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Higgs Discovery
2012
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Higgs Discovery 2012
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2 Legacy Papers
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Input analyses
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ATLAS Published analyses 
Phys. Rev. D. 90, 052004 (2014)
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l 4→ ZZ* →H 
-1

Ldt = 4.5 fb∫ = 7 TeV: s

-1
Ldt = 20.3 fb∫ = 8 TeV: s

ATLAS  

mH=125.98±0.50 GeV
=125.98±0.42 (stat.)±0.28 (syst.)

mH=124.51±0.52 GeV
      =124.51±0.52 (stat.)±0.06 (syst.)

H→γγ

• ATLAS Combined: mH=125.36±0.41 GeV (symmetrized uncertainties) 
                      =125.36±0.37 (stat.)±0.18 (syst.) GeV

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-12/
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CMS Published analyses 
arXiv:1412.8662 (submitted to EPJ C)

• CMS Combined: mH=125.02+0.29-0.31 GeV 
                   =125.02+0.26-0.27 (stat.)+0.14-0.15 (syst) GeV

11

124.70±0.31 (stat.)±0.15 (syst.) GeV

 Phys. Rev. D. 89, 092007 (2014)
With minor updates

 EPJ C 74 (2014) 3076

125.63+0.44-0.40 (stat.)+0.15-0.17 (syst.) GeV

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig14009PaperTwiki
https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13002PubTWiki
https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13001PubTWiki
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124.70±0.31 (stat.)±0.15 (syst.) GeV

 Phys. Rev. D. 89, 092007 (2014)
With minor updates

 EPJ C 74 (2014) 3076

125.63+0.44-0.40 (stat.)+0.15-0.17 (syst.) GeV

• ATLAS Combined: mH=125.36±0.41 GeV (symmetrized uncertainties) 
                      =125.36±0.37 (stat.)±0.18 (syst.) GeV
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig14009PaperTwiki
https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13002PubTWiki
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Example

13

 (GeV)l4m
80 100 120 140 160 180

Ev
en

ts
 / 

3 
G

eV

0

5

10

15

20

25

30

35 Data

Z+X

,ZZ*γZ

=126 GeVHm

CMS -1 = 8 TeV, L = 19.7 fbs ; -1 = 7 TeV, L = 5.1 fbs
L(s(mH )) = Prob(n | s(mH )+ b) = Poiss(s(mH )+ b | n)

Poiss(s(mH )+ b | n) =
s(mH )+ b( )n e− s(mH )+b( )

n!
b = b(θ ), θ ∼G(θ0,σθ0

)
L(s(mH )) = Poiss(s(mH )+ b(θ ) | n)G(θ |θ0,σθ0

)

m̂H = mH
∂L(s(mH ))

∂mH

= 0
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

b(θ )→ bi (θ j )
L(s(mH )) = Πi, jPoiss(s(mH )+ bi (θ j ) | ni )G(θ j |θ0, j ,σθ0, j

)
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The Task
• The task was not to make a comparative 

study of ATLAS vs CMS 
• The task was to combine 4 published 

analyses 
• Make the changes needed to make the data 

analyses “workspaces” of ATLAS and CMS 
compatible, work out the correlated 
systematics, combine and test the 
combination from all possible aspects

14
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Measurement 
Parameterisation     

15
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Nominal fit: which μ to profile?
• The nominal fit has four common parameters: 

• The combined mass of ATLAS+CMS is therefore given by the following 
profile likelihood test statistic 

• Systematics is modelled with ~300 Nuisance Parameters 
• 100 for shape parameters and normalisation in Hγγ Background model  

(unconstrained) 
• Most of the remaining ones, correspond to experimental or theory 

(constrained) 

16

mH µggH +ttH
γγ µVBF+VH

γγ µZZ
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Results

17



Eilam Gross

mH vs. μ contours
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The best fit mH in contour (⨉) is not identical as mH measured 
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Some Examples
‣ Asses the tension between channels 
ΔmH(γγ-4l) 

‣ Asses the tension between experiments  
ΔmH(ATLAS-CMS)

19
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Tension in mH between decay channels

20

Tension in ATLAS
2.0σ

Tension in CMS
1.6σ

�mH(�� � ZZ⇤) = �0.08+0.50
�0.49 GeV No	observed	tension	in	

combined	
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Tension in mH between experiments

21

Tension in γγ
2.1σ

Tension in 4l
1.3σ

�mH(ATLAS � CMS) = 0.41+0.48
�0.52 GeV

�mH(ATLAS � CMS)�� = 1.32+0.62
�0.61GeV�mH(ATLAS � CMS)ZZ⇤ = �0.90+0.68

�0.67GeV

No	observed	tension	in	
combined	measurements	
between	experiments	
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Reproduce Published results

22
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Tension Between Experiments
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 [GeV]Hm
124 125 126 127 1280.001

7
Total

Stat.

