





UNIVERSITÄT BERN



Sergey V. Churakov :: Laboratory for Waste Management :: Paul Scherrer Institut

# Labor für Endlagersicherheit

PSI 24.10.2017





- Status Swiss waste disposal program
- Laboratory for Waste Management (LES)
  - Mission
  - Organizational chart
  - Important infrastructure and capabilities
  - External funding
- Selected research projects
  - Transport and retardation of dose determining nuclides
  - Reactivity of waste and material interfaces
  - Competitive sorption an transport in compacted systems
  - Thermodynamics at elevated temperatures
- Summary



# **Origin of Nuclear Waste and Disposal Concepts**







# Sectoral plan



# ABSCHLUSS ETAPPE 2, AUSBLICK ETAPPE 3



- Ab Ende 2017, während 3 Monaten
- Offen f
  ür Kantone, Nachbarstaaten, Gemeinden, Organisationen, Bev
  ölkerung
- Aufgelegte Dokumente: Ergebnisbericht (inkl. Objektblätter), Erläuterungsbericht, Berichte der Nagra, alle Prüfungsberichte und Stellungnahmen



# Sectoral plan

# Gesamtbeurteilung ENSI

# SMA

- NL hat keinen eindeutigen Nachteil
- Zurückstellung der Standortgebiete
   WLB, JS, SR wegen eindeutiger
   Nachteile im Vergleich zu ZNO, JO & NL

## HAA

- kein HAA Standortgebiet hat einen eindeutigen Nachteil
- Bestehende Ungewissheiten sind in Etappe 3 SGT reduzierbar
- Kein SG wird zur
   ückgestellt



bezeichnete Standortareale



# LES Mission

LES (Labor für Endlagersicherheit) serves the **national needs, present and future**, in providing important parts of the **scientific basis for the safe disposal of radioactive waste**.

LES supports Nagra by providing **state-of-the-art synthesis reports and data repository safety assessment** in the context of the national waste management programme.

LES carries out a research programme in the areas of:

- **repository in situ conditions**, their evolution and **repository induced effects** including both **modelling and experimental aspects**.
- Interfacial chemistry and transport of radionuclides in repository systems
- fundamental understanding of system behavior for the long term predictive modelling and knowhow transfer.

LES maintains:

- proper balance between applied and basic research
- the state-of-the-art expertise and knowledge in strategic areas
- tight connections to the University of Bern to contributes to the education of young scientists in the field of geochemistry of geological waste disposal.



# LES contribution to the Sectoral Plan stage 3

Maintain state-of-the-art functionality of key models and datasets for safety analysis, including sorption, diffusion and thermodynamics.

Fill missing gaps in databases:

- **Redox sensitive elements** and justification of "chemical analog" arguments
- Sorption competition / transferability of data for compacted/disperse systems
- Chemistry of **dose determining radionuclides**

Geochemical evolution of in-situ repository conditions:

- Production and transport of volatile species
- Reactivity of technical barriers and long term evolution of their safety function

Sample characterization from site specific the field explorations

Scientific documentation for the General License Application

| Etappe 2 (aktuell) |         |    |                                    |      |                             |          |      |                      |      |      |                                   |      |      |                       |      |      |      |
|--------------------|---------|----|------------------------------------|------|-----------------------------|----------|------|----------------------|------|------|-----------------------------------|------|------|-----------------------|------|------|------|
|                    |         |    | Vorbereitung                       |      |                             | Etappe 3 |      |                      |      |      |                                   |      |      |                       |      |      |      |
| 2015               | 2016    | 20 | )17                                | 2018 | 2018 2019                   |          | 2020 | 2021                 | 2022 | 2023 | 2024                              | 2025 | 2026 | 2027                  | 2028 | 2029 | 2030 |
| Über               | prüfung | en | Vernehm-<br>lassung Ent-<br>scheid |      | vertiefte<br>Untersuchungen |          |      | Erstellung<br>Gesuch |      |      | Überprüfung und<br>Vernehmlassung |      |      | BR-<br>Ent-<br>scheid |      |      |      |

PAUL SCHERRER INSTITUT



# LES-organization





# Recent third party funded projects

- **EU-Horizion 2020:** *"DISCO: Spent fuel dissolution & chemistry in container Thermodynamic equilibria calculations in SF."* E. Curti
- **EU-COFUND 2Y+1Y Postdoc :** "Alkali-silica reaction in concrete."
- EU-COFUND 2x2Y Postdoc : "Dissolution precipitation in porous media."
- **4Y SNF PhD**: "Resolving dissolution precipitation processes in porous media: Pore scale lattice Boltzmann modelling combined with synchrotron based X ray characterization."
- **3Y SNF PhD project :** "Transport of sorbed species in clays"
- **CROSS-PSI postdoc** "Cryo-microspectroscopy at the microXAS beamline for the investigation of redox- and radiation-sensitive samples
- HPC projects at CSCS: 400`000 Node/Hours (equiv. ~300KCHF)



# Consolidation of modelling and experimental activities



PAUL SCHERRER INSTITUT



# Mass transport in heterogeneous geochemical systems





# Interaction of waste with engineered barrier

**Aim:** Geochemical modelling of the temporal evolution of cement-stabilized waste sorts: Changes in the mineralogy of the conditioned waste and volume of waste package

PAUL SCHERRER INSTITUT

Image: Modelled waste sorts: three operational and two decommissioning waste sorts



### □ Modelling of temporal evolution (waste materials, mineral composition, volume)





# Influence of concrete degradation on gas- and water fluxes in a waste package

Aim: Modeling of interactions between chemical processes and multi-phase (gas/water) multicomponent (several gases) in repository near-field

multi(two)-phase +

multi-component

CH<sub>4</sub>, CO<sub>2</sub>, H<sub>2</sub> , H<sub>2</sub>O

H<sub>2</sub>O@ + dissolved

gases

transport

Gases:

