

Indirect BSM searches

> Nico Serra Universität Zürich

Exothiggs: PSI Summer School Lyceum Alpinum, Zouz, Aug 14-20 2016 Indirect searches includes a very broad range of measurements:

- Charged Lepton Flavour Violation
- Kaon, B-meson, D-meson physics
- Non SM CP Violation searches
- EPM, g-2, ...
- Neutrino physics

In these two lectures I will concentrate on b-physics... and on the present

- Introduction

- CP Violation searches:
 - CPV in B-decays and the UT triangle
 - Facilities and measurements
- Rare B-decays:
 - Flavour Changing Neutral Currents
 - LFU test with rare decays

Some of the material is taken from the <u>Flavour Physics course of 2015</u> (Steinkamp/Serra) and <u>Flavour Physics course of 2016</u> (Isidori/Serra), also have a look at the <u>Habilitationsschrift</u> by Steinkamp

Introduction

- Indirect searches of BSM is basically the measurement of decays of existing particles
 - Precision measurement of particle's decay allow to infer about the virtual particles interacting with SM particles: are there other gauge interaction? Are they family blind? ...
 - Flavour Puzzle: why do we have three families which are identical wrt to the gauge interactions? <- In the SM!
 - Particularly interesting is therefore the study of the third family (B-hadrons, tau-leptons) which is much less constrained than the first two families

Introduction

- Since new particles might enter as virtual particles, energies much larger than those reachable at colliders can be probed
- Let's take the simple example of a leptonic decay of a Bmeson, which in the SM is mediated by the W

$$\Gamma(B^- \to \ell \bar{\nu}_{\ell}) = \frac{G_{\rm F}^2}{8\pi} M_B m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{M_B^2}\right)^2 f_B^2 |V_{ub}|^2$$

GF = Fermi Constant fB decay constant determined by the B-wave function at the origin CKM element Vub Helicity suppression

Introduction

- In extensions of the SM can be mediated by other new particles
- For instance in the 2HDM this decay can happen mediated by a charged Higgs

Measurement of the BR gives you insight on the mediating particle, but you need to know f_b ... unless you use ratios or correlations with other decays

CP violation

CP symmetry

Negative (positive) muons from leptonic pion decays are lefthanded (right-handed)

Parity and Charged conjugation symmetries are maximally violated in these decays but the combination of them (CP) is conserved

- Parity violation was first observed by Wu et al. in 1956, measuring the angular distribution of electrons from B-decays of $^{60}\text{Co} \longrightarrow ^{60}\text{Ni}^*$

Discovery of CPV Christenson, Cronin, Fitch, Turlay (1964) observed K₂ (K_L today) decaying into two pions

Shoot proton into a target to produce neutral kaons Let them propagate in a vacuum pipe to eliminate the short living component

Search for K₂ decays into two pions using the invariant mass and pointing

Discovery of CP Violation

In neutral kaons we have two mass eigenstates which are not flavour eigenstates, due to CKM mixing

$$|K_1\rangle = \frac{1}{\sqrt{2}} \cdot \{ |K^0\rangle + |\bar{K}^0\rangle \} \quad \Rightarrow \quad CP |K_1\rangle = + |K_1\rangle$$
$$|K_2\rangle = \frac{1}{\sqrt{2}} \cdot \{ |K^0\rangle - |\bar{K}^0\rangle \} \quad \Rightarrow \quad CP |K_2\rangle = - |K_2\rangle$$

Mass eigenstates are known as KL and Ks and they have a very different lifetime

If CP was conserved in weak interactions K_L and K_S would also be CP eigenstates

Pion P, CP Looking at the wave function of neutral pions we obtain that they have neutral parity

 $P|\pi^0\rangle = |\bar{q}\downarrow q\uparrow\rangle - |\bar{q}\uparrow q\downarrow\rangle + |q\downarrow \bar{q}\uparrow\rangle - |q\uparrow \bar{q}\downarrow\rangle = -1 \ |\pi^0\rangle$

In the same way we can show that they are CP-odd $CP|\pi^0\rangle = -1 |\pi^0\rangle$ $CP|\pi^0\pi^0\rangle = (-1)^2 |\pi^0\pi^0\rangle = +1 |\pi^0\pi^0\rangle$

The C operation changes positive pion to negative and the same the P, therefore the state with two charged pion has positive parity $CP|\pi^+\pi^-\rangle = 1|\pi^+\pi^-\rangle = +1|\pi^+\pi^-\rangle$

In addition

$$CP|\pi^0\pi^0\pi^0\rangle = (-1)^3 |\pi^0\pi^0\pi^0\rangle = -1 |\pi^0\pi^0\pi^0\rangle$$

$\sigma \pi^+\pi^-\pi^0$	-1	$(L_{(\pi^+\pi^-)\leftrightarrow\pi^0}=0,2,)$
•	+1	$(L_{(\pi^+\pi^-)\leftrightarrow\pi^0}=1,3,)$

550

500

(a

cos 6

CP violation in neutral mesons

Neutral Meson Mixing State at time t is a linear combination of B⁰ and anti-B⁰ Time evolution given by the Schrödinger equation $-i \frac{\partial}{\partial t} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = H \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}$ $|\psi(t)\rangle = a(t) |B^{0}\rangle + b(t) |\overline{B}^{0}\rangle$ Since meson can decay H as an imaginary component Can be decomposed into two hermetian parts $H = \begin{pmatrix} M - \frac{i}{2}\Gamma & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^* - \frac{i}{2}\Gamma_{12}^* & M - \frac{i}{2}\Gamma \end{pmatrix}$ $\begin{array}{c|cccc} M &\equiv & M_{11} &= & M_{22} \\ \Gamma &\equiv & \Gamma_{11} &= & \Gamma_{22} \end{array} \end{array}$ - Assuming CPT $M_{21} = M_{12}^*$; $\Gamma_{21} = \Gamma_{12}^*$ **Eigenvalues** are given by $\omega_{H,L} = M - \frac{i}{2} \Gamma \pm \sqrt{\left(M_{12} - \frac{i}{2} \Gamma_{12}\right) \left(M_{12}^* - \frac{i}{2} \Gamma_{12}^*\right)} \equiv m_{H,L} - \frac{i}{2} \Gamma_{H,L}$

$$\begin{split} & \textbf{B}_{H,L} \rangle = \rho |B^0\rangle \mp q |\overline{B}^0\rangle \\ & = \frac{q}{p} |B^0\rangle \mp q |\overline{B}^0\rangle \\ & = \frac{q}{p} |B^0\rangle \mp q |\overline{B}^0\rangle \\ & = \frac{q}{p} = -\sqrt{\frac{H_{21}}{H_{12}}} = -\sqrt{\frac{M_{12}^* - \frac{1}{2}\Gamma_{12}^*}{M_{12} - \frac{1}{2}\Gamma_{12}}} \\ & = \sqrt{\frac{M_{12}^* - \frac{1}{2}\Gamma_{12}^*}{M_{12} - \frac{1}{2}\Gamma_{12}}} \\ & = \frac{1}{2} (P \cdot |B^0\rangle + q \cdot |\overline{B}^0\rangle) + e^{-im_{\mu}t} \cdot e^{-\Gamma_{\mu}t/2} \\ & = \frac{1}{2} (P \cdot |B^0\rangle + q \cdot |\overline{B}^0\rangle) + e^{-im_{\mu}t} \cdot e^{-\Gamma_{\mu}t/2} \\ & = \frac{1}{2} (P \cdot |B^0\rangle + q \cdot |\overline{B}^0\rangle) + e^{-im_{\mu}t} \cdot e^{-\Gamma_{\mu}t/2} \\ & = \frac{1}{2} (P \cdot |B^0\rangle + \frac{q}{p} \cdot g_{-}(t) \cdot |\overline{B}^0\rangle \\ & = \frac{1}{2} e^{-imt} e^{-\frac{\overline{\Gamma}t}{2}} \left(e^{i\frac{\Delta mt}{2}} e^{i\frac{\Delta mt}{4}} \pm e^{-i\frac{\Delta mt}{2}} e^{-\frac{\Delta \Gamma t}{4}} \right) \\ & = \frac{1}{2} e^{-imt} e^{-\frac{\overline{\Gamma}t}{2}} \left(e^{i\frac{\Delta mt}{2}} e^{i\frac{\Delta mt}{4}} \pm e^{-i\frac{\Delta mt}{2}} e^{-\frac{\Delta \Gamma t}{4}} \right) \\ & = \frac{1}{2} e^{-imt} e^{-\frac{\overline{\Gamma}t}{2}} \left(e^{i\frac{\Delta mt}{2}} e^{i\frac{\Delta mt}{4}} \pm e^{-i\frac{\Delta mt}{2}} e^{-\frac{\Delta \Gamma t}{4}} \right) \\ & = \frac{1}{2} e^{-imt} e^{-\frac{\overline{\Gamma}t}{2}} \left(e^{i\frac{\Delta mt}{2}} e^{i\frac{\Delta \pi t}{4}} \pm e^{-i\frac{\Delta mt}{2}} e^{-\frac{\Delta \Gamma t}{4}} \right) \\ & = \frac{1}{2} e^{-imt} e^{-\frac{\overline{\Gamma}t}{2}} \left(e^{i\frac{\Delta mt}{2}} e^{i\frac{\Delta \pi t}{4}} \pm e^{-i\frac{\Delta mt}{2}} e^{-\frac{\Delta \Gamma t}{4}} \right) \\ & = \frac{1}{2} e^{-imt} e^{-\frac{\overline{\Gamma}t}{2}} \left(e^{i\frac{\Delta mt}{2}} e^{i\frac{\Delta \pi t}{4}} \pm e^{-i\frac{\Delta mt}{2}} e^{-\frac{\Delta \Gamma t}{4}} \right) \\ & = \frac{1}{2} e^{-imt} e^{-\frac{\overline{\Gamma}t}{2}} \left(e^{i\frac{\Delta mt}{2}} e^{i\frac{\Delta \pi t}{4}} \pm e^{-i\frac{\Delta mt}{2}} e^{-\frac{\Delta \Gamma t}{4}} \right) \\ & = \frac{1}{2} e^{-imt} e^{-\frac{\overline{\Gamma}t}{2}} \left(e^{i\frac{\Delta mt}{2}} e^{i\frac{\Delta \pi t}{4}} + e^{-i\frac{\Delta \pi t}{2}} e^{-\frac{\Delta \Gamma t}{4}} \right) \\ & = \frac{1}{2} e^{-imt} e^{-\frac{\Gamma t}{2}} \left(e^{i\frac{\Delta mt}{2}} e^{i\frac{\Delta \pi t}{4}} + e^{-i\frac{\Delta \pi t}{2}} e^{-\frac{\Delta \pi t}{4}} \right) \\ & = \frac{1}{2} e^{-i\frac{\Delta \pi t}{2}} e^{-\frac{\Delta \pi t}{4}} + e^{-\frac{\Delta \pi t}{2}} e^{-\frac{\Delta \pi t}{4}} \\ & = \frac{1}{2} e^{-\frac{\Delta \pi t}{2}} e^{-\frac{\Delta \pi t}{4}} + e^{-\frac{\Delta \pi t}{2}} e^{-\frac{\Delta \pi t}{4}} \\ & = \frac{1}{2} e^{-\frac{\Delta \pi t}{4}} + e^{-\frac{\Delta \pi t}{4}} + e^{-\frac{\Delta \pi t}{4}} \\ & = \frac{1}{2} e^{-\frac{\Delta \pi t}{4}} + e^{-\frac{\Delta \pi t}{4}} \\ & = \frac{1}{2} e^{-\frac{\Delta \pi t}{4}} \\ & = \frac{1}{2} e^{-\frac{\Delta \pi t}{4}} + e^{-\frac{\Delta \pi t}{4}} \\ & = \frac{1}{2} e^{-\frac{\Delta \pi t}{4}} \\ & = \frac{1}{2} e^{-\frac{\Delta \pi t}{4}} \\ & = \frac{1}{2} e^{-\frac{\Delta \pi t}{4}} \\ & = \frac{1}$$

