Ferromagnetic Quantum Critical Point Avoided by the Appearance of Another Magnetic Phase in LaCrGe3 under Pressure

The temperature-pressure phase diagram of the ferromagnet LaCrGe3 is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFMQ. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q=0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGe3 is a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets.