \rightarrow eee < 3.6 \times 10-8$

 $K_{\mu}^{0} \to \pi^{0} \mu + e^{-} < 3.1 \times 10^{-9}$

 $B_{\rm S} \to \mu e$ <1.1 x 10-8 $Z_0 \to \mu e$ <1.7 × 10-6

 $Z_0 \rightarrow \tau e$ < 9.8 × 10-6

< 1.1 × 10-7

 $Z_0 \rightarrow T \mu$

Interim Summary for Charged Lepton Flavor Violation (CLFV):

"Wishing does not make a poor man rich." (<u>Arabian Proverb</u>)

D. Bryman Zuoz 2014

$$e - \mu - \tau$$
 Universality

Standard Model assumes the same couplings of $e - \mu - \tau$ to gauge bosons W, Z. This may not be true -- or BSM physics may modify.

D. Bryman Zuoz 2014

Lepton Universality: $\pi \rightarrow e_{\upsilon}$ Branching Ratio

Possibly, the most precise SM weak interaction observable involving quarks!

Extremely sensitive to new physics – particularly with pseudoscalar (P) and scalar (S) interactions – at high mass scales.

Cirigliano, Rosell 2007

Universality Tests: Sensitive to high mass scales

Example: Non-standard Higgs couplings e.g. Pseudoscalar or Scalar interactions

$$R_{e/\mu} = \frac{\Gamma(\pi \to ev + \pi \to ev\gamma)}{\Gamma(\pi \to \mu v + \pi \to \mu v\gamma)} \quad \overrightarrow{\pi} \quad \overrightarrow{W}_{(a)} \quad \overrightarrow{v}_{l} \quad \overrightarrow{\pi} \quad \overrightarrow{U}_{(b)} \quad \overrightarrow{r}_{l} \quad \overrightarrow{U}_{(c)} \quad \overrightarrow{$$

$\pi \rightarrow ev$ Branching Ratio-- Experiments

Order of magnitude difference in precision between theory and experiment \rightarrow window for new effects!

D. Bryman Zuoz 2014

A Global look at e-µ Universality

- Flavor couplings of W and Z bosons
- Pion decay
- New leptons

$\pi \rightarrow ev$ Branching Ratio corrected for new physics:

$$R_{e/\mu}^{th} = \frac{\Gamma(\pi \to e\nu + \pi \to e\nu\gamma)}{\Gamma(\pi \to \mu\nu + \pi \to \mu\nu\gamma)} = (1 - 2\delta g^{We\nu} + 2\delta g^{W\mu\nu})R_{e/\mu}^{SM}$$

Corrected gauge couplings relative to SM values:

$$\Delta g^{Wev} = 1 - \delta g^{Wev}, \ \Delta g^{W\mu v} = 1 - \delta g^{W\mu v}$$

New Physics and Pion Decay

Global fit to Electroweak precision measurements (EWPO):

- Z bosons decaying to leptons
- W bosons contributing to G_F (muon lifetime)
- W boson decay width

$\pi^+ \rightarrow e^+ \nu$ Experiments

Precision goals: <0.1%

PSI PEN

PIBETA Spectrometer

Canada-China, Japan-UK-US ASU, BNL, Glasgow, KEK, Osaka, TRIUMF, Tsinghua, UBC, UNBC, VPI

PSI, Zurich

TRIUMF 500 MeV Cyclotron

Stop π^+ in target; Measure positrons in a crystal spectrometer:

$$\begin{bmatrix} \pi^+ \to e^+ v \end{bmatrix} \quad P_e = 70 MeV / c, \ \tau_{\pi} = 26 ns$$
$$\begin{bmatrix} \pi^+ \to \mu^+ v \end{bmatrix} \quad P_{\mu} = 30 MeV / c, \ \tau_{\mu} = 2.2 \mu s$$
$$T_{\mu} = 4.2 MeV, \ R_{\mu} = 1.4 mm$$
$$\begin{bmatrix} \mu \to e^+ v \overline{v} \end{bmatrix} \quad P_e = 0 - 53 MeV$$

Systematic effects cancel (to 1st order) in the ratio $\frac{\Gamma(\pi \to e)}{\Gamma(\pi \to \mu \to e)}$

e.g. solid angle, MCS, $\frac{dE}{dx}$, anihillation, bremsstrahlung, timing .. 49

Suppress Backgrounds, Make small systematic corrections for NaI lineshape and other tiny effects.