Syst.

CMS and ATLAS

 Run 1LHCl+4γγ CMS+ATLAS

l 4CMS+ATLAS

γγ CMS+ATLAS

l4→ZZ→H CMS

l4→ZZ→H ATLAS

γγ→H CMS

γγ→H ATLAS

2.1σ%

1.3σ%

Some	tension	between	experiments	but	
not	very	significant	
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No Tension Between Combined Channels

24
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Fine Final Scan

25

mH = 125.09 ± 0.21(stat) ± 0.11(syst)GeV
−2 lnΛ = 1⇒σ

σ tot
2 −σ Stat

2 =σ syst
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Combined Mass

26
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mH = 125.09 ± 0.21(stat) ± 0.11(syst)GeV
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 [GeV]Hm
123 124 125 126 127 128 1290.5−

9
Total Stat. Syst.CMS and ATLAS

 Run 1LHC       Total      Stat.    Syst.

l+4γγ CMS+ATLAS  0.11) GeV± 0.21 ± 0.24 ( ±125.09 

l 4CMS+ATLAS  0.15) GeV± 0.37 ± 0.40 ( ±125.15 

γγ CMS+ATLAS  0.14) GeV± 0.25 ± 0.29 ( ±125.07 

l4→ZZ→H CMS  0.17) GeV± 0.42 ± 0.45 ( ±125.59 

l4→ZZ→H ATLAS  0.04) GeV± 0.52 ± 0.52 ( ±124.51 

γγ→H CMS  0.15) GeV± 0.31 ± 0.34 ( ±124.70 

γγ→H ATLAS  0.27) GeV± 0.43 ± 0.51 ( ±126.02 

Mass Measurement Summary
• Major legacy results produced for LHC Higgs mass combined 

measurement  
• Best Higgs measurement  (well its the only one….) 
• Understanding detectors allowed a statistical limited 

measurement with a  
precision of <0.2%  (better than top mass!)

27
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Its Good We Can Correct Simpson

28

= 772  
GeV 

125.09

תודה רבה
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After Party Comments

29
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Its Good to Know The Mass

30

EPJC%(2014)%74:3046%

W/O Higgs  
Measurements

With Higgs  
Measurements
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Its Good to Know We Are In Danger

31

J.#Ellis#et#al#(arXiv:0906.0954)#
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Spin and CP
32

Eur. Phys. J. C75 (2015) 476
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Yang’s Theorem (1948) and the Higgs Boson
Yang-Landau theorem states that a 
massive spin 1 particle cannot decay into 
two identical massless spin 1 particles.


The observation of 
can be taken as an evidence against a 
spin 1 nature of the Higgs.


The community concentrated on testing 
the spin Jpc=0++ hypothesis of the Higgs 
against Jp=0- and spin 2 hypotheses.


 
33

H → γγ
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Spin Discriminators

34

collision	axis

leading	Zθ *

 The angle between the leading Z (Z1) in the rest frame of the 4-l and 
the collision axis



Discriminant Variables

35
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Spin Discriminators

36

collision	axis

leading	Zθ1,θ2

the angle between the negative lepton and the direction of flight of the 
Z (or Z*) 



Discriminant Variables

37
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Spin Discriminators

38

collision	axis

leading	ZΦ1

The Z Boson flight direction and the collision axis define a plane, the 
angle between this plane and the leading diletion plane



Discriminant Variables

39
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Spin Discriminators

40

collision	axis

leading	Z

the angle between the two dilepton decay planes  

Φ



Discriminant Variables

41
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m12 - 

leading deletion


m34-

subleading dilepton

42



Discriminant Variables

43
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The statistical treatment
Consider the di-photon,WW and ZZ channels.

Various distributions can serve as spin-parity discriminators 
 (e.g. angles, Higgs momentum).


44

µ j signal strength

θ Nuisance Pars
Si, j Signal

Bi, j Background
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Test Statistics q


Corrected via the CLs 
method to protect against 
insensitive measurements

45
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pobs
0−

≤ 3.1⋅10−5

pobs
SM = 0.88

CLsobs = 3.1⋅10−5

1− 0.88
=

        =2.6 ⋅10−4 = 0.026%
CL95 = 1−CLs = 99.7%

test the 0-

0- 0+
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pobs ≈ 7.1⋅10−5

pobs
SM = 0.85

CLsobs = 7.1⋅10−5

1− 0.85
=

        =4.7 ⋅10−4 = 0.047%
CL95 = 99.95%
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Higgs Spin Visual Summary

48
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Higgs Width 
OffShell in a NutShell

49
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OffShell in a NutShell

50

g

g

H

Z

Z

g g

g

H

Z

Z

N.	Kauer	and	G.	Passarino

arXiv:1206.4803	[hep-ph].

F.	Caola	and	K.	Melnikov

C.	Englert	and 
	M.	Spannowsky gg → H → ZZ,WW
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Off Shell Simplification

51

σOnShell (gg → H → ZZ *) ∼ Γ(gg → H )Γ(H → ZZ *)
mHΓH

σ (gg → H (*) → ZZ (*) ) ∼ mHΓH
Γ(gg → H (*) )Γ(H (*) → ZZ (*) )

(ŝ − mH
2 )2 + mH

2 ΓH
2

σOnShell (gg → H → ZZ *)
σOnShell (gg → H → ZZ *)SM

= Γ(gg → H )
Γ(gg → H )SM

Γ(H → ZZ *)
Γ(H → ZZ *)SM

ΓH
SM

ΓH

µOnShell ≡
σOnShell (gg → H → ZZ *)
σOnShell (gg → H → ZZ *)SM

=κ g
2κ Z

2 ΓH
SM

ΓH

σOffShell (gg → H * → ZZ )
σOffShell (gg → H * → ZZ )SM

≈ Γ(gg → H *)
Γ(gg → H *)SM

Γ(H * → ZZ )
Γ(H * → ZZ )SM

µOffShell ≡
σOffShell (gg → H → ZZ *)
σOffShell (gg → H → ZZ *)SM

≈κ g,OffShell
2 κ Z ,OffShell

2

ZWA
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OffShell in a NutShell

52

g

g

H

Z

Z

g g

g

H

Z

Z

µOffShell

µOnShell

=
κ g,OffShell

2 κ Z ,OffShell
2

κ g
2κ Z

2 ΓH
SM

ΓH
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ΓH ≤ 5.5ΓH
SM

ΓH ≤ 22.8MeV

µOffShell

µOnShell

≥ ΓH

ΓH
SM
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Couplings

54
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Signal Strengths
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Theory Inputs I: Higgs Decays

April	2016 56

The	natural	width	of	the	Higgs	boson	is	expected	to	be	very	small,	4.1	MeV		
(<	resolution)	

mH=125.09	GeV

(Note!	No	1st	or	2nd	gen	fermions)
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Theory Input : Event (MC) Generators

57April	2016
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Theory Inputs III: Production Modes 

April	2016 58

ggH VBF VH ttH

Pp	collisions

SM	ggF,	ttH,	bbH	theory	uncertainty:	~10%		
VBF,	VH,	ZH:	2-3%
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Theory Inputs IV:  Other Production Modes

April	2016 59

ggZH: 

O(10%) effect on VHbb in SM, higher pT than qqZH


 

tHq + tHW

Not really sensitive but has larger effects for negative couplings (kF,kV)


bbH

bbH is ~1% of total HXSC.  
Similar to ttH but not really distinguishable from ggF
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What do we measure (observables)
A simplified view:


We measure event yields

 (in bins, i.e. shapes)

We want to derive couplings 
and signal strengths

  The analysis is using 
discriminators (usually 
reconstructed mass related) to 
increase S/B

ns(i → f ) = µ iµ f × (σ i × Br f )SM ×A p
i × ε p

i × Lumi

60

i ∈(ggF,VBF,VH ,ttH ) f ∈(γγ ,ZZ,WW,bb,ττ )

April	2016
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What do we measure (observables)
A simplified view:


We measure event yields

 (in bins, i.e. shapes)

We want to derive couplings 
and signal strengths

  The analysis is using 
discriminators (usually 
reconstructed mass related) to 
increase S/B

61

i ∈(ggF,VBF,VH ,ttH ) f ∈(γγ ,ZZ,WW,bb,ττ )

April	2016

PO

ns(i → f ) = µ iµ f × (σ i × Br f )SM ×A p
i × ε p

i × Lumi
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What do we Measure?
We measure event yields

April	2016 62

ns(i → f ) = µ iµ f × (σ i × Br f )SM ×A p
i × ε p

i × Lumi

Pseudo	
Observables

Observable PO Theory Theory	&	
Experiment

Accelerator	&	
Experiment
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What do we measure (observables)
We increase sensitivity by 
classifying the events via 
categories and measure 
the signal strength per 
category and then 
combining them taking all 
the sytematic and 
statistical errors 
uncertainties into account

63

Loose/tight	high	mass	2jet	(VBF	tag)

Phys.	Lett.	B	726	(2013),	pp.	88-119

The	categories	are	also	sensitive	to	different	production	modes,  
	allowing	the	measurement	of	the	couplings	

ttH

April	2016

i ∈(ggF,VBF,VH ,ttH )
ns

c(γγ ) = µ i ,c × µγγ ,c × (σ i × Br γγ )SM ×Ai
γγ ,c × ε i

γγ ,c × Lumi
i ,c∑

PO
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Statistical treatment – profile likelihood
From thw combined data of (ATLAS+CMS) 
construct the profile likelihood 
with the parameter(s) of  
interest α  
 