$$\begin{split} & \textbf{Being probabilities} \\ & P(B^{\circ} \rightarrow B^{\circ}, t) = \frac{1}{2} \cdot e^{-\Gamma t} \cdot \left[\cosh\left(\frac{\Delta\Gamma}{2} t\right) + \left(\cos\Delta m t\right) \right] \\ & P(\bar{B}^{\circ} \rightarrow \bar{B}^{\circ}, t) = P(B^{\circ} \rightarrow B^{\circ}, t) \\ & P(\bar{B}^{\circ} \rightarrow \bar{B}^{\circ}, t) = P(B^{\circ} \rightarrow B^{\circ}, t) \\ & P(B^{\circ} \rightarrow \bar{B}^{\circ}, t) = \frac{1}{2} \cdot \left| \frac{q}{p} \right|^{2} \cdot e^{-\Gamma t} \cdot \left[\cosh\left(\frac{\Delta\Gamma}{2} t\right) - \left(\cos\Delta m t\right) \right] \\ & P(B^{\circ} \rightarrow \bar{B}^{\circ}, t) = \frac{1}{2} \cdot \left| \frac{p}{q} \right|^{2} \cdot e^{-\Gamma t} \cdot \left[\cosh\left(\frac{\Delta\Gamma}{2} t\right) - \left(\cos\Delta m t\right) \right] \\ & \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{mix}(t) = \frac{N(B^{\circ} \rightarrow B^{\circ}) - N(B^{\circ} \rightarrow B^{\circ})}{N(B^{\circ} \rightarrow B^{\circ}) + N(B^{\circ} \rightarrow B^{\circ})} = \frac{\cos\left(\Delta m t\right) + \delta \cdot \cosh\left(\Delta\Gamma t/2\right)}{\cosh\left(\Delta\Gamma t/2\right) + \delta \cdot \cos\left(\Delta m t\right)} \\ \textbf{2} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \frac{1 - \left| q/p \right|^{2}}{1 + \left| q/p \right|^{2}} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{1} \\ \textbf{2} \\ \textbf{3} \\ \textbf{1} \\ \textbf{3} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{1} \\ \textbf{3} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{1} \\ \textbf{3} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{3} \\ \textbf{3} \\ \textbf{1} \\ \textbf{3} \\ \textbf{1} \\ \textbf{3} \\ \textbf{1} \\ \textbf{1} \\ \textbf{3} \\ \textbf{1} \\ \textbf{1} \\ \textbf{3} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{1} \\ \textbf{2} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{4} \\ \textbf{3} \\ \textbf{3} \\ \textbf{4} \\ \textbf{4} \\ \textbf{4} \\ \textbf{5} \\$$