Response function measurements showed up photo-nuclear n emission.

Background Suppression

- -Suppress π - μ -e background with target energy -Remove π DIF background with track angles
- -Correct for selection bias

PIENU: Summary of Expected Uncertainties

Source	Old TRIUMF	PIENU Goals
Statistics	0.0028	0.0005
Low-energy tail	0.0025	0.0003
Acceptance correc	tions 0.0011	0.0003
Pion lifetime	0.0009	0.0002
Other	0.0011	0.0003
Total	0.0047	0.0006

Current PIENU result for heavy sterile neutrinos:

LHCb Universality Test (2014)

- Relative branching fraction measurement, using $B^+ \to J/\psi K^+$, with $q^2 [0, J/\psi \to \mu^+\mu^-, J/\psi \to e^+e^-$ as normalisation channels.
- $B^+ \rightarrow K^+ e^+ e^-$ challenging:
 - Recover loss by Bremsstrahlung by adding ECAL cluster energy (> 75 MeV).
 - Signal shape strongly depends on number of Bremsstrahlung photons, $p_{\rm T}$ and occupancy of the event \rightarrow split analysis in 3 trigger categories.
 - $B^0 \rightarrow K^* e^+ e^-$ largest contribution to part. background.
 - About 5× less signal than in $B \to K \mu^+ \mu^-$, mainly due to low trigger and reconstruction efficiency.

D. Bryman Zuoz 2014

Electroweak penguin decays at LHCb

LHCP 2014, New York 2nd June 2014

Michel De Cian, University of Heidelberg on behalf of the LHCb collaboration

Summary: e-µ Universality Tests

Mode	g_e/g_μ	
π→eυ/ π→μυ	0.9979 ± 0.0016 ■	±0.0003 PIENU/PEN (2014-15)
K→ eu/K →µυ	1.0022 ± 0.0018	±0.0010 NA62/TREK (>2018)
τ →eυυ/ τ →μυυ	0.9980 ± 0.0015	Belle II
Ue/Uµ scattering	1.10 ± 0.05	
W decays	0.999 ± 0.011	

Sometimes, the absence of an effect is highly significant....

..the curious incident of the dog in the night-time...

"The dog did nothing in the night-time." "That was the curious incident," remarked Sherlock Holmes.

Sherlock Holmes in "Silver Blaze"

Direct flavor-changing neutral currents (e.g. $s \rightarrow d$) are absent in the Standard Model:

Flavor Changing Neutral Current Reactions

occur in the Standard Model via 2nd order effects

$$K^+ \to \pi^+ \nu \overline{\nu}$$

These effects are dominated by the heavy top quark. The predicted branching fractions are very small: $B_{SM}(K^+ \rightarrow \pi^+ v \overline{v}) = (8.5 \pm 0.7) \times 10^{-11}$ This opens the door for other

heavy particles to contribute.

57

The $K \to \pi v \overline{v}$ decays are among the few most precisely predicted FCNC decays .

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ in the Standard Model

A single effective operator $(\overline{s}_L \gamma_\mu d_L)(\overline{v}_L \gamma_\mu v_L)$

Dominated by top quark exchange

Sensitive to both CP-violating and CP-conserving effects

Hadronic matrix from well-measured $K^+ \rightarrow \pi^0 e^+ v$

B_{SM}(K⁺ → π⁺ννν) = (8.5 ± 0.7) x 10⁻¹¹ B_{SM}(K_L⁰ → π⁰νν) = (2.6 ± 0.4) x 10⁻¹¹

Uncertainties expected to improve to <7%.

Buras et al. (2013) http://dx.doi.org/10.1007/JHEP04(2 013)168

Summary of SM Theory Uncertainties

CKM (quark mixing) parameter uncertainties dominate the error budget today.

With foreseeable improvements, expect total SM theory error ≤6%. A. Kronfeld (FNAL) Unmatched by any other FCNC process (K or B).