 
 

68% Confidence  
interval defined by  
a rise of 1 unit in t(α) 
(asymptotic limit)

Θ: vector of ~4200  
nuisance parameters

64α

α

tα − 2 ln L(α , ˆ̂θα )
L(α̂ ,θ̂ )

April	2016 12

σ Syst
2 =σ Tot

2 −σ Stat
2
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Systematics and Nuisance Parameters

Profile likelihood ratio test statistics:

April	2016 65

ns+b(i → f ) = µ i µ f × si
f (θ )+ b

S(θobs)

S(N|θ)

S(θ=-1)

S(θ=0)

S(θ=+1)

Signal Probability model 
for any value of  

energy scale param θ

Illustration: modeling of energy scale uncertainty

The signal/background distributions can	describe	distributions	under	a	wide	
range	of	parameters		for	which	the	true	values	are	unknown	
	(energy	scales,	QCD	scales…)	
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Systematics and Nuisance Parameters
Profile likelihood ratio test statistics:


for each likelihood evaluation, all systematic uncertainties (nuisances) are varied to maximize the 
profile likelihood (profiled)


~4200 nuisances in the combined fits

A large part related to the finite MC statistics

Signal theory normalization uncertainties

BG theory uncertainties (for BGs not using the data)

Other experimental uncertainties


Most experimental uncertainties are assumed uncorrelated between the two 
experiments and many tests have been carried out to check the possible impact that 
was found negligible


Main signal theoretical sources of uncertainties :

QCD scales, 

parton distribution functions (PDF), 

UEPS

Higgs boson branching ratios (BRs). 


A care was taken that the state-of-the art calculations of theoretical cross sections and BR, Higgs pT 
are common between the two experiments.

 Sometimes this care required modifications of the analyses.

April	2016 66
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Systematics (NPs) details

 The PDF uncertainties on the inclusive rates for different 
Higgs boson production processes are correlated between the 
two experiments for the same channel but are treated as 
uncorrelated between different channels, except one case


  The WH,ZH & VBF production processes are assumed to be 
fully correlated 

  

April	2016 67
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Correlating Experiments and Channels

68

LATLAS,ZZ µ.θQCDscale,θPDF ,θATLASDet
,θ ,.....( )

LCMS,ZZ µ.θQCDscale,θPDF ,θCMSDet
,θ ,.....( )

LATLAS,ττ µ.θQCDscale,θPDF ,θATLASDet
,θ ,.....( )

QCD	scale	and	UEPS	uncertainties	are	correlated	
between	the	two	experiments	in	the	same	production	
channels	and	are	treated	as	uncorrelated	between	
different	channels.	
	The	WH,ZH	&	VBF	production	processes	are	assumed	
to	be	fully	correlated		

LCMS,ZH µ.θQCDscale,θPDF ,θCMSDet
,θ ,.....( )

LCMS,WH µ.θQCDscale,θPDF ,θCMSDet
,θ ,.....( )

LATLAS,ZH µ.θQCDscale,θPDF ,θATLASDet
,θ ,.....( )

April	2016 16
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Systematics
In the paper the systematics will be classified to four groups and 
given in that way for some chosen cases:


Stat

 Statistical in nature (Data control regions)

thsig

 uncertanties affecting Higgs Boson signal


thbgd

 uncertainties affecting background processes, not correlated wit

.

expt

 experimental and those related to finite size MC statistics

April	2016 69



• We assume a SM-like Higgs boson with JP=0+ and with a narrow width 
(NWA) such that production and decay are decoupled


• The mass of the Higgs is assumed to be


• We cannot separate the production from the decay @ the LHC.

    We measure event yields and deduce

    (for example )the global signal strength


• To measure the global signal strength for a specific channel (f) we need to 
make assumptions, e.g. all production modes are related to each other via 
the SM ratios.  
 Assumptions should also be made when combining  7 and 8 TeV 
measurements.  All these assumptions bring some model dependence

Eilam	Gross,	KITP,	2016

Experimental Assumptions 
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mH	=	125.09	GeV

σ i × BRf
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The Mother of all Fits (5x5)
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• The	ggF	and	VBF	production	processes	are	not	considered	in	the	case	of	the	H	→	
bb	decay	channel	and	are	assumed	to	have	the	values	predicted	by	the	SM,	

• The	Z	H,	WH,	and	ttH	production	processes	cannot	be	measured	with	
meaningful	precision	in	the	H	→	Z	Z	decay	channel	because	of	the	low	overall	
expected	and	observed	yields	in	the	current	data.		

• The	fit	results	are	therefore	quoted	only	for	the	remaining	20	parameters.	