Liquid

lookup table for concrete

carbonation

reactions

+ H<sub>2</sub>O -CO

corrosio

-H<sub>2</sub>O +H<sub>2</sub>

t dat at a t a t a t a t a t a

degradation state provides: pH, porosity

internal concrete

inetic rate laws (pH dependent

H<sub>2</sub>O +CH<sub>4</sub>, +CO<sub>2</sub>

degradation of

dearadation

H,O

- Represent concrete degradation (carbonation and alkali-silicareactions) by a look-up table that provides pH and source-sink terms for coupling with multi-phase transport codes
- pH dependent kinetic laws for metal corrosion



**Application example:** Gas generation and humidity evolution in a waste package during 40 years of intermediate storage. (in cooperation with Helmholtz Institut für Umweltforschung UFZ)



# Competitive metal sorption on clay minerals

**Motivaton:** In a deep geological repository stable aqueous metals are present from different sources: backfill materials, the corrosion of steel canister, dissolution of the waste forms.

These metals can potentially compete with the released radionuclides for the available sorption sites and reduce their uptake on them.



### **Conclusions:**

- Metals with the same valence and hydrolysis behaviour compete: *e.g.* Ni<sup>II</sup>-Co<sup>II</sup> and Eu<sup>III</sup>-Am<sup>III</sup>
- Metals with different valence are non competitive: e.g. Eu<sup>III</sup>-Ni<sup>II</sup>; Th<sup>IV</sup>-Ni<sup>II</sup>; U<sup>VI</sup>-Ni<sup>II</sup>
- Competitive sorption can be quantified by sorption models (2SPNE SC/CE) and can be taken into consideration in the safety analysis of radioactive waste repositories



# NTB's Sorption Data Base

NAGRA NTB October 2017

The Development of a Thermodynamic Sorption Data Base (TSDB) for Illite and the Application to Argillaceous Rocks (in press)

M.H. Bradbury and B. Baeyens

NAGRA NTB October 2017

The Development of a Thermodynamic Sorption Data Base (TSDB) for Montmorillonite and the Application to Bentonite (in press)

**B. Baeyens and M.H. Bradbury** 

PAUL SCHERRER INSTITUT

# Effect of clay compaction on the transport properties of Eu(III) in illite

Clay

Tracer

Electrolyte,

buffer

### Aim

- To compare sorption data for Eu(III) in illite derived from diffusion experiments with those obtained in dispersed clay suspensions.
- To derive a speciation-based transport model for Eu(III) in compacted illite.

### The in-diffusion technique

1.

- Equilibrate clay with electrolyte solution.
- 2. Add tracer (e.g. Eu(III)) to solution phase.
- Monitor solution concentration of tracer as a 3. function of time.
- 4. Measure tracer profile in clay at the end of the experiment.

=> Unambiguous information on sorption and diffusion properties



### **Results and simulations**

- The results of sorption measurements of Eu(III) in compacted and dispersed illite are fully consistent.
- Sorption modelling (blue) of diffusion-derived data can be done using existing sorption models<sup>*a*</sup> (black lines, representing contributions from individual surface species).
- A minor mobile surface species (green) is additionally introduced to properly reflect the observed diffusion lengths in the in-diffusion measurements (not shown).

### Conclusion

A speciation-based transport model for Eu(III) has been successfully tested for its ability to robustly predict the diffusion length as a function of broad parameter variations, such as pH, ionic strength, Eu concentration and competing species.



Predict thermodynamic properties at elevated temperature using *isocoulombic* reactions



- (1) Generate chemical reactions from a given list of substances
- (2) **Combine** investigated (unknown temperature effect) and model reactions (known temperature effect) into *isocoulombic* reactions (the same charge types on both sides of the reaction)
- (3) Investigate which reactions better predict the properties of investigated reactions, knowing only the logK at 25 °C



### PAUL SCHERRER INSTITUT

Laboratory for Waste Management (LES)



About LES

Team

Groups

LES Events

Research Projects

Research Partners and Cooperations

Teaching and Education

Software and Database

Scientific Highlights

**Hot New Papers** 

Annual Reports

Publications

# www.psi.ch/les



### Laboratory for Waste Management (LES)

LES is the Swiss competence center for geochemistry and multiscale radionuclide and mass transport in argillaceous rocks and cement and their application to deep geological systems and Swiss radioactive waste repositories. LES offers attractive research projects at the bachelor, master, PhD, and postdoc levels in environmental sciences and nuclear engineering

### **Core Competences**

- Geochemistry of repository systems
- Retention and migration of radionuclides
- Multiscale reactive transport in natural and engineered barrier systems
- <u>Thermodynamic databases</u>
- Geochemical education

### Facilities, Tools and Infrastructure

- Synchrotron-based material characterization and neutron imaging
- Numerical simulations at atomistic, pore Lattice-Boltzmann, and continuum scales
- Geochemical and thermodynamic modeling tools
- State-of-the-art radiochemical laboratories

### 6 UNIVERSITÄT BERN

### Contact

Paul Scherrer Institut Laboratory for Waste Management Prof. Dr. Sergey Churakov 5232 Villigen PSI

### Secretary

Beatrice Gschwend Telephone: +41 56 310 24 17 E-mail: beatrice.gschwend@psi.ch

### Contact

University of Bern Institute of Geological Sciences Prof. Dr. Sergey Churakov Baltzerstrasse 1+3 3012 Bern

### Homepage NES

Nuclear Energy and Safety Research Division at PSI

# 



# Wir schaffen Wissen – heute für morgen