Neutral Meson Mixing

- Neutral Kaons

x_K ≈ 0.95 *y_K* ≈ -1

Strong damping, only KL are left after 1 oscillation

D⁰/anti-D⁰ system

 $x_D \approx 5 \times 10^{-3}$ $y_D = (7.15 \pm 0.09) \times 10^{-3}$

Very small mixing

Neutral Meson Mixing

B⁰/anti-B⁰ system

 $x_{\rm d}$ = 0.775 ± 0.006 $y_{\rm d}$ = 0.007 ± 0.009

- Small damping and significant mixing
 - B_s⁰/anti-B_s⁰ system
 - $x_{\rm s}$ = 26.82 ± 0.23 $y_{\rm s}$ = 0.058 ± 0.010
 - Fast oscillations and complete mixing

CP Violation

<u>CPV in mixing</u> ("indirect CP violation")

- interference of absorptive and dispersive part of mixing amplitude
- different mixing rate

$$B^{0}_{(s)} \rightarrow \overline{B}^{0}_{(s)}$$
 vs $\overline{B}^{0}_{(s)} \rightarrow B^{0}_{(s)}$

• small in Standard Model

<u>CPV in decay</u> ("direct CP violation")

- interference of decay diagrams with different weak and strong phases
- different decay rates

 $B \rightarrow f \text{ vs } \overline{B} \rightarrow \overline{f}$

beware of strong phases

- interference between direct decay and decay after mixing
- different decay rates

$$B^0_{(s)} \rightarrow f_{CP}$$
 vs $\overline{B}^0_{(s)} \rightarrow f_{CP}$

"golden modes"

The Unitarity Triangle(s)

The CKM matrix describes the relation between flavour and mass eigenstates Weak Universality Relations

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{vmatrix} V_{ud} \\ V_{ud} \\ V_{c} \\ V_{c} \end{vmatrix}$$

$$V_{ud}V_{ud}^* + V_{us}V_{us}^* + V_{ub}V_{ub}^* = 1$$

$$V_{cd}V_{cd}^* + V_{cs}V_{cs}^* + V_{cb}V_{cb}^* = 1$$

$$V_{td}V_{td}^* + V_{ts}V_{ts}^* + V_{tb}V_{tb}^* = 1$$

These relations represents triangles in the complex plane

$$V_{ud}V_{cd}^{*} + V_{us}V_{cs}^{*} + V_{ub}V_{cb}^{*} = 0$$

$$V_{ud}V_{td}^{*} + V_{us}V_{ts}^{*} + V_{ub}V_{tb}^{*} = 0$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb} + V_{td}^{*}V_{tb} = 0$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb} + V_{td}^{*}V_{tb} = 0$$

$$V_{us}^{*}V_{ub} + V_{cs}^{*}V_{cb} + V_{ts}^{*}V_{tb} = 0$$

$$J = \pm Im(V_{us}V_{cb}V_{ub}^{*}V_{cs}) = 2Area of triangles (prop to CPV)$$

Euler Angles

c_{ij} = cos of the angle between the i and j family s_{ij} = sin of the angle between the i and j family

$$V_{CKM} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$

We chose the phase to appear between the 1st and 3rd family

CKM parametrisations

Wolfenstein parametrisation

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \delta V$$

Where

$$\sin \theta_{12} = \lambda$$

$$\sin \theta_{23} = A\lambda^2$$

$$\sin \theta_{13} e^{-i\delta_{13}} = A\lambda^3 (\rho - i\eta)$$

$$V_{CKM,Wolfenstein} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^5)$$

Unitarity Triangle

B-factories

- Electron/position collider at the Y(4S) resonance
- Y(4s) decays in B⁰/anti-B⁰ (50%) and in B+B⁻ (50%)
- Ifb⁻¹ corresponds to about 10⁶bbar pairs
- Clean events (only track from B)