• A	CLEAR	ASSUMPTION	HERE	IS	THAT	THERE	IS	ONLY	ONE	HIGGS	BOSON
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Measuring Signal Strengths
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SM	p-value	
88%	(10p)

µV
f = µV ⋅BR(H → f )
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Measuring Signal Strengths
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μV/μF	can	be	measured	in	
	the	different	decay	
	channels	and	combined:	

	 μV/μF	=	1.06			
+0.35	
-0.27

SM	p-value	
72%	(6p)

µV
f

µF
f = µV × BRf

µF × BRf = µV

µF
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Measuring Production Signal Strengths
Assuming SM BR we can measure the signal production strengths.
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SM	p-value	
24%	(5p)

Largest	difference	in	ttH:	2.3σ		
excess	with	respect	to	SM	
Over	5	sigma	in	VBF

Main	uncertainty	from	ggF	xsc

A	subtlety:		
Assume	signal	strengths	are	equal	
@	7	and	8	TeV
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Measuring the Higgs Decay Modes
Assuming SM signal production strengths, we can measure the Higgs 
Decay BRs
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Over	5	sigma	in	ττ

SM	p-value	
60%	(5p) Compatibility	with 

SM	p=65%
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Significance in the different channels

Comparing likelihood of the best-fit with μprod=0  
and μdecay=0    we obtain:


Combination largely increases the sensitivity


 VBF and Hàττ now established at over 5 σ. 
 Same as ggF and HàZZ, γγ, WW from single experiments
April	2016 77
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Model Independent Ratios (Generic I)
One can fit the data with ONE channel specific measurement (iàHàf) , 4 ratios of cross 
sections and 4 ratios of BRs


This way, we make no assumptions on the Higgs boson total

width, which can freely vary, provided the narrow width approximation is still 
valid. 


Furthermore, many theoretical and experimental systematic uncertainties cancel in 
these ratios. In particular, they are not subject to the dominant signal theoretical 
uncertainties on the inclusive cross sections for the various production processes. 


These measurements will therefore remain valid, for example when improved 
theoretical calculations of Higgs boson production cross sections will become 
available. The remaining theoretical uncertainties are reduced

to those related to the acceptances and selection efficiencies in the various 
categories.


This is the most generic parameterisation considered yet recast should be done 
with care

78April	2016

9 pars
ref :σ i ⋅BRf ,  e.g. σ ggH ⋅BRZZ

σVBF

σ ggH

σWH

σ ggH

σ ZH

σ ggH

σ ttH

σ ggH

BRγγ

BRZZ

BRWW

BRZZ

BRττ

BRZZ

BRbb

BRZZ

σ x × BRy =σ (i → H → f ) σ x

σ i

⎛

⎝⎜
⎞

⎠⎟
⋅

BRy

BRf
⎛

⎝⎜
⎞

⎠⎟
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Model Independent Ratios (Generic I)
One can fit the data with ONE channel specific measurement (iàHàf) 
, 4 ratios of cross sections and 4 ratios of BRs

79

reference process:    i → f

σ x ⋅BRy = σ x

σ i

BRy

BRf
⋅ σ i ⋅BRf( )

µx
y ⋅ σ x ⋅BRy( )SM

= σ x

σ i

BRy

BRf
⋅ σ i ⋅BRf( )

µx
y = µx

µi

µy

µ f
⋅µi

f

e.g.   ref=gg→ H → ZZ

µZH
bb = µZH

µggH

⎡

⎣
⎢

⎤

⎦
⎥ ⋅µggH

ZZ ⋅
µbb

µZZ

⎡

⎣
⎢

⎤

⎦
⎥
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9 pars
ref :σ i ⋅BRf ,  e.g. σ ggH ⋅BRZZ

σVBF

σ ggH

σWH

σ ggH

σ ZH

σ ggH

σ ttH

σ ggH

BRγγ

BRZZ

BRWW

BRZZ

BRττ

BRZZ

BRbb

BRZZ



Eilam	Gross,	KITP,	2016

Model Independent Ratios (Generic I)
One can fit the data with ONE channel specific measurement (iàHàf) 
, 4 ratios of cross sections and 4 ratios of BRs
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reference process:    i → f

σ x ⋅BRy = σ x

σ i

BRy

BRf
⋅ σ i ⋅BRf( )

µx
y ⋅ σ x ⋅BRy( )SM

= σ x

σ i

BRy

BRf
⋅ σ i ⋅BRf( )

µx
y = µx

µi

µy

µ f
⋅µi

f

e.g.   ref=gg→ H → ZZ

µZH
bb = µZH

µggH

⎡

⎣
⎢

⎤

⎦
⎥ ⋅µggH

ZZ ⋅
µbb

µZZ

⎡

⎣
⎢

⎤

⎦
⎥
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WHICH	REF?

9 pars
ref :σ i ⋅BRf ,  e.g. σ ggH ⋅BRZZ

σVBF

σ ggH

σWH

σ ggH

σ ZH

σ ggH

σ ttH

σ ggH

BRγγ

BRZZ

BRWW

BRZZ

BRττ

BRZZ

BRbb

BRZZ
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Model Independent Ratios (Generic I)
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Model Independent Ratios (Generic I)
Largest deviationfrom SM is 
seen in BRbb/BRZZ, at the 
level of 2.4 σ


Effect mainly coming from 
large ZH and ttH (both ratios 
σi/σggF ~ 3)
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ttH	excess	due	to 
	multilepton	categories	

ZH	excess	due	to	CMS	two-jet	
categories
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Model Independent Ratios (Generic I)
Largest deviationfrom SM is 
seen in BRbb/BRZZ, at the 
level of 2.4 σ


Effect mainly coming from 
large ZH and ttH (both ratios 
σi/σggF ~ 3)
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	!

generic	ZZ :

µZH
bb =

µZH

µggH

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅µggH

ZZ ⋅
µbb

µZZ

⎡

⎣
⎢

⎤

⎦
⎥ ≈3.1⋅1.14 ⋅0.2=0.7

µttH
bb =

µttH

µggH

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅µggH

ZZ ⋅
µbb

µZZ

⎡

⎣
⎢

⎤

⎦
⎥ ≈3.3⋅1.14 ⋅0.2=0.8

(µV ,µF ):
µV

bb =0.65,µF
bb =1.09
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Couplings
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The k-framework has been developed within the LHC Higgs 
Cross Section WG

Higgs boson couplings are scaled by coupling modifiers κ

The definition is such that:


                        for production                    for decay

Theκ-framework
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There	are	obvious	drop	backs	to	the	Kappa	framework	
Higher	order	QCD	and	EW		accuracies	might	not	
	be	preserved	for	 κ ≠ 1
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Theκ-framework
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BRBSM		=	BRinv,und=BR	invisible	+	undetectedk f
2 =

Γ f

ΓH

          Γ i,u = ΓBSM

ΓH = Σ fΓ f + Γ i,u    i = invisible,u = undetected

kH
2 = ΓH

ΓH
SM =

Γ f

ΓH
SM

f
∑ +

Γ i,u

ΓH
SM =

Γ f

Γ f
SM

f
∑ Γ f

SM

ΓH
SM +

Γ i,u

ΓH

ΓH

ΓH
SM

kH
2 = k f

2BRf
SM

f
∑ + BRi,ukH

2

kH
2 =

k f
2BRf

SM

f
∑
1− BRi,u
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Theκ-framework
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Experimental	Assumptions:

BRBSM = BRinv,und

The current  LHC  data are insensitive to the coupling modifiers
 κ c  and  κ s  ,  and  have limited  sensitivity to κ µ . 
Thus,  it  is assumed  that  κ c  varies as κ t  ,  
κ s  as κ b ,  and  κ µ  as κτ .

 Other  coupling modifiers κ u ,  κ d  and  κ e( )  are
irrelevant  for  the combination as long as they are order  of  unity.

Undetected  decays can be either  non SM  decays 
or  come from non SM  BRs of  known but  not  measured  decays
such as cc, gg.
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Measuring Higgs Couplings

 Can we resolve the 
degeneracy,  disentangle

 The degeneracy can be broken by parameterize the 
strength parameters with couplings and introduce 
constraints which reduce the number of p.o.i. and allow 
reasonable fits.         

µ i µ f⎡⎣ ⎤⎦

kj
2 =

Γ j

Γ j
SM ,  

σ j

σ j
SM kH

2 =
kj

2Γ j
SM∑

ΓH
SM = kj

2BRj
SM∑

April	2016

i ∈(ggF,VBF,VH ,ttH ) f ∈(γγ ,ZZ,WW,bb,ττ )
ns(i → f ) = µ iµ f × (σ i × Br f )SM ×A p

i × ε p
i × Lumi
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Note	that	if	KtKW=-1,		tHW	increases	by	a	factor	6,	
	tHq	by	a	factor	13	
	tH	which	makes	only	14%	of	ttH	becomes	important	
We	still	have	no	sensitivity,	yet	
	it	is	important	to		
take	negative	values	into	account	
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Higgs does not couple

 to to Gluons and Photons

 in leading order


The production of the Higgs Boson


 and its discovery 


are due to a pure quantum loop
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kg
2 ≈ 1.06kt

2 + 0.01kb
2 − 0.07ktkb
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Disentangling The Couplings

97

The	simplest	non-trivial	
model	is	(kF,	kV)	where	all	
Fermion	couplings		are	set	
to	kF	and	
all	Boson	couplings	to	kV
April	2016
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Indirect Sensitivity to Fermion Couplings

Note that if all fermion couplings are set to be equal, 

kt
2 = Γ tt

Γ tt
SM

kt
2 = gt

2

gt.SM
2

98

kg
2 = kF

2

kγ2 = 1.28kW − 0.28kt
2

April	2016
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Theκ-framework
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Theκ-framework
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Coupling Scenarios
To make reasonable fits we introduce physics motivated scenarios.

