

Horst-Michael Prasser

Labor of Thermal Hydraulics

NES Infotag, 18.10.2016

Important severe accident projects

Fukushima benchmark

PSI work in Phase 2:

Unit 3

- Include fission product transport
- Different release paths

Phase 3 (?)

• PSA level 3

Reflux condensation (PhD project F. Janasz)

Continuation:

- Add aerosols
- Improve instrumentation

Cladding oxidation in air (PhD project S. Park)

Pre-oxidation (O₂)

Nitriding (N₂)

Re-oxidation (O₂)

Mixing in Hot Leg and Steam Generator Inlet Plenum

Status: Theoretical analyses by CFD simulations show relevance of the phenomenon

PIV and LIF of He/N₂ mixing ($\rho_{N2}/\rho_{He} = 7$) – contribution to **THINS (EU project)**

Temperature Induced SGTR - experimental

Phase 1: Co-current flow gas mixing

- Use of existing data from HOMER/GAMILO facility at PSI for analyses
- Co-current flow

Phase 2: Hot leg counter-current flow

- Extension of present tests by new counter-current flow experiments

Phase 4: Large scale tests in ATLAS at KAERI (Scaling-up)

- Two tests for large scale validation of the codes
 - Natural circulation mixing of superheated steam cooled by secondary air
 - Effect of light gas (He) in SG does natural circulation stop?

FCVS of (for?) Generation III

Optimization of the wet scrubbing process

- Design of injection nozzles / venturies (increase IAD and aerosol scrubbing)
- Fluid-dynamic optimization of packings

> New design of the flow control in the FCVS vessel

- Reorganize internal circulation
- Passive decay heat removal
- Reduce droplet entrainment by exhaust gas
- Improve two-phase separation \rightarrow mode compact filter size

Better chemistry

- New additives for retention of elementary iodine
- New additives for retention of organic iodine
- Exploring solid bed catalysts
- Long term behavior (both for wet scrubbers and dry filters)
 - Remobilization
 - Deterioration of chemicals during standby, operation and post-operation
 - Radiolysis studies

> **Deployment and decommissioning** (both for wet scrubbers and dry filters)

- Treatment of activity laden retention material (liquids, solids)
- Decontamination of structures, decontamination-friendly design

Torsten Betschart

Next step: Mass transfer coefficient

$\dot{m}_{transferred} = MTC \cdot IAD \cdot \nabla Conc$

- Wire-mesh sensor used to detect bubbles & dissolved species simultaneously
- Model aerosol / model gas selected such that it increases electrical conductivity

Test loop at ETH Zurich

Sectional view on a CO₂ bubble in terms of void and dissolved CO₂

Gas injection

Beghi, Lind, Suckow, Jäckel, Opilik, Krepelova

Condensation & re-evaporation at LINX

Plate heated, evaporation

Plate cooled condensation

Film injector

Thermocouples & capillaries

Intermediate film collector

Dupont, Guillaume

Film thickness by NIR (transmission)

Temp. by MWIR (fluctuating part)

Film reconstruction

Film temperature fluctuates because of presence of non-condensable gas

Color: Temperature

Height: Film Thickness

Dupont \rightarrow defended PhD, Mignot

Next steps – LINX-2

Extensive test series

- Vary thermodynamic parameters
- Combine condensation and evaporation on the same test plate

Vary wall properties

- Change wettability
- Different paints and covering materials
- Effect of thermal conductivity of covering material (?)

> Aerosol deposition on condensate film

- Introduce soluble and insoluble aerosols
- Measure deposition (scrubbing) on condensate film

Analytical work

- System and CFD code validation (ASTEC, GOTHIC, FLUENT)
- High-resolution CFD modeling (e.g. LES + IT + LPT)

Alternative application of the IR instrumentation

- AP1000 internal and external water film on containment wall
- Film flows in passive coolers or similar

HYMERES: Relevance of thermal radiation

- Walls heat eroding vapor plume and enhance buoyancy \rightarrow faster layer erosion
- Thermal radiation has feedback on velocity field due to IR absorption in vapor

HYMERES-2

• Current HYMERES project to be completed by end of 2016 according to schedule

New proposal:

 PSI and CEA have proposed (PRG6-November 2015 and PRG7- June 2016), to continue with a phase 2.

Research topics:

- Topic 1: extend the database on flow impacting obstructions and containment internals
- Topic 2: thermal radiation
- Topic 3: extend the database on suppression pressure pool and BWR systems
- Topic 4: extend the database on safety components performed operation

Project period:

2017-2020

Project costs:

- Total: 6.1 MEURO
- PANDA: 4.6 MEURO (24 tests). i.e. external contribution to PANDA, about 550 KEURO/YEAR
- MISTRA (CEA): 1.5 MEURO (10 tests)

NEST Pilot Project Concept

• Option I - Practical Training Courses

Practical training courses related to HYMERES-II – 1-2 weeks focused on experiments and be an experimental training course focused on computation/simulation

• Option II. HYMERES-II activities related to NEST

Development tasks for groups of NEST Participants

Self-dependent work of NEST Participants under the guidance of Mentors

Discussions of problems and results of NEST Participants' work at meetings.

• Option III. NEST Fellows

PSI and CEA would each host few advanced students, post docs or young professionals, designated as NEST Fellows (for a period of 6 months or more)

Project/work descriptions drafted by the operating agents of HYMERES-2

• Added value: Multidisciplinary Activities

Participants get some exposure to other fields of research and education beyond the containment hydrogen question (e.g. using opportunities of the ETH NE master program)

Fundamental boiling simulations

Progress to date: Flow boiling LES + IT with multiple nucleation sites (HPC)

Goal:

Prediction of DNB

- Micro-layer model
- Pool and flow boiling studies
- Conjugate heat transfer
- Stochastic nucleation site distribution
- Multi-scale approach down to molecular dynamics

Next steps:

- Compressive flows (condensation hammers)
- Forced evaporation

Strategic goal:

 Fundamental simulation of Departure from Nucleate Boiling (DNB)

Temperature distribution

URANS of film flow in subchannel (adiabatic)

Abhishek Saxena

Feasibility of full two-phase fuel element studies

Volume Fraction of Phase 2

- Original plant parameter (BWR)
- Euler-Euler two-fluid model with k-eps turbulence
- 4 full length subchannels ~ 9 Mio Cells
- Solver time \rightarrow ~ 8 days on 32 CPUs
- 1 node = 24 CPUs used on EULER cluster
- Full BWR fuel element ~ 250 Mio Cells
- Solver time \rightarrow ~ 30 days on 216 CPUs
 - 9 nodes = 216 CPUs = 72 kCHF + OH

RANS: 3D gas + 2D liquid

PhD Student: Abhishek Saxena, Master student: Kerstin Cramer

Boiling & dryout in subchannels

Rotating mechanism

Beam line of cold neutrons

Test subchannel

Heating fluid D₂O

Model fluid CHCl₃

First X-ray images

Sequence of X-ray images

120

Tomographic reconstruction of a single cross-section

In December 2015: First cold neutron tomography at ICON of SINQ

- \rightarrow Report of Robert Zboray
- \rightarrow PhD student: Chris Bolesch

Status boiling test with fluid heating

Rectangular lattice

Potential extension of boiling test

Goal: Study influence of inter-subchannel oscillations on film boiling

Summary: Tools of LTH

Thank you for the attention