E^{*}_{beam}

E^{*}_B

 p_{B}^{*}

- = measured energy of *B* candidate
- = measured momentum of *B* candidate

B-factories

• PEP-II: 9 GeV e⁻ + 3.1 GeV e⁺

 $eta oldsymbol{\gamma} = \mathbf{0.56}$ $\langle \Delta oldsymbol{z}
angle pprox \mathbf{260} \ \mu \mathbf{m}$

KEKB: 8 GeV e⁻ + 3.5 GeV e⁺

 $eta oldsymbol{\gamma} = \mathbf{0.425}$ $\left< \Delta oldsymbol{z} \right> pprox \mathbf{200} \ \mu \mathbf{m}$

- Asymmetric beam to use boost to improve proper time resolution
- Possibility to use the other B for flavour tagging and background rejections for decays with neutrinos in the final state

LHCb

Proton-proton collider at LHC (max 14TeV)

Produce all b-hadron species including B_s , B_c and b-baryons

lfb⁻¹ corresponds to about 10¹²bbar pairs

"Dirty" events so the typical efficiency is per-mill (those selected events are very clean)

Main selection variables are displacement from the PV and PT

LHCb

Semileptonic decays

- Measure $|V_{ub}|$ from $\mathcal{B}(b \to u\ell^-\nu_\ell)$ and $|V_{cb}|$ from $\mathcal{B}(b \to c\ell^-\nu_\ell)$
 - Exclusive decays:
 - Use decays such as $B \to \pi \ell \nu_{\ell}$ and $B \to D^{(*)} \ell \nu_{\ell}$
 - Theory uncertainty from QCD form factors
 - Relatively clean experimentally decays

$$\begin{aligned} \frac{d\Gamma}{d\omega} (B \to D^* \ell \nu_{\ell}) &= \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B - m_{D^*})^2 m_{D^*}^3 \sqrt{\omega^2 - 1} PHS(\omega) F^2(\omega) \\ \frac{d\Gamma}{d\omega} (B \to D \ell \nu_{\ell}) &= \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B - m_D)^2 m_D^3 (\omega^2 - 1)^{3/2} G^2(\omega) &\longleftarrow \text{Form factors} \\ \omega &= \frac{P_B \cdot P_{D^{(*)}}}{m_B m_{D^{(*)}}} &= \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2m_B m_{D^{(*)}}} \end{aligned}$$

Semileptonic decays

Inclusive decays, i.e. measuring the rates of $B \to X_u \ell \nu_\ell$ and $B \to X_c \ell \nu_\ell$:

- Small theory uncertainty
- Challenging from experimental point of view

Difficult to disentangle $X_u \ell \nu_\ell$ final state and $X_c \ell \nu_\ell$:

- Suppress background using tight kinematic cuts, but introduce form-factors dependent phase space corrections
- Possible at B-factories fully reconstructing the other B-meson

Exclusive semileptonic decays

- tagged analysis (better resolution, lower statistics):
 - fully reconstruct the other B
 - Neutrino momentum from momentum imbalance
- untagged analysis:
 higher statistics, but higher background and worse
 resolution

π

Vcb from inclusive decays

tagged analysis:

- fully reconstruct the other Bmeson
- Assign all remaining tracks and energy deposits to X_c
- Require one charged lepton above a certain p_{min} threshold
- Determine moments of the m(Xc) distribution
- Do the same for a different value of p_{min}

Moments of $E(\ell)$ and $m(X_c)$ distributions in $B \to X_c \ell \nu_\ell$ related to $|V_{cb}|$, m_b and m_c by HQET

Vub exclusive measurements

$$\frac{d\Gamma}{d\omega}(B \to \pi \ell \nu_{\ell}) = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_{\pi}|^3 |f_+(q^2)|^2$$

- Measurement done using untagged, hadronic tagged and semi-leptonic tagged analyses:
 - Untagged: larger statistics and worse resolution and more background
 - Semileptonic tagged: reconstruct the 2nd meson as $B \to D^{(*)} \ell \nu_{\ell}$ and use kinematic constraint in the center of mass
 - Hadronic tagged: fully reconstruct the other B-meson obtaining the neutrino momentum from momentum imbalance
- Form factors at high q^2 from Lattice QCD
- Form factors at low q^2 from light-cone sum rules
- Various models to interpolate q^2 dependence in the two regions

Vub inclusive measurements

- Fully reconstruct the 2nd B-meson, assign remaining tracks to B_{rec} , require a charge lepton from B_{rec}
- Challenging background from $B \to X_c \ell \nu_\ell$ (about 50 times the signal)
- Suppress $b \to c$ background using:
 - Lepton energy: $E(\ell) > \frac{(m_B^2 m_D^2)}{2m_B}$; Momentum transfer: $q^2 > (m_B m_D)^2$; Invariant mass of X: $m_X < m_D$
- Other criteria: vetos for π_{sl} from $D^* \to D\pi_{sl}$, kaons from $b \to c \to s$, second lepton from $c \to s\ell\nu$, higher multiplicity in $b \to c$, ...