Testing the compatibility of the discovered Higgs with the SM is to 
test also where is it NOT compatible, spotting where NP might sneak 
in.

NP can appear in either the Higgs width and/or in the loops.

101April	2016

ΓH kγ kg Scenario

ΓH = kH
2 ΓH

SM Kγ (kt ,kW ) Kg (kt ,kb ) only SM particles in loops

ΓH = kH
2 ΓH

SM + BRi,uΓH kγ kg mNP  could be < mH

2

ΓH = kH
2 ΓH

SM kγ kg mNP > mH

2
ΓH = kH

2 ΓH
SM + BRi,uΓH Kγ (kt ,kW ) Kg (kt ,kb ) NP (not in the loops) 

kH
2 =

kj
2Γ j

SM

j=Z ,W ,t ,b,τ
∑ + kγ

2Γγ
SM + kg

2Γg
SM

ΓH
SM

ΓH = kH
2 ΓH

SM + BRi,uΓH
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Negative Couplings?

April	2016 102Eilam&Gross,&NEXT&Abingdon&2015Eilam&Gross,&Durham,&May&2015

A comment on Interference

is extremely important

�19

 

kt kW

ggF
kg

2 ∼ kt
2

Brγγ
kγ 2 ~ −kWkt

BRWW

kW
2

If&kt=D1&ggF&slightly& 
affected&
WW&unaffected&
!!&increases&

Testing&negative&kt&is&extremely&&important&

ns
γγ ~ kg

2 (kt ,kb )× kγ
2 (kt ,kW ) kγ

2 = 1.28kW − 0.28kt
2
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Couplings Generic Model
LHC is not able to 
measure the Higgs full 
width.

The only way to get 
minimal assumptions 
measurement is using 
ratios, and use effective 
couplings for Gamma 
and Gluon
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SM	p-value	
13%	(7p)

λxy = κ x

κ y
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Couplings Generic Model
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Couplings Generic Model
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ggZH  and tH →

possible solutions with negative λtg  and λWZ
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kV & kF: The pedagogic plot

106

HERE	WE	ASSUME	ONLY	SM	PARTICLES	ARE	CONTRIBUTING	TO	THE	LOOP	
AND	THAT	ALL	FERMION	COUPLINGS	EQUAL	AND	ALL	VECTOR	COUPLINGS	EQUAL

April	2016

Tension	
Drifting 
apart

SM	–	 
No	Tension

~	5σ		
exclusion	of		
κF<0	
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kV & kF: The pedagogic plot

107

HERE	WE	ASSUME	ONLY	SM	PARTICLES	ARE	CONTRIBUTING	TO	THE	LOOP	
AND	THAT	ALL	FERMION	COUPLINGS	EQUAL	AND	ALL	VECTOR	COUPLINGS	EQUAL

April	2016

Tension	
Drifting 
apart

SM	–	 
No	Tension

W
-t	
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kV & kF: The pedagogic plot
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HERE	WE	ASSUME	ONLY	SM	PARTICLES	ARE	CONTRIBUTING	TO	THE	LOOP	
AND	THAT	ALL	FERMION	COUPLINGS	EQUAL	AND	ALL	VECTOR	COUPLINGS	EQUAL

April	2016

Tension	
Drifting 
apart

SM	–	 
No	Tension Z-t		(ggZH)
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kV & kF: The pedagogic plot
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HERE	WE	ASSUME	ONLY	SM	PARTICLES	ARE	CONTRIBUTING	TO	THE	LOOP	
AND	THAT	ALL	FERMION	COUPLINGS	EQUAL	AND	ALL	VECTOR	COUPLINGS	EQUAL

April	2016

Tension	
Drifting 
apart

SM	–	 
No	Tension

W-t	(tH)

Looks	like	we	get	better	resolution	with	WW	alone
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kV & kF: The pedagogic plot
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Fitting	only	positive	
Kappas,	tautology	resolved
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kV & kF: The pedagogic plot
Another interesting point

 Why in 1D we do not see 
a positive Confidence 
Interval for WW
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1D vs 2D Confidence Interval
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Δχ 2 = 1
Δχ 2 = 2.3  (68% CL)
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The CERN Courier PR plot
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SM	p-value	
59%



Eilam	Gross,	KITP,	2016

In the presence of NewPhysics
Here NP will enter in the 
loop and might  contribute 
to BRBSM


 We introduce effective 
couplings 

 To be able to fit we 
need to constrain the width 
by either assume BRBSM=0 
(NP>mH/2)

or          and BRBSM>0 (like 
in many BSM physics such 
as MSSM)

114

kγ ,kg

April	2016

kV ≤1
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Bounds on BR
BSM

BRBSM<0.34 @ 95% CL


This is using a

     (BR>0; FC)

test statistics

Which does not

Allow negative

 BRs, leading to

Possible 

Overcoverage

(conservative)
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κ
g
 and κ

γ
 

Assuming tree level couplings as in the SM and only 
modifications to the two main loops of ggF and Hàγγ
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ggF	loop

Hàγγ	loop

Additional	heavy	fermions	or		
charged	Higgs	boson	would	
modify	the	effective	couplings

SM	p-value	
82%
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“SM” fit
 This is the olny fit 
where the MuMu 
coupling was included in 
the 6p fit. Loops 
content was assumed 
(all loops resolved) and 
BRBSM=0 was assumed.