30% deviation from the SM would be a 5σ signal of NP

SM theory error for $K_L^0 \to \pi^0 v \overline{v}$ mode exceeds that for $K^+ \to \pi^+ v \overline{v}$. U. Haisch, arXiv:0707.3098 Flavor Physics Testing COMPOSITE HIGGS MODELS

Bauer Redi CLVF 2013

Some parameters are not viable anymore.

Randall Sundrum Model Warped extra dimensions

$$K_L^0 \to \pi^0 \nu \overline{\nu} \text{ vs } K^+ \to \pi^+ \nu \overline{\nu}$$

Large parameter space open.

 $K \rightarrow \pi v \overline{v}$: High Sensitivity to New Physics Sensitivity to new physics at high mass scales complementary to studies of B decays and lepton flavor violation.

Extra Dimensions as a Theory of Flavor,Z', Dark Sector, Sterile Neutrinos...

Large effects in K decays; <10% in B decays.

D. M. Straub, arXiv:1012.3893

Buras, De Fazio, Girrbach, arXiv:1211.1896

"FCNC portals to the dark sector"

Dark Sector Decays $K \rightarrow \pi^+ X(X)$ may also be sought....

Operator
Dimensional
$$\frac{m_I^{n-6}}{\Lambda^{n-4}} \approx \frac{g^2}{M_W^2} \frac{g^2}{16\pi^2} |V_{tI}V_{tJ}|$$

Analysis

K decays Highly sensitive for low dimension operators

$$n=5$$
 $n=6$ $n=7$ $n=8$ $n=9$
 $s \rightarrow d$ $3.310^{7} TeV$ 130 TeV 2 TeV 0.25 TeV 0.07 TeV
 $b \rightarrow d$ $1.310^{5} TeV$ 26 TeV 1.5 TeV 0.37 TeV 0.16 TeV
 $b \rightarrow s$ 2.7 $10^{4} TeV$ 12 TeV 0.9 TeV 0.25 TeV 0.11 TeV

Kamenik and Smith (2012) link.springer.com/content/pdf/10.1007/JHEP03(2012)090

ASIDE:

U. Haisch Proj. X workshop 2012

 $K_L^0 \to \pi^0 \nu \overline{\nu}$ may be further constrained by $\varepsilon' / \varepsilon$ – measure of direct CP violation in $K_L^0 \to \pi^0 \pi^0$ decays.

Challenges for Measuring

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

$$B_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.8 \pm 0.8) \times 10^{-11}$$

Experimentally weak signature: backgrounds exceed signals by >10¹⁰

Determine everything possible about the K and $\boldsymbol{\pi}$

- π^+/μ^+ particle ID better than $10^6 (\pi^+ \rightarrow \mu^+ \rightarrow e^+)$
- Work in the CM system (stopped K⁺)

Eliminate events with extra charged particles or *photons*

* π^0 inefficiency < 10^{-6}

Suppress backgrounds well below the expected signal (S/N~10)

- * Predict backgrounds from data: dual independent cuts
- * Use "Blind analysis" techniques
- * Test predictions with outside-the-signal-region measurements

Evaluate candidate events with S/N function

"...when you have eliminated the impossible, whatever remains, *however improbable*, must be the truth? "

Sherlock Holmes in The Sign of the Four (1890)

Background Processes: Pion Range vs. Momentum

Blind Near-Signal Region:

Cut 2

Test Predictions

 $\mathbf{K}^+ \to \pi^+ \pi^0$ Background SuppressionDual cuts: γ Veto and Kinematics (P,R,E...) γ Veto Reversed γ Veto AppliedRange vs. EnergyMomentum

Doug Bryman TSI 2012

Background Suppression: E949 Extreme Photon Detection Efficiency

 π^{0} Rejection: >10⁶ -10⁷

Possibly the most efficient photon detector built so far.

10

*A.V. Artamonov et al., PHYS. REV. D 79, 092004 (2009).