• Cut based selections or multivariate analysis

 m_X = hadron system mass

Inclusive VS Exclusive

3

 $10^3 \times |V_{ub}|$

2

5

6

0.0025 0.003 0.0035 0.004 0.0045 0.005 |V_{ub}|

Semitaunic decays

Semitauonic decays

 $\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\overline{B} \to D^{(*)}\tau\nu)}{\mathcal{B}(\overline{B} \to D^{(*)}\ell\nu)} = \frac{\text{signal}}{\text{normalization}} \quad (\ell = e, \mu)$ - B-factories measure tau->e,mu 2v - LHCb measures tau->mu 2v

$$\begin{aligned} \frac{\mathrm{d}\Gamma_{\tau}}{\mathrm{d}q^2} = & \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}_{D^{(*)}}^*| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left[(|H_+|^2 + |H_-|^2 + |H_-|^2) + |H_0|^2 \right] \\ & + |H_0|^2 \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3m_{\tau}^2}{2q^2} |H_s|^2 \right] \end{aligned}$$

- Since the D-meson is a scalar H+, vanish
- Amplitudes depend on 4 universal FFs extracted from data
 Four free parameters in the fit
- In the case of the e/mu Hs is suppressed by the mass, so this is only present in the channel with the tau (from HQET)

B-factory strategy

Tag- and signal-side of the full reconstruction

$$\mathcal{R}(D^{(*)}) \equiv \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} = \frac{\int_{m_{\tau}^2}^{q_{\max}^2} \frac{\mathrm{d}\Gamma_{\tau}}{\mathrm{d}q^2} \,\mathrm{d}q^2}{\int_{m_{\ell}^2}^{q_{\max}^2} \frac{\mathrm{d}\Gamma_{\ell}}{\mathrm{d}q^2} \,\mathrm{d}q^2}$$

Hadronic tag analyses:

- Reconstruct tag B meson in all hadronic mode
- Precise knowledge of kinematic of missing system
- Kill background, but efficiency about 10-3

Semileptonic analyses:

- Tag B-meson in semileptonic channel
- Selection: E_{T} , missing mass and angle between D^* and B

LHCb Strategy

$$(\gamma \beta_z)_{\bar{B}} = (\gamma \beta_z)_{D^* \mu} \implies (p_z)_{\bar{B}} = \frac{m_B}{m(D^* \mu)} (p_z)_{D^* \mu}$$

B-direction given by PV-SV
Full fit of the MM, E*, q²
Muon, tau modes and bkg fit simultaneously

Results

From HFAG webpage

Experiment	R(D*)	R(D)	Rescaled Correlation (stat/syst/total)	Parameters	Remarks
BaBar	0.332 +/- 0.024+/- 0.018	0.440 +/- 0.058 +/- 0.042	-0.45/-0.07/-0.27	<u>input</u>	Phys.Rev.Lett. 109,101802 (2012) [arXiv:1205.5442 [hep-ex]] Phys.Rev.D 88,072012 (2013) [arXiv:1303.0571]
BELLE	0.293 +/- 0.038 +/- 0.015	0.375 +/- 0.064 +/- 0.026	-0.56/-0.11/-0.49	<u>input</u>	Phys.Rev.D 92, 072014 (2015) [arXiv:1507.03233 [hep-ex]]
BELLE	0.302 +/- 0.030 +/- 0.011	-	-	<u>input</u>	Preliminary at Moriond EW 2016 [arXiv:1603.06711 [hep-ex]]
LHCb	0.336 +/- 0.027 +/- 0.030	-	-	<u>input</u>	Phys.Rev.Lett.115,111803 (2015) [arXiv:1506.08614 [hep-ex]]
Average	0.316+/- 0.016 +/- 0.010	0.397+/- 0.040 +/- 0.028	-0.21	chi2/dof = 2.38/4 (CL = 0.67)	pdf png

Deviation of about 4sigmas wrt SM predictions!

