THEORETISCHE PHYSIK Heidelberg University

Intro to Axions Particle Physics @ Low Energies

J. Jaeckel

Ale of

Gies^o, F. Kahlhoefer*, S , A. Lobanov^y, J. Redond

U. Schmidt**, K. Schmidt-Hoberg

and The FUNK Collaboration

ITP Heidelberg, "CERN, IPPP Durham, "DES

MPITR Bonn, *U. Zaragoza, **Paris LPTHE

*, B. Doebrich^z

This used to be a funny slide.

Where we want to go...

We need... Physics beyond the Standard Model

 $\frac{1}{2}m_{h}^{2}h^{2} + \sqrt{\frac{\eta}{2}}m_{h}h^{3} + \frac{1}{2}m_{h}h^{3} + \frac{1}{2}m_{h}h^{3}$ $\frac{1}{4} \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\,\mu\nu} \log^{(1+1)}$ + nothing else

Inventory of the Universe

Where does it hide?

Exploring is (at least) 2 dimensional

Exploring is (at least) 2 dimensional

What are Axion? And why do we need them?

A "visible" Hint for new Physics

The strong CP Problem

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

THEORETISCHE PHYSIK Heidelberg University

THEORETISCHE PHYSIK Heidelberg University

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

$S = \int d^4x \left[-\frac{1}{4} G^{\mu\nu} G_{\mu\nu} - \frac{\theta}{4} G^{\mu\nu} \tilde{G}_{\mu\nu} + \imath \bar{\psi} D_{\mu} \gamma^{\mu} \psi + \bar{\psi} M \psi \right]$ $\overset{"}{\sim} \theta \vec{E} \cdot \vec{B}^{"}$

- The θ -term violates time reversal (T=CP)!
- Connected to strong interactions!

Electric dipole moment of the neutron!

Measure neutron electric dipole moment

θ would cause neutron EDM → Experiment

🗂 INSTITUT FÜR

THEORETISCHE PHYSIK Heidelberg University

No neutron electric dipole moment...

 $\begin{aligned} |\vec{d}| &< 3\,10^{-26} e\,cm \\ &= 3\,10^{-13} e\,fm \end{aligned}$

What do we expect?

Two mass scales in the game:

 $\overline{m_q} \sim 1 - 10 \,\mathrm{MeV}$ $\Lambda_{\mathrm{QCD}} \sim 300 \,\mathrm{MeV}$ INSTITUT FÜR

THEORETISCHE PHYSIK Heidelberg University

$$d_n \sim e \times \text{length} \times \theta \sim e \times \frac{m_q}{\Lambda_{\text{QCD}}^2} \times \theta$$

 $\sim (3-30) \times 10^{-16} e \operatorname{cm} \theta$

Implications

Detailed calculation gives

$|\vec{d}| \sim 1 - 10 \times 10^{-16} e \, cm \, \theta$

$|\theta| < 3 \, 10^{-9}$

Extremely unnatural!

Strong CP Problem

In pictures...

INSTITUT FÜR

THEORETISCHE PHYSIK

Heidelberg University

INSTITUT FÜR

THEORETISCHE PHYSIK Heidelberg University

INSTITUT FÜR

THEORETISCHE PHYSIK Heidelberg University

- INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University
- Make θ dynamical \rightarrow it can change its value

→ QCD likes to be CP conserving (if we allow it)

INSTITUT FÜR

THEORETISCHE PHYSIK

Heidelberg University

Axions

- Classical flatness from symmetry
- Quantum corrections are small
- New light particle: The Axion (it's a Weakly Interacting Sub-eV Particle)

Dark matter candidate

Good motivation for axion/WISP experiments In Equations...

A Dynamical θ

• Idea:

- Make $\boldsymbol{\theta}$ a dynamical degree of freedom a
- Let a have no tree level potential
- Let a have only derivative couplings
- Then:

$$\exp\left(-\int_{x} V(a)\right) = \left|\int \mathcal{D}A_{\mu} \exp\left(-S_{eff}[\phi, A^{\mu}]\right) \exp\left(-i\frac{a}{32\pi^{2}}\int_{x} G^{\mu\nu}\tilde{G}_{\mu\nu}\right)\right|$$
$$\leq \int \mathcal{D}A_{\mu} \left|\exp\left(-S_{eff}[\phi, A^{\mu}]\right) \exp\left(-i\frac{a}{32\pi^{2}}\int_{x} G^{\mu\nu}\tilde{G}_{\mu\nu}\right)\right|$$
$$\leq \int \mathcal{D}A_{\mu} \exp\left(-S_{eff}[\phi, A^{\mu}]\right)$$
$$\leq \exp\left(-\int_{x} V[0]\right)$$

A Dynamical θ

- Idea:
 - Make $\boldsymbol{\theta}$ a dynamical degree of freedom a.

