EXOTIC SEARCHES

PSI Summer School Exothiggs Lyceum Alpinum Zuoz, 15-19 August 2016 Lecture 1: resonances

DIPARTIMENTO DI FISICA

Shahram Rahatlou http://www.roma1.infn.it/people/rahatlou/

OUTLINE

- Motivation for New Physics
- Exotic searches
- Dark Matter at Colliders
- Long-Lived Particles
- Supersymmetry (maybe)
- Prospects at 13 TeV and beyond

LHC: A DISCOVERY MACHINE

- Higgs discovery the best known objective of LHC
 - Solve the mass puzzle
 - explain generation of mass for ALL particles in Standard Model
- But new particles might be right around the corner
- Center of mass energy highest ever achieved in laboratory
 - Einstein equation tells us: $E = m_X c^2$
 - New heavy particles can be produced
- What do we expect to see and why?

HINTS OF NEW PHYSICS

- Neutrinos have very small but non-zero mass
- Astrophysical proof of existence of cold dark matter and we also need a large amount of yet-to-be-understood dark energy
- Mass hierarchy and mixing structure
- Almost complete absence of anti-matter in the universe

PLANCK SCALE

- Mass with same Compton wavelength and Schwarzschild radius
- Compton wavelength: defines length scale where quantum mechanics must be used $E = mc^{2} = \hbar\nu \rightarrow mc^{2} = \frac{\hbar c}{\lambda_{c}} \rightarrow \lambda_{c} = \frac{\hbar}{mc^{2}}$ scala di c Planck
 - decreases with for lager mass
 - e.g. for a photon the corpuscular nature of fight becomes relevant $\frac{n}{mc} = \lambda_c$
- Schwarzschild radius is the radius in which a confined mass object becomes a black scala di Planck

 - classically radius such that escape velocity equal to speed of light increases for larger massalars diagonal definition of the speed of light $m_Pc = \frac{1}{2} \frac{Gm_P}{Mv^2} \Rightarrow m_P = \frac{1}{2} \frac{Gm}{G} = \frac{1}{2} \cdot \frac{10^{19} \text{ GeV}}{c^2}$
- Planck mass or scale defines the scale $\frac{\hbar G}{2}$ at which duantum and gravitational effects are both relevant and comparable $r_s \approx \lambda_c \rightarrow \frac{m_P c}{m_P c} = \frac{m_P c}{c^2} \Rightarrow m_P = \sqrt{\frac{d}{G}} = \frac{1.2 \cdot 10^P \text{ GeV/c}^2}{\sqrt{\frac{c\hbar}{G}}} = 1.2 \cdot 10^{19} \text{ GeV/c}^2$ mercoledì 11 novem $m_P = \sqrt{\frac{c\hbar}{G}} = 1.2 \cdot 10^{19} \text{ GeV/c}^2$ 10 1

$$\ell_P = \frac{h}{m_P c} = \sqrt{\frac{hG}{c^3}} = 1.6 \cdot 10^{-35} \,\mathrm{m}_{0^{-35}} \,\mathrm{m}_{0^{-35}}$$

 $t_{\rm P} = \ell_{\rm P} / c = \sqrt{G\hbar/c^5} = 5.4 \cdot 10^{-44} \,\mathrm{s}$

HIGGS MASS

$$m_h^2 \sim m_{h0}^2 + \delta m_h^2$$

- We know that $m_h \sim 100$ GeV for consistency of Standard Model - Precision EW tests at LEP and direct measurement at 125 GeV
- Nature sets $m_{h0}\ at$ Planck scale and we observe the physical mass after all higher order correction terms
- For Higgs mass to be finite at EW scale, corrections must balance the bare mass over 16 order of magnitude
- This is not a consistency problem for the theory but requires incredible fine-tuning of parameters to achieve such precise cancellation
- Such accidental features although possible are extremely unlikely
- Nature generally prefers rules and symmetries to accidents

Such terms change the bare Higgs mass. Regularization is needed to keep corrections finite

11

11

WHAT IS A NATURAL SCALE?

- We could afford corrections of the order of the Higgs mass

 fermion mass corrections are proportional to their mass
 approximate chiral symmetry
- If $\Lambda = I$ TeV the Higgs mass fine tuning would be natural
- This implies that new particles and processes to be discovered at LHC!

SCALE OF NEW PHYSICS?