Large contribution from excited D** states
 Narrow states (D1⁽¹⁾ and D2*) fit directly from data B->D*pi lv used as a control sample
 Higher D** excited states also fit from data and B->D pipi lv

used as a control channel

- As usual charm is a background for tau

- Bkg from D_s->tau nu, D ->K lv fit directly from data
- Control sample obtained reconstructing B->D* K lv

Neutral B-meson mixing

- $B^0 \leftrightarrow \overline{B}^0$ transitions due to off diagonal H_{12}
- $M_{12} \propto m_t^2 (V_{td} V_{tb}^*)^2$ dominated by off-shell intermediate state
- $\Gamma_{12} \ll M_{12}$ therefore the oscillation frequency is $\Delta M_d = 2|M_{12}| \propto |V_{td}|^2 |V_{tb}|^2$
- Best way to measure ΔM_d is via the time-dependent mixing asymmetry: $a_{mix}(t) = \overline{a}_{mix}(t) = \frac{\cos \Delta M_d \cdot t}{\cosh \Delta \Gamma \cdot t} \simeq \cos \Delta M_d \cdot t$

B-factories

- Fully reconstruct B_{rec} in a flavour specific decay
- Measure momentum, decay vertex and flavour of B_{rec}
- Assign all remaining tracks to B_{tag}
- Infer the flavour of B_{rec} at production from the flavour of B_{tag}
- Decay time difference given by ΔZ and the B_{rec} momentum

Flavour Tagging

- Effect of tagging given by the tagging power: $Q = \epsilon D^2 = \epsilon (1 \omega)^2$, where ϵ , D and ω are the tagging efficiency, dilution and wrong fraction
 - Lepton: tagging has low mis-tag fraction, small efficiency, small contamination from
 - Kaons: higher efficiency, higher mis-tag fraction
 - Inclusive methods (e.g. vertex charge): high efficiency, high mis-tag fraction
- Typically several techniques are combined in a neural network

B-factory measurement

• Hadronic decays (e.g. $B^0 \to D^{(*)-}\pi^+$):

- clean event $(B_{rec}$ fully reconstructed) - flavour at decay from pion charge
- small branching ratio

• Semi-leptonic decays (e.g. $B^0 \to D^{(*)-}\ell^+\nu_\ell$):

- higher branching ratio
- reasonably clean events
- flavour from ℓ charge
- neutrino missing, worse B-momentum resolution

B⁰ mixing results

Tagging at hadron colliders

- ΔZ measured as the distance between PV and SV
- Flavour specific B_{rec} decay (e.g. $B_s^0 \to D_s^- \pi^+$)
- Flavour at production:
 - Opposite side tagging (lepton, kaon, jet/vertex charge):
 - Intrinsic dilution from mixing is about 40% for B^0 and 10% from B_s
 - Many more tracks imply larger wrong tag fraction wrt B-factories
- Same side tagging using pion or kaon close to B_{rec} in phase space
- In general tagging performances worse than B-factories

Mixing in Bs-system

• First measurement of ΔM_s done at CDF

- Measurement at LHCb important test of detector performances (CDF measurement already better than theory uncertainty)
- LHCb vertex resolution important to resolve $B_s^0 \overline{B}_s^0$ oscillations

• Analysis with $1fb^{-1}$ (2011 dataset) using $B_s^0 \to D_s^- \pi^+$ about 34K signal events

CPV in the interference

Now we are also considering the decay

 $a_f(t) = \frac{N(B_{t=0}^0) - N(\overline{B}_{t=0}^0)}{N(B_{t=0}^0) + N(\overline{B}_{t=0}^0)} \simeq \frac{-C_f \cos\left(\Delta M \cdot t\right) + S_f \sin\left(\Delta M \cdot t\right)}{\cosh\left(\Delta \Gamma \cdot t/2\right) + \Omega_f \sinh\left(\Delta \Gamma \cdot t/2\right)}$

$$\begin{split} \boldsymbol{C}_{f} &= \frac{1 - \left|\lambda_{f}\right|^{2}}{1 + \left|\lambda_{f}\right|^{2}} \hspace{0.2cm} \textbf{;} \hspace{0.2cm} \boldsymbol{S}_{f} = \frac{2 \cdot \operatorname{Im}\left(\lambda_{f}\right)}{1 + \left|\lambda_{f}\right|^{2}} \\ \Omega_{f} &= 1 - \boldsymbol{S}_{f}^{2} - \boldsymbol{C}_{f}^{2} \end{split}$$

• The CPV in the interference between mixing and decay can also happen if there is no CPV in the mixing and in the decay

• If one single decay amplitude dominates: $|\overline{A}_f/A_f| \Rightarrow |\lambda_f|$

$$a(t)_f = \frac{\Im(\lambda_f) \cdot \sin(\Delta M \cdot t)}{\cosh(\Delta \Gamma \cdot t/2) + \Re(\lambda_f) \sinh(\Delta \Gamma \cdot t/2)}$$