$K_L^0 \to \pi^0 \nu \overline{\nu}$ Experiments History

J. Ma 2011
Emerging $K \rightarrow \pi v \bar{v}$ Measurements

Builds on NA-31/NA-48 Un-separated GHz beam Aim: 80 events at SM 2015-18 (LHC Run II)

J-PARC
$$K_L^0 \to \pi^0 \nu \overline{\nu}$$

Upgraded from KEK experiment E391a Aim: few events (S/B~1) at SM (Phase I) Commissioning 2013

 π° Rejection goal: 10° μ Rejection goal: 1 π/μ RICH separation up to 35 GeV/c Beam tracking: 40 MHz/cm²

$K_L^0 \to \pi^0 \nu \overline{\nu}$ at J-PARC

Improved setup based on KEK E391a ($< 2.6 \times 10^{-8}$)

Improved J-PARC Beam line Upgraded Detector 100 x proton intensity Aim: few events (S/B~1) at SM Under construction; start 2013

Background source	#evts
$K_L \to \pi^0 \pi^0$	1.8
$K_L \to \pi^+ \pi^- \pi^0$	0.46
n + residual gas	0.04
n + upstream veto	0.13
accidental coincidence	0.10
sum	2.5
$K_L \to \pi^0 \nu \bar{\nu}$ signal	3.5

	J-PARC KOTO	KEK-E391a	improve ment
KL yield/spill	8.1x10 ⁶	3.3x10 ⁵	x30/sec
Run time	12 months	2 months	x6
Decay prob.	3.6%	2.1%	x2
Acceptance	4.7%	1%	x3.6
Sensitivity	0.8x10 ⁻¹¹	1.1x10 ⁻⁸	x1300

Rare B Decays—Entering the Precision Regime

Standard Model Predictions for $B_q \rightarrow \mu\mu$

$$B(B_s \to \mu\mu) = (3.65 \pm 0.23) x 10^{-9}$$
$$B(B_d \to \mu\mu) = (1.06 \pm 0.09) x 10^{-10}$$

B.Sciascia INFN -Very rare B decays- FPCP, Marseille 27 May 2014

30 Year Quest for $B_s \rightarrow \mu\mu$

D. Bryman Zuoz 2014

$B_s \rightarrow \mu\mu$: first observation (LHCb)

$B_{(s)} \rightarrow \mu \mu$: evidence at LHCb

Simultaneous UML fit to mass spectra on 8 BDT bins.[PRL 111(2013)101805]Combinatorial bkg, B_s and B_d : yields freeExclusive bkg: yields and PDFs constrained to their expectations.

$B_{(s)} \rightarrow \mu \mu$: LHCb+CMS average

[LHCb-CONF-2013-012, CMS-PAS-BPH-13-007]

Naive combination (central values, no significance assessment)

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7) \cdot 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.6^{+1.6}_{-1.4} \cdot 10^{-10}$$

Work is ongoing to do a full combination of LHCb and CMS measurements: combined fit to the two datasets, sharing of all PDFs and correlated parameters (f_s/f_d , BR(B⁺ \rightarrow J/ ψ K+),...).

Output: combined BF and 2D scans, significances. Results expected end of summer. INFN

B.Sciascia INFN -Very rare B decays- FPCP, Marseille 27 May 2014

18

Limited Openings remaining for New Physics after latest results....

B.Sciascia INFN -Very rare B decays- FPCP, Marseille 27 May 2014

Baryon and Lepton Number Violation

Stability of matter depends on B conservation! Global symmetry, approximate symmetry? But B violation needed to explain matter asymmetry of the Universe

Grand Unified Theories (GUT) – SU(5), SO(10) -- would explain a lot:

quarks and leptons in a common representation

 $Q_e = -Q_p$

scale unification at 10^{16} GeV,

right handed heavy neutrinos -> tiny neutrino mass, lepto-genesis...

B-L conservation

SUSY-GUT e.g.
$$p \to e^+ \pi^0$$
 $\frac{\tau_p}{Br} \sim 10^{34\pm 1}$ also $p \to \mu^+ \pi^0$, $p \to K^+ \nu$
 $p \longrightarrow X$ e^+ a^0 a^0 a^0 $\bar{\tau}$ $\bar{\tau}$ $\bar{v}_{\bar{\tau}}$ \bar{v}_{\bar

X, Y gauge bosons mediate proton decay p-> π/K e

Ref: J. Hewett et al. arXiv:1401.6077

Δ (B-L)=0

SuperKamiokande

$$\frac{\tau}{Br}(p \to e^+ \pi^0) > 1.4 \times 10^{34} \text{ yrs}$$

$$\frac{\tau}{Br}(p \to \nu K^+) > 5.9 \times 10^{33} \text{ yrs}$$

Mass scale probed: $10^{16}GeV$

 $\frac{\tau}{Br}$ = partial mean life, where τ is the total mean life and *Br* is the branching fraction for the decay mode in question