T77 INSTITUT FÜR

Heidelberg University

THEORETISCHE PHYSIK

- Let a have no tree level potential
- Let a have only derivative couplings
- Then:

→ $V[a = \theta = 0] \le V[\theta] \ \forall \theta$ → $\theta = a$ will evolve to $a = \theta = 0$ → CP is conserved

What is a?

Axion!

Properties:

- Let a be a dynamical degree of freedom.
- Let a have no tree level potential
- Let a have only derivative couplings

- $a \in [0, 2\pi]$ since

$$\int d^4x \frac{F_{\mu\nu}\tilde{F}^{\mu\nu}}{32\pi^2} = n \in \mathbb{Z}$$

a is Goldstone boson of a U(1) symmetry

Peccei-Quinn Symmetry

- Toy model:
 - $\mathcal{L} = -\frac{1}{4}F^2 + \imath\bar{\psi}D_{\mu}\gamma^{\mu}\psi |\partial_{\mu}\phi|^2 \mu^2|\phi|^2 \lambda|\phi|^4$ $+\bar{\psi}\left(Y\phi\frac{1+\gamma_5}{2} + Y^{\star}\phi^{\star}\frac{1-\gamma_5}{2}\right)\psi$
- **U(1):** $\phi \to \exp(i\beta)\phi$ $\psi \to \exp\left(-i\frac{\beta}{2}\gamma_5\right)\psi$
- If $\mu^2 < 0$ we have SSB

Phase is Goldstone Use it as Axion

The Coupling to $G ilde{G}$ and $F ilde{F}$

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

• A diagram

And a dimensional argument:

$$g \sim \frac{1}{\mathrm{mass}} \sim \frac{1}{f_a}$$

The Coupling to $F ilde{F}$

THEORETISCHE PHYSIK Heidelberg University

Adler-Bell-Jackiw anomaly

$$\partial_{\mu}j^{\mu} = \frac{g^2}{16\pi^2} F^{\mu\nu}\tilde{F}_{\mu\nu}$$

 Chiral rotations not a good symmetry: it is anomalous

$$egin{aligned} d\mu' &= \mathcal{D}\psi'\mathcal{D}ar{\psi}' = d\mu\exp\left(-i\int_xrac{eta & 1}{28\pi^2}TrF^{\mu
u} ilde{F}_{\mu
u}
ight) \ \psi' &= \exp\left(-irac{eta}{2}\gamma_5
ight)\psi &= rac{a}{f_a} \end{aligned}$$
The Coupling to $F ilde{F}$

THEORETISCHE PHYSIK Heidelberg University

Adler-Bell-Jackiw anomaly

$$\partial_{\mu}j^{\mu} = \frac{g^2}{16\pi^2} F^{\mu\nu}\tilde{F}_{\mu\nu}$$

 Chiral rotations not a good symmetry: it is anomalous

$$d\mu' = \mathcal{D}\psi'\mathcal{D}\bar{\psi}' = d\mu \exp\left(-i\int_{x}rac{eta}{2}rac{1}{8\pi^{2}}TrF^{\mu
u}\tilde{F}_{\mu
u}
ight)$$

 $\mathcal{L} \supset -rac{lpha}{4\pi f_{a}}aF^{\mu
u}\tilde{F}_{\mu
u}$

The mass of the Axion

U(1)_{PQ} is not exact. It's anomalous!

PseudoGoldstone mass

Goldstone

Pseudogoldstone **Dimensional considerations** • $\sim f_a$ - SSB scale $\sim m_q \sim m_\pi$ - Quark masses $\sim \Lambda_{\rm QCD}$

🎝 INSTITUT FÜR

 $m_\pi^2 \Lambda$

 $m_{\sigma}^2 \sim$

THEORETISCHE PHYSIK Heidelberg University

- QCD scale

Axion-like Particles

Axion-like Particles

Axion-like Particles

How to find the Axion...

Detects most things within energy range

11 Jun 2008

ATLAS

• E.g. may find SUSY particles, WIMPs etc.

- May miss very weakly interacting matter (Axions, WIMPs, WISPs...)
- Current maximal energy few TeV

- May miss very weakly interacting matter (Axions, WIMPs, WISPs...)
- Current maximal energy few TeV

Man it's DANGEROUS...