Why all values<1?

 Kb is low and it 
dominates the width 
(makes it small, 
reducung all Kappas)

   This is actually a SM 
fit which leads to the 
“Money Plot”
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The PR Plot (an alternative version)
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kF   or  kV

 

gHff =
gHff

gHff
SM gHff

SM =κ f gHff
SM ∼κ f m f

gHVV = gHVV

gHVV
SM gHVV

SM =κV gHVV
SM ∼κV mV

2

reduced coupling gHVV ∼ κV mV
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2016?



Eilam Gross 120

Higgs Re-Discovery
2016
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Re Discovery of the Higgs
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Rediscovery of Higgs Boson

122
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Simplified Templates
(Fiducial Cross Sections)
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The Fiducial PhaseSpace
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• First steps towards a new analysis philosophy 
cooked in Les Houches 2015 
• Provide more finely-grained measurements to 

supply more information for theoretical 
interpretations without having to redo analyses 
when a new theoretical model is under the table 

• Still allowing and benefitting from the global 
combination of the measurements in all decay 
channels 
• —>Maximising the sensitivity of the 

measurements while at the same time 
minimising their theory dependence.
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The simplified template cross section framework

•  Combination of all decay channels 
• Measurement of cross sections instead of signal 

strengths, in mutually exclusive regions of phase 
space 

• Measurement of Decay rate Ratios 
• Cross sections are measured for specific production 

modes Measurements are performed in abstracted/
simplified fiducial volumes 

• Allow the use of advanced analysis techniques such 
as event categorization, multivariate techniques, etc.
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The simplified template cross section framework
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Stage 0 Template

128

qq →VH → ′q ′q H
q ′q → q ′q H
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Di Photon Categorisation

129



Eilam Gross, WIS, SUSY16

Di Photon Fiducial Regions
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Asimov Significance
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The New s/√b 
The new s/√b   

ZA = q0,A

 
ZA = q0,A

s/b≪1⎯ →⎯⎯ s
b

+ O(s / b)

We test the BG hypothesis 
Null = BG 

alt = Signal 
Asimov = s(mH)+b
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The New s/√b 

s/√b ? 
 
 
 
The new s/√b   
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Formulae

133

k= category 
mig = migration between categories 

θ are Nuisance Parameters
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Fit Result

134

w = ln 1+ s
b

⎛
⎝⎜

⎞
⎠⎟



Nuisance Parameters
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The pull of θi  is given by 
θ̂i −θ0,i

σ 0

without constraint     σ
θ̂i −θ0,i

σ 0

⎛

⎝⎜
⎞

⎠⎟
= 1   

θ̂i −θ0,i

σ 0

= 0

It’s a good habit to look at the pulls of the NPs and make sure that 
Nothing irregular is seen 
 
In particular one would like to guarantee that the fits do not over constrain 
A NP in a non sensible way 



Impact of NPs
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• Let 

• To get the impact of a NP (on 
order to rank them by their 
importance)

L = L(µ,ε,θ )

Say	we	want	the	impact	of	ε
−Scan	q(ε),	profiling	all	other	NPs
−Find	ε̂   
−(note	that	µ̂

ε̂
= µ̂)

−Find	µ̂
ε̂±σ ε

± = ˆ̂µ
ε̂±σ ε

±

−The	impact	is	given	by	Δµ± = ˆ̂µ
ε̂±σ ε

± − µ̂



Eilam Gross, WIS, SUSY16

Impact of NPs in DiPhoton analysis
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Results

138

inclusive
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Higgs DiPHoton Results
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4l+𝛾𝛾
2016
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Categories
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The fiducial central region
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7 dof Fit
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ggF coupled bbH
tH coupled ttH
WH merged with ZH
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Assume SM BRs
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p-value with SM is 5%
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Assume SM production mode ratios  
Decays are corrected for detector effects,  
fiducial acceptances, and branching ratios 
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fiducial volume definition 4l CMS
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Combined ATLAS CMS


Combined ATLAS only


We are not yet beating the combination of ATLAS and CMS, but soon 
will…..
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µ = 1.13−0.17
+0.18
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End of Lectures Thank You
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