- Since birth of particle physics experiments have explored many orders of magnitude in energy
- Different phenomena have appeared at different scales
- Standard Model and EW breaking occurs up to TeV scale
- How to determine scale of new physics beyond Standard Model?

DIRECT SEARCHES AFTER THE BOSON DISCOVERY

DIRECT SEARCHES AFTER THE BOSON DISCOVERY

- At a cross road with relatively light new boson
- Higgs is light *because of* new physics
 - Higgs couplings different from Standard Model
 - Observable phenomena at ~TeV
 - SUSY: light third generation squarks
 - New Gauge bosons and resonances
 - Compositeness: top partners with odd charge
 - Searches at 8 TeV and underway at 13 TeV

DIRECT SEARCHES AFTER THE BOSON DISCOVERY

- At a cross road with relatively light new boson
- Higgs is light *because of* new physics
 - Higgs couplings different from Standard Model
 - Observable phenomena at ~TeV
 - SUSY: light third generation squarks
 - New Gauge bosons and resonances
 - Compositeness: top partners with odd charge
 - Searches at 8 TeV and underway at 13 TeV
- Higgs is light regardless of new physics
 - Higgs couplings annoyingly predicted by Standard Model
 - Best scenario
 - Split SUSY: new long-lived particles
 - Possible dark matter candidate
 - Worst (and somewhat boring) scenario
 - Standard Model for a long time

- Indirect searches and precision measurements
 - Measure deviations in precise predictions
 - Higgs couplings constants: needs precision of 1%
 - Enhanced decay and production rates for rare processes
 - Bs $\rightarrow \mu\mu$ branching ratio: prediction of 10⁻⁹
 - Rare or extremely suppressed processes
 - Lepton flavor violation in $\mu \rightarrow e\gamma$: predicted rate of 10⁻⁵⁵

11

- Indirect searches and precision measurements
 - Measure deviations in precise predictions
 - Higgs couplings constants: needs precision of 1%
 - Enhanced decay and production rates for rare processes
 - Bs $\rightarrow \mu\mu$ branching ratio: prediction of 10⁻⁹
 - Rare or extremely suppressed processes
 - → Lepton flavor violation in $\mu \rightarrow e\gamma$: predicted rate of 10⁻⁵⁵
- Supersymmetry
 - complete theory with few free parameters
 - Rich and well defined phenomenology with new particles
 - Possibly new long-lived particles
 - Primary background from rare Standard Model processes

- Indirect searches and precision measurements
 - Measure deviations in precise predictions
 - Higgs couplings constants: needs precision of 1%
 - Enhanced decay and production rates for rare processes
 - Bs $\rightarrow \mu\mu$ branching ratio: prediction of 10⁻⁹
 - Rare or extremely suppressed processes
 - → Lepton flavor violation in $\mu \rightarrow e\gamma$: predicted rate of 10⁻⁵⁵
- Supersymmetry
 - complete theory with few free parameters
 - Rich and well defined phenomenology with new particles
 - Possibly new long-lived particles
 - Primary background from rare Standard Model processes
- New particles and forces (exotica)
 - Clean experimental signature in mass of new particles
 - Many models and many signatures but no comprehensive theory
 - Typically very good signal to noise

EVOLUTION OF PARTICLE COLLIDERS

- Direct production of new particles typically searched at hadron colliders
 - Increase of energy to access new production channels
 - Lack of discovery implies new particles are heavier
 - Accumulating data (high luminosity) to probe weakly interacting
 - Particles are produced but have small cross section to be detected
- Alternatives
 - Lepton colliders if we know where to look for
 - Fixed target if we know what to look for

EXPERIMENTAL INGREDIENTS

PARTICLE IDENTIFICATION

- Detectors record signals from hadrons, charged leptons, and photons
- Simple kinematics with momentum and energy
- Energy and momentum conservation used to discriminate signal and background

Shahram Rahatlou, Roma Sapienza & INFN

Jets and Missing Transverse Energy

 Conservation of Energy in transverse plane to estimate missing energy from measured visible energy deposits

EXPERIMENTAL CHALLENGES

- Missing transverse energy (MET) measurement
 - correct for instrumental effects and reduce tails
 - verify correct MET resolution and tail description with known control samples
 - Electroweak events: small missing energy
 - ▶ di-jet and QCD events: no intrinsic MET only instrumental effects
- Background estimation
 - after kinematic requirements typically remain with
 - ▶ t-tbar
 - ► W/Z + jets
 - WW and ZZ production
 - tt + $\gamma/W/Z/H$
 - Cross sections sometimes known at 5-10% level
 - In directly affects exclusion limits and discovery potential
 - background kinematics also affected by PDF uncertainties

MISSINGTRANSVERSE ENERGY

• D0 experiments in early part of Run II

- Lots of new physics caused by instrumental effects!