0 0

- May miss very weakly interacting matter (Axions, WIMPs, WISPs...)
- Current maximal energy few TeV

• Or much much more horrifying:

NO SIGNAL ABOVE BACKGROUNDI

The Power of Low Energy Experiments

Complementary approaches

Light shining through walls

INSTITUT FÜR

THEORETISCHE PHYSIK Heidelberg

Light shining through walls

INSTITUT FÜR

THEORETISCHE PHYSIK Heidelberg

• Test $P_{\gamma ightarrow X ightarrow \gamma} \lesssim 10^{-20}$

- Enormous precision!
- Study extremely weak couplings!

Photons coming through the wall!

- It could be Axion(-like particle)s!
- Coupling to two photons:

$$\frac{1}{M}a\tilde{F}F\sim rac{1}{M}aec{\mathbf{E}}\cdotec{\mathbf{B}}$$

Light Shining Through Walls

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

A lot of activity

- ALPS
- BMV
- Gamme V 25 cm
- LIPPS
- OSQAR

			Calibration diode	Temporary dark room
Laser Box	Tev	vatron magnet (6m)	Plunger	PMT Box
Monitor sensor	Warm bore		(2m) "wall"	

Small coupling, small mass

 $Log_{10} m_a [eV]$

Helioscopes

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

CAST@CERN SUMICO@Tokyo

SHIPS@Hamburg

"Light shining through a wall" $\gamma \rightarrow \gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$

Sensitivity

Going to the future: IAXO

The International Axion Observatory

An interesting area...

WISPS=Weakly interacting sub-eV particles

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

 Massive hidden photons (without B-field)
 =analog v-oscillations

 Hidden photon + minicharged particle (MCP)

Axions and ALPs from String Theory

String theory

- Attempt to unify SM with gravity
- New concept: strings instead of point particles

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

String theory: Moduli and Axions

String theory needs Extra Dimensions

Must compactify

 Shape and size deformations correspond to fields: Moduli and Axions
 Connected to the fundamental scale, here string scale

Axion/ALP candidates

THEORETISCHE PHYSIK Heidelberg University

Axions and Moduli

Gauge field terms

 $\frac{1}{q^2}F^2 + i\theta F\tilde{F}$

+ Supersymmetry/supergravity

$$\mathcal{L} = \operatorname{Re}[f(\Phi)]F^2 + \operatorname{Im}[f(\Phi)]F\tilde{F}$$

Scalar ALP/moduli coupling pseudoscalar ALP coupling

Axions and Moduli

- Gauge couplings always field dependent (no free coupling constants)
- Axions + Moduli always present in String theory

Masses and Couplings

"Axion scale" related to fundamental scale

INSTITUT FÜR

Heidelberg University

THEORETISCHE PHYSIK

$$f_a \sim \frac{M_P}{\text{Volume}^x} \sim M_s \left(\frac{M_s}{M_P}\right)^y$$

- If QCD axion: m_a fixed
- However, if not QCD axion $m_{
 m ALP}\sim rac{\Lambda^2}{f_a}$ (nearly) arbitrary

INSTITUT FÜR

Heidelberg University

THEORETISCHE PHYSIK

 $\text{Log}_{10} m_a [\text{eV}]$

Dark Matter(s)

Can Dark Matter be Axiony/WISPy? (Weakly Interacting Sub-eV Particley) Slim

Properties of Dark Matter

INSTITUT FÜR THEORETISCHE PHYSIF Heidelberg University

Dark matter is dark, i.e.
 it doesn't radiate!
 (and also doesn't absorb)

very, very weak interactions with light and with ordinary matter

> Exactly the property of Axions/WISPs

Exploring is (at least) 2 dimensional

A common prejudice

- Dark Matter has to be heavy: $m_{
 m DM}\gtrsim {
 m keV}.$
- Prejudice based on thermal production! and/or fermionic DM!
 - Both assumptions give minimal velocity → galaxy, i.e. structure, formation inhibited!

Has to be non-thermally (cold!!!) produced See misalignment mechanism

Bosonic!

Dark matter has to be heavy $m_{ m DM}\gtrsim { m keV?}$

Dark matter has to be heavy...

SUPERBOLD DARK MATTER

The axion has no clue where to start

The axion has no clue where to start

The axion solution to the strong CP problem

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Oscillations contain energy
 behave like non-relativistic particles (T=0)

Axion Dark Matter

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

$$\ddot{a} + 3H\dot{a} + m_a^2 a = 0 \quad H = \frac{\dot{R}(a)}{R(a)}$$

• $H \ll m_a \Rightarrow$ damped oscillator

Why Cold? Inflation!