In the B⁰-system this simplifies to $a(t)_f \simeq \Im(\lambda_f) \cdot \sin(\Delta M_d \cdot t)$

CP is violated if $\Im(\lambda_f) \neq 0$

Measurement of Beta

The decay $B^0 \to J/\psi K_S^0$ is a CP eigenstate $(\eta_{CP} = -1)$ and it is accessible from B^0 and \overline{B}^0

The decay is dominated by the tree amplitude \Rightarrow $a_{J/\psi K^0_S}(t) = \Im(\lambda_{J/\psi K^0_S}) \cdot \sin(\Delta M_d \cdot t)$

$$\begin{split} \lambda_{J/\psi \kappa_{s}^{0}} &= \left(\frac{q}{p}\right)_{B^{0}} \cdot \left(\frac{\overline{A}_{J/\psi \kappa^{0}}}{A_{J/\psi \kappa^{0}}}\right) \cdot \left(\frac{q}{p}\right)_{\kappa^{0}} \\ &= \left(\frac{V_{tb}^{*} V_{td}}{V_{tb} V_{td}^{*}}\right) \cdot \left(\frac{V_{cs}^{*} V_{cb}}{V_{cs} V_{cb}^{*}}\right) \cdot \left(\frac{V_{cd}^{*} V_{cs}}{V_{cd} V_{cs}^{*}}\right) \\ &= \left(\frac{V_{tb}^{*} V_{td}}{V_{cb}^{*} V_{cd}}\right) / \left(\frac{V_{tb} V_{td}^{*}}{V_{cb} V_{cd}^{*}}\right) \\ &= 2 \cdot \arg\left(\frac{V_{tb}^{*} V_{td}}{V_{cb}^{*} V_{cd}}\right) = 2 \cdot \beta \end{split}$$

$$\begin{aligned} & \textbf{Measurement of Beta} \\ \text{For the unitarity of the CKM } V_{tb}^*V_{ts} = -V_{cb}^*V_{cs} - V_{ub}^*V_{us} \text{ therefore} \\ & \textbf{A}_{J/\psi K^0} = P_t \cdot (V_{tb}^*V_{ts}) + (T+P_c) \cdot (V_{cb}^*V_{cs}) + P_u \cdot (V_{ub}^*V_{us}) \\ & = (T+P_c-P_t) \cdot (\underbrace{V_{cb}^*V_{cs}}_{\propto \lambda^2} + (\underbrace{P_u-P_t}_{\sim 0.1 \cdot T}) \cdot (\underbrace{V_{ub}^*V_{us}}_{\propto \lambda^4}) \\ & \textbf{B}^0 \underbrace{\overline{b}}_{d} \underbrace{W^+}_{d} \underbrace{\overline{c}}_{d} K^0 \end{aligned}$$

Contamination from $V_{ub}^* V_{us}$ smaller than $1\% \Rightarrow$ clean from theory point of view

Attractive from experimental point of view as well:

- Clear event signature with $J/\psi \to \ell^+ \ell^-$, second displaced vertex from K_S^0 , invariant masses
- Similar strategy as for the measurement of ΔM_d
- Taking into account the dilution (D) and resolution $(R(\Delta t))$ we have: $a_{meas}(\Delta t) = (D \cdot \sin(2\beta) \cdot \sin(\Delta M_d \cdot \Delta t)) \otimes R(\Delta t)$
- Quantities are determined from data $(B^0 \to D^{(*)+}\pi^- \text{ and } B^0 \to J/\psi K^*)$ and MC

Measurement of Beta

Belle (772M BB pairs):

Babar (465M BB pairs):

CP-even channels CP-odd channels (a) **CP-even channels** 0.4 tags 400 $\eta_f = -1$ ps g 400 Events / Events / 0.5 p 200 120 200 0.5 350 171802] 072009 300 Events Asymmetry 250 0.4 200 0.2 150 100 100 -0.2 (2012) (2009) 50 50 -0.4 ି<u>ଛ</u> 300 **CP-odd channels** Asymmetry Asymmetry Events / (0.4 tags 0.6 0.6 $\eta_f = +1$ 200 108 0.4 σ 0.4 100 ~ 0.2 0.2PRD [PRL Asymmetry 0.4 -0.2 -0.2 0.2 -0.4 -0.4 Raw -0.6 -0.6 -0.4 -2 2 -4 -2 -4 0 0 2 4 -6 4 -6 6 6 5 -5 Δt (ps) ∆t (ps) ∆t (ps) $\sin 2\beta = 0.687 \pm 0.028 \pm 0.012$ $\sin 2\phi_1 = 0.667 \pm 0.023 \pm 0.012$

Measurement of Beta

Status of the UT