REAL AND BEE TE BEFERROUND

Shahram Rahatlou, Roma Sapienza & INFN

- Excellent understanding of bulk and tails after few weeks of operation
- Very promising for SUSY and New Physics searches already with 50 pb⁻¹

MET AT LHC IN 2012

MET @ 13 TEV

DIFFERENCE BETWEEN EXOTICA AND SUSY

- Fine line between SUSY and Exotic searches
- Historically searches with large missing energy classified as SUSY searches
 - fully hadronic
 - lepton + jets + MET
 - dilpeton + MET
 - trilepton
- Signatures of resonances and new particles commonly go under exotic searches
 - very high pt spectrum for leptons and jets

SUSY vs Exotica

-Relation between mass of supersymmetric particles

- Large missing transverse energy usually the primary signature
- In exotica look for particles and resonances that are not necessarily needed or predicted in supersymmetry

Shahram Rahatlou, Roma Sapienza & INFN

SIGNATURE- VS TOPIC-BASED

- Same final state often probing very different models or topics

 2 leptons, 2jets + MET, lepton+jet+MET
- Topological presentation requires jumping between very different models
- Mostly a topic-based approach in this talk
 - easier to combine constraints on model from different topologies
 - Same final state is not simple re-interpretation
 - often optimization redone to deal with acceptance for very different models
 - different analysis strategy and signal extraction methods

- Many extensions of the SM have been developed over the past decades:
- Supersymmetry
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness
- 4th generation (t', b')
- LRSM, heavy neutrino
- etc...

- 1 jet + MET
 jets + MET
- 1 lepton + MET
- Same-sign di-lepton
- Dilepton resonance
- Diphoton resonance
- Diphoton + MET
- Multileptons
- Lepton-jet resonance
- Lepton-photon resonance
- Gamma-jet resonance
- Diboson resonance
- Z+MET
- W/Z+Gamma resonance
- Top-antitop resonance
- Slow-moving particles
- Long-lived particles
- Top-antitop production
- Lepton-Jets
- Microscopic blackholes
- Dijet resonance
 - etc...

EXOTICA TIMELINE

- Rich variety of theoretical models and new particles
- Two-body resonances from day one: leptons, photons, jets
 - detector effects usually not critical
 - sensitive to bumps right away
- increase complexity and multiplicity of final state
 - better understanding and calibration of detector
- Final states with MET + X
- Really exotic signatures such as long-lived particles
 - control of detector conditions over longer period
 - ultimate calibration and alignment
 - optimisation of dedicated algorithms

Detector Understanding (time)

EXOTICA IN ONE PAGE

REFERENCES

• Exotica

- ATLAS:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
 http://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

- SUSY results
 - ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ SupersymmetryPublicResults
 - CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

EXOTICA SUMMARIES...

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ATLAS_Exotics_Summary/ATLAS_Exotics_Summary.png

Resonances

RESONANCES AT 8 TEV

FACULTY OF MATHEMATICAL AND PHYSICAL SCIENC

acceptance of the analysis. Following the instructions detailed M are structions of the structure of the analysis of the instructions of the structure of th

IMPORTANCE OF ENERGY INCREASE

• 2015 data collected equivalent to 2012 dataset for $Mx \sim 2-3 \text{ TeV}$

SPECTACULAR PERFORMANCE OF LHC IN 2016

Shahram Rahatlou, Roma Sapienza & INFN

SENSITIVITY WITH 2016 DATA SO FAR

HEAVY RESONANCES

Shahram Rahatlou, Roma Sapienza & INFN

EXTENDED GAUGE SYMMETRIES

- New gauge bosons predicted by many extensions of the Standard Model with extended gauge symmetries
 - ZSSM in Sequential Standard Model with same Z0 coupling as in Standard Model
 - Z'_{Ψ} , Z'_{χ} , Z'_{η} models from E6 and SO(10) GUT groups
 - Left-Right symmetry model (LRM) and Alternative LRM (ALRM)
 - The Kaluza-Klein model (KK) from Extra Dimension
 - Little, Littlest Higgs model
- No precise prediction for mass scale of gauge bosons
- Discrimination of different models requires measurement of
 - cross section: limits with very little data
 - mass: exact value requires a visible peak
 - width: about same amount of data as for for mass
 - backward-forward asymmetry: requires high statistics in order to divide events in categories
- Backgrounds
 - relatively clean with good S/B
 - mostly tails of SM processes
- Experimental challenges
 - detector resolution can be a key player
 - 1.3% 2.4% for electrons and 7% for muons at 1 TeV mass
- extra care for energy/momentum reconstruction above I TeV Shahram Rahatlou, Roma Sapienza & INFN