THEORETISCHE PHYSIK Heidelberg University

Axion(-like particle) Dark Matter

Detecting Axiony/WISPy DM

Use a plentiful source of axions

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Photon Regeneration

Signal: Total energy of axion

An extremely sensitive probe!!!

A discovery possible any minute!

Electricity from Dark Matter ;-).

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Photon Regeneration

Really sustainable Energy

 Galaxy contains (6-30)×10¹¹ solar masses of DM

→ (3-15)×10⁴³ TWh

@100000 TWh per year (total world today)
→ 10³⁸ years ☺

DM power

ρ*v~300 MeV/cm³*300km/s~10 W/m²

compared to 2W/m² for wind

How "the axion" works

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Superconducting magnets

Encircling the axion...

Broadband Search Strategy

Dark Matter Antenna

Probes here;

very sensitive!!

-Antenna converts axion->photon Radiation concentrated in center

Detector

The FUNK Experiment

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Recycle Auger mirror

Detector -

First Results

Discovery Potential ©!!!

The next years \rightarrow Lower frequency

Discovery Potential ©!!!

INSTITUT FÜR

THEORETISCHE PHYSIK Heidelberg University

A Dream for Astrology ehhm Astronomy

Emission from moving dark matter

 $V_{DM} = 0$

V_{DM}≠0=

INSTITUT FÜR

Heidelberg University

THEORETISCHE PHYSIK

New couplings: A spin experiment

Looking for oscillating dipoles

• Remember:

Axion field controls electric dipole moment:

- $d_e \sim \theta \sim \frac{a}{f_a}$ Dipole moments follow the oscillating axion field → Tiny oscillating electric dipole

 $d_e \sim 10^{-35} e \operatorname{cm} \cos(m_a t)$

New Observables for Direct Detection of Axion Dark Matter Peter W. Graham, Surjeet Rajendran (Stanford U., ITP). Jun 25, 2013. 13 pp. Published in Phys.Rev. D88 (2013) 035023 DOI: <u>10.1103/PhysRevD.88.035023</u> e-Print: <u>arXiv:1306.6088</u> [hep-ph] | <u>PDF</u>

In an electric field

Torque tries to tilt dipole moment/spin

$$\mathbf{T} = \mathbf{d} \times \mathbf{E} = c_E \mathbf{s} \times \mathbf{E}.$$

Dealing with oscillation

Problem: the dipole moment is rapidly oscillating ~m_a

Danger of cancellation

Solution: Rotate spin to compensate Use Spin Precession in magnetic field

$$\omega_L = 2\mu B$$

Resonance when $\omega_L=m_a$

Modification of Xenon EDM

Modification of Xenon EDM experiment to be sensitive to time varying nuclear EDM

Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr)

e-Print: arXiv:1306.6089 [hep-ph] | PDF

Dmitry Budker (UC, Berkeley & LBNL, NSD), Peter W. Graham (Stanford U., ITP), Micah Ledbetter (Unlisted, US, CA), Surjeet Rajendran (Stanford U., ITP), Alex Sushkov (Harvard U., Phys. Dept.). Published in Phys.Rev. X4 (2014) no.2, 021030 DOI: 10.1103/PhysRevX.4.021030

Sensitivity

Conclusions

Conclusions

- Good Physics Case for Axions and WISPs
 explore `The Low Energy Frontier'
- Low energy experiments test energy scales much higher than accelerators
 - Complementary!
- May provide information on hidden sectors and thereby into the underlying fundamental theory

Dark Matter may be WISPy ©
 New cool Experiments underway.

Axions and Hidden sector

Hidden photons

Photon Regeneration

Photon (amplified in resonator)

Hidden photon

$$\begin{split} \mathcal{L}_{\text{gauge}} &= -\frac{1}{4} F_{(\text{A})}^{\mu\nu} F_{(\text{A})\mu\nu} - \frac{1}{4} F_{(\text{B})}^{\mu\nu} F_{(\text{B})\mu\nu} + \frac{\chi}{2} F_{(\text{A})}^{\mu\nu} F_{(\text{B})\mu\nu}, \\ \text{,Our" U(1) ,Hidden" U(1) } \text{Mixing} \\ \text{+ Mass} \quad \mathcal{L}_{\text{mass}} &= \frac{1}{2} m_{\gamma'}^2 X^{\mu} X_{\mu} \end{split}$$

Also for hidden photons!!!

- INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University
- There are other very light DM candidates
 - E.g

extra (hidden) U(1) bosons=hidden photons!!!

@ DESY + Bonn: WISPDMX