Proposed HyperK:

Possible sensitivity:
$$\frac{\tau}{Br}(p \rightarrow e^+\pi^0) > 10^{35} yrs$$

50 Kton Water Cerenkov Detector

0.56 Mton Water Cerenkov Detector

Other Possibilities $\Delta(B-L)=0; \ \Delta B=\Delta L=2:$ 2 nucleon decays: $\frac{\tau}{Br} > 10^{30} yrs$ First 2 Generations (e, μ) pn \rightarrow e⁺ $\overline{\nu}$, np $\rightarrow \mu^{+}\overline{\nu}$ pp \rightarrow e⁺e⁺, pp $\rightarrow \mu^{+}\mu^{+}$, pp \rightarrow e⁺ μ^{+} ... nn $\rightarrow \overline{\nu}\overline{\nu}$

Mass scale probed: few TeV

PDG 10^{30} yrs

$\Delta B = 2$	dinucleon modes	-	
$ au_{64}$	$pp { m m o} \pi^+ \pi^+$	> 0.7	CL=90%
$ au_{65}$	$pn \! \to \pi^+ \pi^0$	> 2	CL=90%
$ au_{66}$	$nn \! ightarrow \pi^+ \pi^-$	> 0.7	CL=90%
$ au_{67}$	$nn ightarrow \pi^0 \pi^0$	> 3.4	CL=90%
$ au_{68}$	$pp ightarrow e^+ e^+$	> 5.8	CL=90%
$ au_{69}$	$pp { m m e}^+ \mu^+$	> 3.6	CL=90%
$ au_{70}$	$pp { m m o} \mu^+ \mu^+$	> 1.7	CL=90%
$ au_{71}$	$pn \! ightarrow e^+ ar{ u}$	> 2.8	CL=90%
$ au_{72}$	$pn ightarrow \mu^+ ar{ u}$	> 1.6	CL=90%
773	$nn ightarrow u_e ar{ u}_e$	> 1.4	CL=90%
$ au_{74}$	$nn \! ightarrow u_{\mu} ar{ u}_{\mu}$	> 1.4	CL=90%
775	pn ightarrow invisible	> 0.000021	CL=90%
$ au_{76}$	pp ightarrow invisible	> 0.00005	CL=90%

3rd Generation Effects

$p \rightarrow \tau^+ \pi^0$ Not allowed kinematically But $np \rightarrow \tau^+ \overline{\nu}$ is allowed.

Available energy :1868MeV $m_{\tau} = 1776.8MeV / c^{2}$ P = 79MeV / cT = 1.8MeV

Also possible:

 $pp \rightarrow \tau^+ e^+$

$$np \to \tau^+ \overline{\nu} : \frac{\tau}{Br} > 1x 10^{30} yrs$$

Result based on IMB3* limit on $p \rightarrow e^+ vv$ using $\tau^+ \rightarrow e^+ vv$: (D.B.Phys.Lett.B (2014)) Future: SuperK sensitivity ~10³³ yrs

*IMB3 Collab, Phys.Rev.D59(1999)052004.

Summary: Scenarios for Discovery of New Physics

New Physics found at LHC or in K decays, Universality tests, LFV, B decays ...

 \Rightarrow New effects with unknown flavorand CP-violating couplings New Physics NOT found at LHC or in K decays, Universality tests, LFV, B decays...

Precision Flavor-physics experiments needed to do studies of flavor- and CP-violating effects to interpret New Physics models. Precision Flavor physics experiments needed to give orders of magnitude additional mass reach; sensitive to New Physics at mass scales beyond the LHC (through virtual effects).

Concluding Observations

- Precision low energy experiments are powerful searches for new physics at high mass scales
- Charged LFV remains popular in most BSM theories but target sensitivities are obscure and gains in mass scale (Br~1/M⁴) are slow
- Many measurements e.g. tests of Universality, with precise SM observables are especially sensitive to new physics
- Big gains in experimental sensitivity are in the works
- Worthwhile to keep at it until BSM physics becomes clearer or experimental capabilities wane (or experiments become too expensive!)