DI-LEPTONS

LEPTON FLAVOR VIOLATION

TAU-TAU

EXCLUSION LIMITS

NEW W-LIKE BOSON

• Look for heavy W-like Jacobian peak in transverse mass

$$m_T = \sqrt{2p_T \not\!\!\!E_T (1 - \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$$

- Dominant background:W production in Standard Model
- Take into account interference with SM

LEPTON + MET SPECTRUM

Shahram Rahatlou, Roma Sapienza & INFN

DI-JET AT 13 TEV

• High p_T trigger thresholds to cope with enormous cross section

QUARK VS GLUON

LOW-MASS DI-JET

- Dedicated triggers and data parking techniques to explore low-mass dijet
 - use trigger-level jet objects
 - dedicated jet calibration and corrections
 - not suffering from pre-scales due to huge hadronic trigger rates

BOOSTED TOPOLOGY

 $M_x < 1 \text{ TeV}$

$$M_x \sim 2 \text{ TeV}$$

Shahram Rahatlou, Roma Sapienza & INFN

Constraints in Run2 already competitive or better than Run1

Shahram Rahatlou, Roma Sapienza & INFN

DI-BOSON FINAL STATES

• Rich search program for both vector and scalar bosons

Signature	Final state	ATLAS	CMS
γγ	YY combination	ATLAS-CONF-2015-081 10.1103/PhysRevLett.113.171801 10.1103/PhysRevD.92.032004 arXiv:1606.03833	CMS-PAS-EXO-15-004 CMS-PAS-EXO-12-045 10.1016/j.physletb.2015.09.062 arXiv:1606.04093
γZ	γll γqq combination	ATLAS-CONF-2016-010 10.1016/j.physletb.2014.10.002 ATLAS-CONF-2016-010	CMS-PAS-EXO-16-019 CMS-PAS-HIG-16-014 CMS-PAS-EXO-16-020 CMS-PAS-EXO-16-021
WW/WZ/ZZ	qqqq qqll qqlv	arXiv:1606.04833 arXiv:1606.04833 arXiv:1606.04833	CMS-PAS-EXO-15-002 10.1007/JHEP08(2014)174 CMS-PAS-EXO-15-002 CMS-PAS-B2G-16-004
	qqvv combination	arXiv:1606.04833 arXiv:1606.04833	CMS-PAS-EXO-15-002
WH/ZH	bbll bblv bbvv combination	ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074	CMS-PAS-B2G-16-003 CMS-PAS-B2G-16-003 CMS-PAS-B2G-16-003 CMS-PAS-B2G-16-003
Combinatio	n of VV/VH		CMS-PAS-B2G-16-007
НН	bbbb	arXiv:1606.04782	CMS-PAS-EXO-12-053
Many results updated wit for ICHEP in early august See references on last pag	h 2016 data ge	Courtesy of Andreas Hinzmann (U Zurich)	

Shahram Rahatlou, Roma Sapienza & INFN

Z/W/H IDENTIFICATION

WZ EXCESS IN RUN 1

WH EXCESS IN RUN 1

m_x [GeV]

THE TOO SCIVILITING THEORY INTO LINE DUIVIL

ATLAS compatibility with 8 TeV

- Outstanding performance of LHC in 2016 to verify the 'bump'
 - each experiment with x4 data analysed

m_x [GeV]

SIGNAL?

Daily diphoton theory report

SIGNAL?

$\gamma\gamma$ Spectrum in 2016

SHORT-DISTANCE INTERACTION

+ 31
+ 31
+ 37
+ 37
+ 37
2 +
•
ess at
-
255

Post Mortem

A signal with cross-section as the largest excess in 2015+8TeV would look like this

Z(II)+γ SPECTRUM

Z(qq)+γ Spectrum

• Merged jets and substructure analysis to reconstruct Z

MIDSUMMER NIGHT'S DREAM

05/08/2016