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Abstract

The measurements of the neutron electric dipole moment are a chance to find the evidence for

the CP symmetry violation outside the Standard Model. The most promising attempt to improve

the present limit on this value is the nEDM experiment at the Paul Scherrer Institute in Villigen,

Switzerland. This measurement is done using the Ramsey method of separated oscillatory fields

with polarized ultra-cold neutrons, which precess in the uniform magnetic field. The majority of

systematic effects are related to inhomogeneities of the magnetic field in the precession volume

and its changes in time. The control over these changes is crucial in this experiment. The

volume of precession is isolated from outside to stabilize the magnetic field. The strategy for

the successful control of the magnetic field constancy employs the passive magnetic shields

– multilayer enclosures made of high permeability material, and the active magnetic shields

– a system of coils, generating in the real time the magnetic field compensating the external

perturbations. The perturbations are measured using the system of sensitive magnetometers.

In this thesis two problems directly related to high quality of the magnetic field in precession

volume are addressed. Firstly, an attempt is made to find the optimal active magnetic field com-

pensation system. In the part II four proposed systems are compared: (i) 6-coil Helmholtz-like

system, (ii) 12-coil Merritt-based system, (iii) cellular coil system and (iv) spherical coil sys-

tem. The last option is based on the description of the magnetic field with the vector spherical

harmonic basis. It is thought to be a model solution to which other systems would be compared.

Other solutions exhibit easier practical realization but at a price of a significantly worse perfor-

mance. The comprehensive simulations and results of the first tests on the prototypes were used

for comparison between the considered systems.

Part III of this dissertation is devoted to the analysis of the maps of the magnetic field,

measured using the dedicated robot equipped with a vector magnetometer. The analysis con-

siders mechanical imperfections of the measurement system. The most significant effects are

parametrized and determined in a global fit of the model to the measured map. The corrected

maps are later on used for calculation of the optimal current values for 33 correction coils, which

are designed to homogenize the magnetic field in the precession chamber.





Streszczenie

Pomiary elektrycznego momentu dipolowego neutronu są szansą na znalezienie dowodów na ła-

manie symetrii CP w sposób nie uwzględniony w Modelu Standardowym. Obecnie najbardziej

obiecującą próbą zmierzenia tej wartości jest eksperyment nEDM w Instytucie Paula Scherrera

w Villigen, w Szwajcarii. Pomiar jest wykonywany metodą rezonansową Ramsey’a z wyko-

rzystaniem spolaryzowanych, ultra-zimnych neutronów, które precesują w jednorodnym polu

magnetycznym. Większość efektów systematycznych wynika z zaburzeń pola precesji w prze-

strzeni i czasie. Kontrola pola magnetycznego jest kluczowa w tym eksperymencie. Zapewnie-

nie stałości w czasie zhomogenizowanego pola precesji polega na izolacji krytycznego obszaru

od zewnętrznych zaburzeń. Strategia skutecznej kontroli stałości pola wykorzystuje równocze-

śnie osłony pasywne — wielowarstwowe komory z materiału o wysokiej podatności magnetycz-

nej, jak i osłony aktywne -– system otwartych cewek, generujących w czasie rzeczywistym pole

kompensujące zewnętrzne zaburzenia. Same zaburzenia wykrywane są przez układy czułych

magnetometrów.

W niniejszej pracy podjęto dwa zagadnienia ściśle związane z zapewnieniem wysokiej jako-

ści pola magnetycznego precesji. Pierwsze, to próba znalezienia optymalnego systemu aktyw-

nej kompensacji zaburzeń zewnętrznych. Poświęcona jest jej pierwsza część pracy. Porównano

cztery systemy: (i) system oparty na układzie Helmholtza z 6 cewkami, (ii) system oparty na

układzie Merritt z 12 cewkami, (iii) system małych cewek „komórkowych”, (iv) układ cewek

sferycznych. Ostatnia propozycja jest oparta na opisie pola magnetycznego przy pomocy wek-

torowych harmonik sferycznych i jest pomyślana jako rozwiązanie modelowe, służące do po-

równania wydajności rozwiązań bardziej praktycznych, ale o mniejszej wydajności od układu

sferycznego. Do porównań wykorzystano zarówno wszechstronne obliczenia symulacyjne, jak

i wstępne wyniki testów przeprowadzonych na modelu cewek w geometrii sześciennej.

Druga część pracy poświęcona jest analizie map pola magnetycznego wykonanych przy po-

mocy specjalnego robota wyposażonego w wektorowy sensor pola magnetycznego. Analiza

uwzględnia niedoskonałości geometryczne systemu pomiarowego poprzez modelową parame-

tryzację najważniejszych efektów i ustalenie ich wartości w globalnym dopasowaniu modelu do

zmierzonej mapy. Oczyszczone w ten sposób mapy są następnie wykorzystane do obliczenia

wartości prądów w systemie 33 cewek korekcyjnych, które stanowią pierwsze przybliżenie w

procedurze homogenizacji pola magnetycznego w komorze precesji.
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Chapter 1

Neutron electric dipole moment and
ultra-cold neutrons

1.1 Baryon-antibaryon asymmetry and CP symmetry vi-
olation

Since the discovery of the positron by Carl Anderson [1], scientists have asked why
the universe appears to be built mostly from matter, instead of consisting of equal parts
of matter and antimatter. One small piece of this puzzle was solved in 1964 at the
Brookheaven National Laboratory where Cronin and Fitch [2] discovered a CP symme-
try violation in the decay of the system of neutral K mesons. CP violation is one of nec-
essary conditions to create an asymmetry between baryons and antibaryons, postulated
in 1967 by Sakharov [3]. He claimed that to explain the observed level of supremacy of
matter in the universe, three conditions must be fulfilled:

• C and CP symmetry violation,

• thermal non-equilibrium,

• baryon number violation.

Up until now, CP symmetry violation was observed only in the mesonic systems - K
mesons: indirectly in 1964, directly in 1999 by the KTeV and the NA48 experiments [4,

3



1.2. ELECTRIC DIPOLE MOMENT

5], B mesons (Refs. [6, 7]) and D mesons (Ref. [8]) . Another source of CP violation
could be responsible for the non-zero neutron electric dipole moment.

1.2 Electric dipole moment

The neutron electric dipole moment dn reflects the difference between the distributions
of positive and negative charges inside a neutron. Classical definition is derived from
the multipole expansion of the electric potential φe [9], here expressed in the Cartesian
coordinate system xi, i = 1, 2, 3):

φe =
1

4πε0

∫
ρ(~x′)

‖~x− ~x′‖
d3 x′ ∼=

1

4πε0

[
q

r
+
~dn · r
r3

+
1

2

∑
i,j

Qij
xixj
r5

+ · · ·

]
, (1.1)

where ρ(~x′) is the charge density. The lowest order expansion coefficients are:

a) Total charge q:

q =

∫
ρ(~x′) d3 x′, (1.2)

b) Electric dipole moment ~d:
~d =

∫
~x′ρ(~x′) d3 x′, (1.3)

c) Electric quadrupole moment Qij:

Qij =

∫ (
3x′ix

′
j − (r′)2δi,j

)
ρ(~x′) d3 x′. (1.4)

As Nagashima states in Ref. [10]: “When an object is a particle like the neutron, re-
gardless of finite or point size, its only attribute that has directionality is spin ~σ. If the
particle has finite ~d, it has to be proportional to ~σ. While the transformation property of
~σ under P [parity transformation, reversing of signs on all space coordinates x → −x]
and T [time reversal transformation] is even, odd, respectively, that of ~d is odd, even as
seen from Eq. (1.3). Therefore the existence of the EDM of particle violates both P and
T. As the neutron is a neutral composite of quarks, its EDM can be a sensitive test of
T-reversal invariance in the strong interaction sector as well as in the weak interaction.”
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CHAPTER 1. NEUTRON ELECTRIC DIPOLE MOMENT AND ULTRA-COLD
NEUTRONS

1.3 Measurements of the neutron electric dipole moment

Figure 1.1: The history of measurements of the neutron electric dipole moment. Predictions
of various models and theories are marked on the right. Stars mark predicted sensitivity of
measurements. First discovery of CP violation in the neutral kaon system is marked with an
arrow. Taken from Ref. [11]

The first direct measurement of the neutron electric dipole moment was performed
by Smith, Purcell and Ramsey in 1957 [12]. They used a beam of polarized neutrons and
applied the magnetic resonance technique and obtained an upper limit for the neutron
EDM dn < 5 · 10−20 e · cm.

Instead of neutron beam experiments, using ultra-cold neutrons (UCNs) stored in
material vessels, so called bottles, is more common nowadays. The latest and the most
accurate result is from 2007. The RAL-Sussex-ILL collaboration obtained the limit
of dn < 2.9 × 10−26 e · cm using stored ultra-cold neutrons produced at the Institut

5
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Laue-Langevin in Grenoble [13].

The history of measurements of the neutron electric dipole moment is illustrated in
Fig. 1.1. The most important new measurements are also marked. They are described
in detail in Ref. [11].

Nevertheless, there are attempts to go back to beam measurements of the nEDM.
The last experiment using this method was performed by Dress et al. in 1977 [14].
Recently, a new proposal was published by Piegsa [15]. He suggests using pulsed cold
neutron beams in a scenario suppressing the main systematic effects of measurement.

1.4 Ultra-cold neutrons

All modern measurements of the neutron electric dipole moment are performed using
ultra-cold neutrons (UCNs) - the neutrons with such sufficiently low kinetic energy that
they cannot surpass the repulsive potential barrier of certain solid or liquid materials or
magnetic field configurations forming so called bottles.

As J. Byrne states in [16], Fermi was the first to recognize that cold neutrons prop-
agate in condensed matter in a way similar to the propagation of light waves. The
refractive index for most materials is less than unity – which means that neutrons are
totally reflected when incident at glancing angles θ, which satisfy the inequality (Ref.
[16]):

θ ≤ sin−1
[
(VF/En)1/2

]
, En ≥ VF , (1.5)

where:

VF =
2h̄2

mn

Nb, (1.6)

is the Fermi pseudo-potential, b is the bound coherent scattering length, En is the neu-
tron kinetic energy, N is the density of nuclei in the material.

Total reflection at all incident angles appears when En ≤ VF which allows for
storage of neutrons in material containers. Owing to the fact that the largest positive
VF is equal 346 neV for 58Ni, corresponding to v ≈ 8 m/s, the neutrons with kinetic
energy between 0 − 346 neV (0 − 8 m/s) are called ultra-cold neutrons. For reference
a few most notable examples of Fermi pseudopotential values are collected in Tab. 1.1.

What can also be seen in Tab. 1.1, is the fact that iron can be used as a material

6
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Table 1.1: Example materials with their Fermi pseudopotential, taken from Ref. [17]. Arrows
indicate parallel and anti-parallel orientation of the magnetic moment of the neutrons and of the
sample.

material VF [neV]
Al 54± 10
Si 50± 10

Diamond on Si 286± 32
Diamond Like Carbon on Si 271± 13
Diamond Like Carbon on Al 249± 14

One layer Be on Si 249± 7
Fe ↑↑ 351± 14
Fe ↑↓ 72± 8
58Ni 346 [18]

for polarizing neutrons. If neutrons have kinetic energy between 72 neV > Ekin >

351 neV and if the iron foil is magnetized, only neutrons with magnetic moment anti-
parallel to the foil magnetization would go through it. This property is also used by the
nEDM experiment at PSI for selecting neutrons with only one spin direction.

1.4.1 Principle of the neutron EDM measurement

Measurement of the neutron electric dipole moment is based on the neutron’s interaction
with the electrical and magnetic fields.

Interaction with electrical and magnetic fields

Neutrons, although being electrically neutral, have a non-zero magnetic moment µn.
The magnitude of the neutron magnetic moment µn was measured already in 1940 by
Alvarez and Bloch [19]. Present value is µn = −1.91304272µN , where µN = eh̄

2mp
is

called nuclear magneton, mp being the proton mass. Electric dipole moment ~dn and
magnetic moment ~µn cause the interaction term of the neutron Hamiltonian in the pres-
ence of the electromagnetic field:

H = −~µn · ~B − ~dn · ~E, (1.7)

7



1.4. ULTRA-COLD NEUTRONS

where: ~B and ~E represent magnetic induction and electric field, respectively. Compar-
ing the interaction energy of a parallel and anti-parallel electric and magnetic field, one
observes the shift:

hν ↑↑
↑↓

= 2µnB ± 2dnE, (1.8)

where h is Planck constant, ν ↑↑
↑↓

is the precession frequency of the neutron in parallel/anti-
parallel magnetic and electric fields, and the± sign corresponds to parallel/anti-parallel
~E and ~B respectively. From Eq. (1.8), assuming separate measurements for parallel
(↑↑) and anti-parallel (↑↓) field configurations, we can calculate the neutron electric
dipole moment:

dn =
h (ν↑↑ − ν↑↓)

4E
. (1.9)

The Rabi single coil resonance method

Figure 1.2: Apparatus used by Alvarez and Bloch to measure the neutron magnetic moment.
Taken from Ref. [16]

The Rabi single coil resonance method was used in the first measurement of the
neutron magnetic moment. Alvarez and Bloch used an apparatus presented in Fig. 1.2
to measure the neutron’s precession frequency in a given magnetic field. As Byrne
states in Ref. [16], “The state of a neutron beam with an arbitrary degree of partial
polarization may be characterized by its four Stokes parameters (P0,~P ), when P0 is the
total intensity and ~P/P0 is an axial vector in position space, which may be identified
with the expectation value of the spin. In a uniform magnetic field ~B0, the component
of ~P normal to ~B0 precesses about ~B0 with Larmor angular frequency given by:

h̄ω0 = h̄γnB0, (1.10)

8
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where γn (<0) is the gyromagnetic ratio. When a weak magnetic field ~B1 is superim-
posed in a plane normal to ~B0 rotating with angular frequency ω in the same sense as the
free precession, the Stokes vector carries out a forced precession. Thus, when ω = ω0,
the neutron spin senses a constant weak field when viewed from a frame of reference
rotating with angular velocity ω, and a resonance occurs which is similar to any classical
resonance phenomenon.”

Figure 1.3: Probability of change of spin state
(Eq. (1.11)) as a function of applied frequency
of oscillating magnetic field for three different
interaction times. Taken from Ref. [16].

In the Alvarez and Bloch experiment,
neutrons in a beam are polarized pass-
ing through a polarizing foil – an iron
foil brought in the saturation by magnets.
Then, polarized neutrons pass through
uniform magnetic field ~B0 and a superim-
posed oscillating ~B1 field. If frequency of
the ~B1 field satisfies the resonance con-
dition, neutron polarization is changed to
opposite one, if the interaction time is
chosen properly. This kind of magnetic
field pulse is called π pulse.

Neutrons’ polarization is measured
by counting how many neutrons pass
through the analysing foil in the Rabi
method [16]. The change of this number
with changing frequency of the ~B1 field
can be described by the transition proba-
bility of the spin state:

W12(ω, t) =
(b)2 sin2

(
t
2

√
(ω0 − ω)2 + (b)2

)
(ω − ω0)2 + (b)2

, (1.11)

where b = γnB1. This relation as a function of applied frequency for three different
values of time of application of the oscillating field is shown in Fig. 1.3.
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The Ramsey method of separated oscillatory fields

The Rabi method can be compared to a single slit optical experiment. Equivalent of
a double slit experiment would then be the Ramsey method of separated oscillatory
fields. A single application of an oscillating field ~B1 is replaced by the shorter ~B1

pulses separated by a free precession time T in a constant field ~B0. This method gives
a much narrower central resonance fringe than that of the Rabi method. The resonance
curve allows for a more accurate estimation of the transition frequency, thus the energy
shift between parallel and anti-parallel field configurations. The details of the Ramsey
method of separated oscillatory fields are illustrated in Fig. 1.4.

w=wL

BRF

Brf

B0
+-E

B0
+-E

B0
+-E

B0
+-E

a)

b)

c)

d)

oscillating
transverse magnetic fieldneutron spin

Figure 1.4: Scheme of the Ramsey method of
separated oscillatory fields

a) Polarized neutrons (all of the neutrons
in the population are in the “up” state) are
in volume, where magnetic and electric
fields are either parallel or anti-parallel.
This field configuration causes neutrons’
spins to precess around the direction of
both field vectors, resulting in net polar-
ization of neutrons to be along the direc-
tion of both fields.

b) Oscillating magnetic field ~B1 perpen-
dicular to the main field direction is ap-
plied. Duration of this pulse is tuned, so
that the average polarization of neutrons
after its application is 0. This pulse is
called a “π/2” pulse because in the rotat-
ing (with the ω = ωL) frame of reference,
the neutron’s spin direction is rotated by
π/2.

c) The spins of neutrons are precessing in
the plane perpendicular to the main field
direction with ω = ωL.

d) Second π/2 magnetic field pulse is applied to neutrons. Their spins are rotated again
by π/2, leading again to non-zero net polarization.
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Figure 1.5: A magnetic resonance curve, showing the number of neutrons in the “up” state
reaching detector after application of π/2 pulse, free precession and second π/2 pulse as a
function of frequency of π/2 pulses. Measurement done by RAL-Sussex-ILL collaboration (see
Ref. [20]).

The central fringe in the Ramsey resonance curve (Fig. 1.5), corresponding to neu-
trons in the “up” state after application of the Ramsey method of separated oscillatory
fields, can be described by:

Nup(∆ν) = Nup (1− α cos (∆νT )) , (1.12)

where Nup = (Nmax + Nmin)/2 and α = (Nmax − Nmin)/(Nmax + Nmin) is the, so
called, visibility factor and T is the free precession time. From this equation, it is clearly
visible that the width of the central fringe of the Ramsey pattern is proportional to 1/T ,
making it important to allow neutrons to precess as long as possible.

From equations (1.12) and (1.9) it is possible to calculate [21] the expected statistical
uncertainty of the electric dipole moment obtained by the Ramsey’s method of separated
oscillatory fields:

σ (dn) =
h̄

2EαT
√
NM

, (1.13)

with E - electric field, N = Nup +Ndown total number of neutrons and M – the number
of repetitions of the measurement.
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Influence of magnetic field changes on the Ramsey method of oscillatory fields

Equation (1.9) was obtained under the assumption that the magnetic field has not changed
between measurements with parallel and anti-parallel fields. Without this simplification,
the neutron electric dipole moment can be expressed as:

dn =
(ν↑↑ − ν↑↓)− µn (B↑↑ −B↑↓)

2 (E↑↑ + E↑↓)
, (1.14)

where B↑↓, E↑↓ are norms of magnetic induction and electric field vectors during the
measurement with anti-parallel fields and B↑↑, E↑↑ correspond to parallel fields. This
equation shows that it is crucial to control changes of magnetic field contributing to the
fake term µn (B↑↑ −B↑↓).

In the proceeding parts of this thesis, the topic of suppressing the changes in mag-
netic field is addressed. Several active magnetic shielding setups are considered. The
field changes, still remaining after compensation, are to be measured using magnetome-
ters.
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Chapter 2

The nEDM experiment at the Paul
Scherrer Institute

The nEDM experiment at the Paul Scherrer Institute is a joint project of a group consist-
ing of over 60 scientists from various countries. This collaboration is working on im-
proving the measurement sensitivity of the neutron electric dipole moment. To achieve
that, the first pulsed spallation UCN source in the world was built in Paul Scherrer In-
stitute. With the use of neutrons from this source, there are ongoing measurements of
neutron EDM, using parts of the old setup developed by the RAL-Sussex-ILL collabo-
ration (see Ref. [13]).

2.1 UCN Source at Paul Scherrer Institute

For measurement of the neutron electric dipole moment at the Paul Scherrer Institute,
the spallation based UCN source is used. Its scheme is shown in Fig. 2.1. Protons
arrive from the 590 MeV PSI proton ring accelerator and hit the spallation target made
of Zircalloy tubes filled with lead [23].

Spallation neutrons have the energy spectrum with the mean value around 2 MeV.
They are slowed down in a room temperature D2O moderator. To the ultra-cold regime,
they are decelerated in deuterium crystal by inelastic scattering. Most of their kinetic
energy is transformed to excitations of the scattering medium.

Resulting energies of the neutrons are below 500 neV. Earth’s gravitational field
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2.2. EDM SPECTROMETER

Figure 2.1: Scheme of the ultra-cold neutron source at the Paul Scherrer Institute. The marked
components of the system are described in the text. Image taken from [22].

causes the neutrons’ energy to lower even more while going up to the UCN Storage
volume. Only ultra-cold neutrons can be stored there, since all neutrons with higher
energies are absorbed by walls coated with diamond-like carbon.

From storage volume, neutrons are transported through UCN guides to the nEDM
experiment and other experiments.

2.2 EDM Spectrometer

Neutrons from the UCN source (see Fig. 2.2) get polarized in the axial field of the super-
conducting magnet and reach the switch section. A mechanical switch directs neutrons
up to the precession chamber located inside a 4-layer shield built from Mumetal, metal-
lic alloy with high magnetic permeability.

Inside the precession chamber, a 1µT vertical magnetic field is applied together with
an electric field of magnitude over 10 kV/cm.

After the storage cell is filled with neutrons, the mercury entrance shutter is opened
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Figure 2.2: Scheme of nEDM apparatus

and polarized 199Hg atoms diffuse to the precession chamber. During the experiment,
there are about 3 · 1010 Hg atoms/cm3 in the precession chamber. Then, two radio fre-
quency π/2 pulses are applied. The first pulse is applied at the Larmor frequency of
199Hg fHg ≈ 7.7 Hz to force mercury magnetic moments to precess in plane perpendic-
ular to the main field direction. Immediately after that, a second pulse is applied with
frequency fn ≈ 30 Hz. This is the beginning of the Ramsey sequence for neutrons:
neutron spins start precessing in the plane perpendicular to the main field direction. The
free precession takes about 200 s. After this time, the second π/2 pulse with the fn
frequency is applied (see Sec. 1.4.1).

After that, neutrons exit through the entrance window and reach the switch, which
directs them to the scintillating neutron detector.

2.3 Neutron detection

To increase the number of counted neutrons, simultaneous spin analysis is used, contrary
to the sequential one utilized by the RAL-Sussex-ILL experiment [13]. Here, two spin
components of the UCN ensemble are counted separately. This results in two identical
arms of the polarimeter, as shown in Fig. 2.4. In the left arm, where the adiabatic
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Figure 2.3: NANOSC - NANO SCintillator.

spin flipper (ASF) is on, the spin up component is analysed whereas in the right arm,
where the ASF is off, the spin down component is measured. As a result, the waiting
time above the analysing foils is reduced and UCN losses, as well as depolarizations,
are minimized. During this operation, neutrons with initial spin down (up) will be
rejected on the analysis foil of the left (right) arm. An important goal in the design of
the simultaneous spin analyser was to optimize the transport of “wrong spin” neutrons
from one arm to the other in the transit volume above the two arms. Optimal geometry
was determined with Geant4-UCN simulations [24].

For a detecting device, we use a 6Li doped glass scintillator with photomultiplier
tubes for readout of light. The detectors are shown in Fig. 2.3. This detector utilizes the
neutron capture reaction:

n + 6Li→ 3H(2.74 MeV) + 4He(2.05 MeV).

Cross-section for this reaction for thermal neutrons is 940 barns. This cross-section
follows the 1/v rule and though it leads to order of 105 barns for velocities of ultra cold
neutrons.

Detector pulses are digitized and sorted according to respective amplitudes with the
help of FASTER (the Fast Acquisition System for nuclEar Research) – data acquisition
system, which is specially designed by LPC Caen for nuclear physics experiments.
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Figure 2.4: Scheme of the U-shaped Simultaneous Spin Analyser detector system

17
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2.4 Systematic effects

Careful investigation of systematic effects which affect the result of measurement in this
experiment is crucial. Current limits are presented in Tab. 2.1. A detailed description
of all of these effects can be found in Ref. [21].

Table 2.1: Known systematic effects of the nEDM experiment (from [21]).

Effect Shift to neutron EDM
[10−27e · cm]

Leakage currents 0.00± 0.05
v × E:
first order 0.00± 1.70
second order 0.00± 0.00
Electric forces 0.00± 0.00
AC fields 0.00± 0.00
Uncompensated B field drifts −0.1± 0.4 [25]
199Hg atom EDM 0.02± 0.06
199Hg light shifts 0.00± 0.27
Geometric phase effect:
Dipole fields 0.00± 0.00
Quadrupole difference 0.56± 0.90

Total 0.48± 1.98

In the following chapters, the systematic effects related to magnetic field which are
influenced by either magnetic field shielding or magnetic field mapping are described.
They are the main topics of this dissertation.

2.4.1 Geometric phase effect

Particles with a magnetic moment exposed to a magnetic field, ~B0 = B0ẑ precess at
the Larmor frequency fL = γB0/2π, where γ is the gyromagnetic ratio. Because of
experimentally unavoidable magnetic field gradients, the Larmor frequency of a particle
moving through this field will be subject to a shift, known as the Ramsey-Bloch-Siegert
(RBS) shift [26]. If an electric field ~E (parallel or anti-parallel to ~B0) is applied - as is
the case in experiments searching for EDMs - the moving particle will experience an
additional motional magnetic field ~Bv = ~E × ~v/c2. It is the interplay between this field
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and the magnetic field gradients that lies at the origin of a frequency shift proportional
to the electric field strength, thus inducing a false EDM.

The first detailed calculation of such false EDMs for stored particles was given in
Ref. [27, 28] in the context of the RAL-Sussex-ILL neutron EDM experiment [13].
The authors derived expression for the two limiting cases: non adiabatic and adiabatic,
corresponding to 2πflτ � 1 and 2πflτ � 1 respectively, where τ is the typical time
particles take to cross the trap. Both regimes are of interest, since 199Hg atoms fall into
the first category whereas UCNs fall into the second. More general results, valid for a
broad range of frequencies, were obtained only for cylindrical symmetry and specular
reflections. The expressions of the frequency shifts for the two limiting regimes are:

δfL =
γ2D2

32πc2

∂B0

∂z
E (non adiabatic) (2.1)

δfL =
v2
xy

4πB2
0c

2

∂B0

∂z
E (adiabatic), (2.2)

where γ is the gyromagnetic ratio, D is the diameter of the trap, c is the velocity of light
and vxy is the particle velocity transverse to ~B0. Note the absence of the gyromagnetic
ratio in Eq. (2.2). Indeed, in the adiabatic case, the frequency shift can be interpreted
as originating from a phase of purely geometric nature, or Berry’s phase [29, 30], and
is therefore independent of the coupling strength to the magnetic field.

These results were then complemented and extended using the general theory of
relaxation (Redfield theory) [31, 32] and then by solving the Schrödinger equation di-
rectly [33]. In Ref. [32], an expression valid for arbitrary field distributions or trap
shapes was obtained in the non-adiabatic limit:

δfL =
γ2

2πc2
〈xBx + yBy〉E (non adiabatic), (2.3)

where the brackets refer to the average over the storage volume. For a cylindrically
uniform gradient and a trap with cylindrical symmetry, Eq. (2.1) reduces to (2.3). Using
the relationship between the frequency shift and the false EDM,

dfalse =
h

2E
δfL(E), (2.4)
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where h is Planck’s constant. Together with Eqs. (2.2) and (2.1), one can now readily
calculate the magnitude of the false EDMs for the mercury and for the neutron (both
direct and resulting from the false EDM of 199Hg). Given our experimental conditions
and assuming a neutron velocity of 3 m/s, one obtains:

dfalsen =
∂B0

∂z
1.490 · 10−29ecm/(pT/cm) (2.5)

dfalseHg =
∂B0

∂z
1.148 · 10−27ecm/(pT/cm) (2.6)

dfalse,Hgn =
∂B0

∂z
4.418 · 10−27ecm/(pT/cm), (2.7)

where dfalsen is false EDM of neutrons, dfalseHg is false EDM of Hg atoms and dfalse,Hgn is
false EDM of neutrons inducted by false EDM of mercury.

Considering a typical value of 10 pT/cm for the vertical (z direction) gradient in our
setup, we can conclude, on the one hand, that the direct false neutron EDM is negligible,
at least at the current level of sensitivity. On the other hand, the mercury induced false
neutron EDM is a major systematic error that must be properly taken into account.

To take this error into account, control and careful investigation of magnetic field in
the place of the experiment must be conducted.

To suppress the magnetic field gradients, generating the effect described above, pas-
sive and active shielding are used. The comparison of active compensation systems is
the main topic of this dissertation and is presented in Part II.

The analysis of results of the mapping campaign, which was performed to gather
information about magnetic field distribution in the volume occupied by the precession
chamber, is presented in Part III of this dissertation.

2.5 Magnetic field nonuniformity

In the experiment measuring nEDM at the Paul Scherrer Institute, mercury cohabiting
magnetometer is used to monitor changes of magnetic field during free precession time.
This sensor measures magnetic field averaged over volume occupied by 199Hg vapour.
This vapour is at room temperature, which results in uniform distribution of mercury
atoms inside the whole precession chamber.
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Ultra-cold neutrons interact gravitationally with matter. Because their thermal ki-
netic energy is very low, the gravity has a non-negligible impact on their trajectories
in the bottle, resulting in larger density near the bottom. The difference of centres of
gravity of neutrons and mercury atoms is about 2.5 mm. This means that, on average,
neutrons may interact with slightly different magnetic field than mercury atoms.

Non-uniform magnetic field leads also to spin-spin relaxation of both neutrons and
mercury atoms. This is a result of different spin precession frequencies at different
places in the precession chamber, which causes a self-depolarization of medium. This
phenomenon is described by T2 time, which is the measure of time needed for polar-
ization to decrease by 1/e. In order to improve the precision of measurement (see Eq.
(1.13)), it is preferred to increase the free precession time. The larger T2 time is, the
more neutrons will still be polarized after a given free precession time.

The value of the magnetic field vertical gradient can be extracted in two ways. It
is done either by analysis of the ratio of gyromagnetic ratios of neutrons and mercury
atoms (R = γn/γHg) as a function of externally applied vertical magnetic field gradients
[34] or by direct measurement using a dedicated magnetometer. During this work direct
data was analysed, which is presented in Part III.

The higher orders of the vertical magnetic field nonuniformity present in the pre-
cession chamber are harder to measure and apply corrections for. The main goal of
magnetic field shielding, both passive and active, is to provide a sufficiently uniform
and stable magnetic field. R&D works on improving the existing system of magnetic
field compensation are presented in Part II.

2.6 Magnetic field control systems

Magnetic field is a crucial source of uncertainties in the nEDM measurement. Due to
this fact, systems gathered in Fig. 2.5 are being used. They can be divided into two
types:

Magnetic field monitoring - Measurement systems allowing us to correct for changes
in magnetic field. Here we use two magnetometer systems: a mercury cohabiting
magnetometer and caesium magnetometers
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Magnetic field generation/shielding - Coil systems and shields allowing us to change
the magnetic field to improve sensitivity of nEDM measurement.

Figure 2.5: Summary of magnetic field control components

2.6.1 Magnetic field monitoring

Monitoring of the magnetic field during measurement of the electric dipole moment
is crucial (for discussion, see Sec. 1.4.1). It is necessary to respect variations of the
ambient magnetic field in evaluation of the nEDM measurement. A spectacular effect
of the corrections of the magnetic field variation is shown in Fig. 2.6. Without those
corrections, magnetic field changes dominate other effects, including nEDM itself.

In the nEDM experiment at the Paul Scherrer Institute, the magnetic field in the
precession chamber is monitored by the following systems:

Mercury cohabiting magnetometer. Measurement with this instrument is based on
determination of the precession frequency of polarization of 199Hg atoms in the
magnetic field inside precession chamber. This frequency is proportional to the
average magnetic field inside the chamber since the 199Hg atoms move randomly
and uniformly inside the precession chamber. Circularly polarized light passes
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Figure 2.6: Larmor frequency of neutrons during RAL-Sussex-ILL experiment with and without
corrections for changing magnetic field. Figure taken from [35]

through the precession chamber, being partially absorbed, depending on the rel-
ative orientation of the 199Hg polarization and the Poynting vector of the light
wave. In effect, the detected intensity at the end of its path is proportional to the
average polarization of the 199Hg atoms. The transmitted light is sampled during
the whole free precession time of the Ramsey cycle.

Caesium magnetometer. Measurement with this sensor is based on measurement of
precession frequency of 133Cs atoms enclosed in a glass bulb with a diameter of
2 cm. The caesium atoms are optically pumped by a circularly polarized light,
oriented at 45◦ with respect to the magnetic field direction. A diode laser pro-
vides the resonant light, which is then transmitted through the cell and carried
back to the detection unit. The pumping process produces a polarization in the
sample which precesses with Larmor frequency ωL. The weak radio-frequency
field is driving this precession. The absorption of the pumping light depends on
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the direction of the magnetization with respect to the light direction, like in the
Mercury magnetometer. The measurement of the modulation frequency allows to
calculate the magnitude of the magnetic field vector.

Fluxgate sensors. These sensors are working on another principle. The excitation coil
with current produces an oscillating magnetic field, which periodically saturates
the sensor core made up of soft magnetic material. Core permeability is lowered
in saturation, causing flux associated with magnetic field to be decreased. In the
second (pick-up) coil, the voltage is induced. This voltage is usually the sensor
output and it is proportional to the measured field. In the nEDM experiment at the
Paul Scherrer Institute, fluxgate sensors are used for feedback in the active field
compensation system.

2.6.2 Main field coil and correction coils

Figure 2.7: Main field coil and correction coils wound around the surface of the vacuum tank

The main field coil (called B0 coil) is designed to provide an uniform vertical mag-
netic field in the precession chamber. This is the so-called cos θ coil, wound around the
surface of a cylindrical vacuum tank (see Fig. 2.7). It generates 1 µT field using 17mA
current flowing through it. Since the B0 coil is contained inside the innermost passive
shielding layer, the generated field interacts with ferromagnetic material such that the
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CHAPTER 2. THE NEDM EXPERIMENT AT THE PAUL SCHERRER INSTITUTE

precession chamber volume is exposed to the effective field from the B0 coil and from
the shielding.

The B0 coil is assisted by a set of 33 correction coils (shown in Fig. 2.8) helping
to reduce the field imperfections produced by the B0 coil and the shield. It is a big
challenge to find the optimal trim coil currents that should be driven such that the field
inside the precession chamber is perfectly uniform.

(a) Left and Right Correction Coils (b) Top, Bottom and Helmholtz correction coils

Figure 2.8: Correction coils

The naming scheme for the correction coils is related to their location. The first
letters (B - bottom, T - top, L - left, R - right) represent the coil positions, while H
stands for the three paired Helmholtz coils.

There are also additional coils wound around mercury and neuron guides to ensure
that transported neutrons will not lose their polarization.

A large number of coils and complexity of the apparatus make it difficult to calculate
the optimal current settings. To solve this problem, three different approaches were
tried:

Manual tuning – The theoretical model of the magnetic field environment and coils
was calculated and used for determination of optimal currents. Its results are used
as an initial estimate for manual tuning of currents in the coils separately. This
method is most commonly used during normal day operation, but it is not the
most efficient.

Cs magnetometer feedback – The magnitude of the magnetic field vector | ~B|, gener-
ated by each coil (i), is measured by caesium magnetometers (j), resulting in a set
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of Bi,j . In general, the relation between the coil currents (Ii) and the magnitude
of the magnetic field at the j sensor position Btotal,j is described by:

Btotal,j =

∣∣∣∣∣ ~B0,j +
33∑
i=1

Ii ~Gx,i,j

∣∣∣∣∣ , j = 1, . . . (2.8)

where ~B0,j denotes the magnetic field vector originating from outside the system
(not correction coils) and from the B0 coil measured by the magnetometer j and
~Gi,j = 1

Itest
~Bi,j are the proportionality factors relating coil currents with generated

fields. Even the uncorrected field has a large vertical component, while horizontal
components are relatively small ( ~B0,j,z � ~B0,j,x and ~B0,j,z � ~B0,j,y) and it is
possible to simplify Eq. (2.8):

Btotal,j ≈

∣∣∣∣∣ ~B0,j,z +
33∑
i=1

Ii ~Gz,i,j

∣∣∣∣∣ . (2.9)

In Eq. (2.9) ~B0,j,z and ~Gi,j,z are measured driving the test current Itest to individ-
ual coils. A perfectly uniform field corresponds to equal values of Btotal,j; j =

1, . . .. Thus, the optimization procedure has to find such currents Ii(i = 1, . . . , 33)

that equalize Btotal,j in the best way. This can be achieved using singular value
decomposition and regularization methods described in greater detail in Sec. 4.1.

With this method, it is possible to make all the magnetometer readings equal.
This does not necessarily mean that the corresponding magnetic field is uniform,
since we do not have any information about the direction of the field. However,
this method has lead to the magnetic field configuration allowing us to obtain the
longest possible free precession time.

Mapping based – This approach utilizes the magnetic field maps obtained during a
dedicated measurement campaign. This will be described in detail in Chapter
6.10.
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2.6.3 Shields

The experiment is located at the Paul Scherrer Institute in proximity of other experi-
ments and test sites. All these facilities are sources of a variable magnetic field which
can interfere with measurements. Changes in both modulus and gradients increase un-
certainty of the measured neutron EDM. To suppress these unwanted influences, two
types of magnetic field shielding are used:

Passive – built using metal alloys with high magnetic permeability µ. In this experi-
ment we use a 4-layer shield made of Mumetal.

Active – this shield consists of coils connected to power supplies and controlled with
feedback based on magnetic field measurements by dedicated sensors. Active
shields are the main topic of this dissertation. Part II is devoted to the detailed
discussion of this topic.

These two shield types have a different range of operation in the frequency domain.
Active magnetic field shielding can operate at low frequencies (usually below 100 Hz,
like [36] at 60 Hz), whereas passive shields behave better at the greater frequency of
perturbation [37].

To quantify the performance the so-called Shielding Factor (SF ) is used. It is de-
fined as:

SF =
‖ ~Bwithout shield‖
‖ ~Bwith shield‖

(2.10)

Passive shield

Passive shields are usually built using material with high permeability. This causes
static magnetic field lines to concentrate inside the shielding material (see Fig. 2.9).
The changing magnetic field generates eddy currents in the conductive shield which
compensates the disturbing field.

In nEDM experiment at PSI, 4-layer passive shield made of Mumetal is used. Its
dimensions are collected in Tab. 2.2. Measured [39] and simulated [40] performance is
shown in Tab. 2.3. The discrepancy between the theoretical and experimental values are
related to the fact that there are holes in the Mumetal shield, which were not included
in theoretical calculations.
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Figure 2.9: Magnetic field lines inside a high permeability (µr = 1000) shield. This figure
shows the right half of the shield. The field is generated by a current loop of the radius 2.5
centred on the z axis. The circle marked with an arrow is the cross section of the wire. Taken
from [38]

Table 2.2: Dimensions of passive magnetic shielding. Each of the layers is made of a cylinder
with a radius of R, length l1 and two end caps. Length l2 is the total length of shield layer with
end caps after assembly. Overlap states how many end caps overlap with the cylinder. t is the
thickness of the Mumetal used for both the end caps and cylinder.

Shield R [m] l1 [m] l2 [m] Overlap [m] t [mm]

1 0.97 2.74 2.74 0.20 1.5
2 0.79 2.30 2.30 0.20 1.5
3 0.68 0.75 1.89 0.12 2.0
4 0.58 0.75 1.63 0.12 2.0

Table 2.3: The shielding factors for the passive magnetic shield for the nEDM experiment at PSI

Direction Measurement at PSI [39] calculation [40]
Radial horizontal (X) 13300 24023

Longitudinal (Y) 1600 3550
Radial vertical (Z) 8600 24023
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2.7 n2EDM - next generation setup

First measurements of neutron EDM at the Paul Scherrer Institute are done using pas-
sive magnetic shielding from the RAL/Sussex/ILL collaboration. Experience gained
with this apparatus allows us to design a completely new measurement system sup-
pressing the systematic uncertainties in a much better way. The biggest changes are the
sandwiched precession chambers (see Fig. 2.10) instead of the one in the currently used
apparatus.

Configuration with two ground electrodes on top and bottom of the sandwich ar-
rangement of two precession chambers and high voltage electrode in the centre makes it
possible to run both configurations, parallel and anti-parallel magnetic and electric fields
at the same time. Such an arrangement is advantageous since several systematic effects
cancel in the first order. In this configuration, the magnetic field in the spectrometer
would be measured by three types of atomic magnetometers:

• cohabiting 199Hg magnetometer

• a pair of 3He magnetometers for a direct control of the vertical magnetic field
gradients,

• Cs magnetometers,

The Cs magnetometers would be primarily used to monitor the rotating 3He magnetiza-
tion.

The new concept of the spectrometer requires a new design of both a vacuum cham-
ber and a passive magnetic shielding. A sketch of the n2EDM setup is presented in
Fig. 2.12. The multilayer cubic Mumetal shield surrounds a cylindrical vacuum vessel,
where the spectrometer with two precession chambers and two large-scale 3He magne-
tometers is located. In order to improve the active magnetic field shielding, extensive
research and development is being conducted. Results of these investigations are part
of this dissertation and described in Part II.

The B0 coil is being designed to be “self-compensating”, meaning that the external
flux should be as small as possible. This can be done with an additional layer of wind-
ings as shown in Fig. 2.11. The reason for suppressing the external flux of the B0 coil
is its interaction with the passive shield worsening the B0 field uniformity.
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Figure 2.10: Sketch of n2EDM precession chambers with polarized 3He supply line

Figure 2.11: 3d image of the DISCO coil - self-compensating coil, which generates uniform
magnetic field inside and only small rest magnetic field outside
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Figure 2.12: Preliminary design of n2EDM experiment apparatus. Visible are two precession
chambers – designed to perform the Ramsey method of oscillatory fields with the field parallel
and anti-parallel at the same time. They are positioned inside a cylindrical vacuum vessel inside
a multi-layer magnetically shielded room.
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Part II

Active magnetic shielding systems
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Chapter 3

Introduction

Interesting information about complex physical, biological and environmental systems
is communicated to the external world by weak and low-frequency magnetic signals re-
flecting evolution of the weak magnetization carried by these systems. Similarly, in cer-
tain quantum mechanical ensembles such as spin polarized ultra-cold neutrons or atoms,
the interesting physical information is superimposed on top of their weak magnetization,
which must be strictly controlled in order to observe the desired signal. There are also
well established methods to measure magnetic fields in the range starting from 10 nT
and down to a few fT. These include fluxgate transducers (see Refs. [41, 42]), quantum-
optical magnetometers and SQUIDs (see Ref. [43]), reaching sensitivities as low as a
few fT/

√
Hz. The measurement of such weak signals is, however, extremely difficult

because external magnetic field disturbances and noise penetrate easily to the object
being studied. One traditional way to deal with this problem is based on sophisticated
passive shieldings made of high permeability ferromagnetic alloys or superconducting
enclosures. Examples of such systems can be found e.g. in Refs. [44–47].

Theoretically, another approach exists to provide a “magnetic vacuum” in a given
volume and frequency range. For a charge- and current-free space, in the quasi-static
regime, this is guaranteed by solutions of the Laplace equation arising from Maxwell’s
laws of classical electromagnetism (see for example Ref. [48]). Knowing field vectors
at sufficiently numerous points it is possible to judge the field distribution in a given vol-
ume with the required accuracy. This, in turn, allows calculating and applying electric
currents in a system of correction coils generating (in the same volume) the field distri-
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bution with the same magnitude and sign opposite to the measured field. The correction
signal must appear with a delay negligible for the frequency range in question.

In practical solutions, especially for a large controlled volume, one is faced with
limitations, the most important being the maximal number of independent correction
coils included in the feedback loop. Each coil needs a precise and quickly reacting
current source with control electronics and dissipating power (heat) which may cause
additional problems in a particular application. The main goal of this study is to estimate
the performance of an idealized system with as few degrees of freedom as possible.
Such a case will be used in the future as a reference for practical solutions, in particular,
for the next stage of the nEDM experiment. In this thesis, this system is compared
to two already built systems and one only simulated. A total of four different active
compensation systems, that will be presented in this work are:

SFC - surrounding field compensation system . This system is based on 6 rectangu-
lar coils, which are grouped in 3 Helmholtz-like pairs. This configuration is in
operation right now as an element of the nEDM experiment at the Paul Scherrer
Institute

Merritt coil system . There are 12 rectangular coils in this system, which are based on
the 4 coil arrangement proposed by Merritt et al. [49]. An operational prototype
of this coil set was built for comparison and is described in Chapter 4.2.

Cellular coils system . This considered setup consists of a large number of small coils
with magnetic field sensors inside each of them. Such a system is the discrete
realization of the ferromagnetic or superconducting shielding idea - eddy currents
that compensate the magnetic field component perpendicular to the surface are
mimicked by the cell coil currents.

Spherical coils system . This system is based on the field description using vector
spherical harmonics (VSH). It exhibits optimal properties and can be used as a
reference in the performance comparison of various systems.

All the calculations were performed with adopted algorithms from the GNU Scien-
tific Library [50]. The calculations for the spherical system are resource-intensive. For
instance, for some of the calculations, it consumes as much as 5 GB of memory and
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needs over a month of CPU time. In order to speed up the process, the code was im-
plemented onto a GPU system consisting of 3 nVIDIA TESLA C2050 cards (for more
information see Ref. [51]).

In order to compare the performance of all coil systems, we assume that the field
measurement sensors are located at randomly chosen positions on a cube with 2 m long
edges (centred in the coil system centre). The chosen radius for the spherical coils is
r = 2.93 m and the number of wire turns in each spherical coil is equal to 100. We
assume that the finite thickness of the wires has negligible influence on magnetic fields.

As the figure-of-merit for the performance of a field compensation system we define
the relative difference ∆ between the perturbation and the field correction generated by
the considered system:

∆ =

∣∣∣ ~Bper − ~Bcor

∣∣∣∣∣∣ ~Bper

∣∣∣ , (3.1)

where ~Bper denotes the field generated by an external source and ~Bcor the correction
calculated by the compensation system.

The defined in Eq. (3.1) ∆ is a function of (x, y, z) and describes the shielding
factor in a given place achieved by the considered compensation system of ideal coils
driven by ideal current sources and measured by ideal magnetometers located at fixed
positions distributed on the sensor cube.

Since the mostly expected external field disturbances are of dipolar type, we model
them with a current loop at a fixed distance and fixed orientation. The resulting field
distribution was calculated by the integration of the Biot-Savart’s law. This kind of
perturbation always generates the magnetic field inside the volume with non-zero mag-
nitude

∣∣∣ ~Bper

∣∣∣ > 0. This assures that the denominator in Eq. (3.1) is always different
than 0.

To equally consider all possible orientations and positions at a given distance, ∆ is
averaged over a set of 100 random positions and 100 orientations.
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Chapter 4

Considered variants of magnetic field
compensation systems

In this chapter a description of four active magnetic field shielding systems is presented.
These include:

SFC - 6-coil rectangular system

Merritt - 12-coil rectangular system, based on the setup proposed by Merritt et al. [49]

Cellular - System consisting of a large number of small, rectangular coils

Spherical - System consisting of 8 or 15 spherical coils, based on vector spherical
harmonics
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4.1. SURROUNDING FIELD COMPENSATION SYSTEM (SFC)

4.1 Surrounding Field Compensation system (SFC)

Figure 4.1: Main passive shield and the coils of SFC, marked with colours.

This system is build up of:

• 6 rectangular coils, presented in Figure 4.1. Their dimensions are collected in
Tab. 4.1.

• Current sources, power supplies from FuG, type NTN350-35 and NTN700-35.
They can provide 350 W and 700 W DC power, respectively, and are controlled
from PC.

• 10 fluxgate magnetometers, Bartington Mag-03 MCL-70 or MCTP-70, 8 of them
mounted in the corners of the aluminium support of the Mumetal shield and two
in the centre of the side support structure.

• PC running the compensation algorithm calculating the coil currents stabilized by
a PID controller.
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Table 4.1: Dimensions of the coils of the rectangular active magnetic field compensation system
of the nEDM experiment at PSI

coil long side [m] short side [m] separation[m]
X- 7.9 6.1

4.2
X+ 7.9 6.1
Y- 8.2 5.9

5.1
Y+ 8.4 6.0
Z- 8.0 5.8

4.2
Z+ 8.0 5.8

The coils have independent power supplies providing 6 degrees of freedom of the
compensation system. The necessary reaction currents of the external field changes are
calculated using the readouts from a number of fluxgate sensors utilizing the fact that the
magnetic field strength generated by a coil is proportional to the current driven through
it. This leads to a system of linear equations relating the measured field components
with the coil currents:

B1
x

B1
y

B1
z

· · ·
Bn
z

 =


Gx1

1 Gx1
2 Gx1

3 · · · Gx1
m

Gy1
1 Gy1

2 Gy1
3 · · · Gy1

m

Gz1
1 Gz1

2 Gz1
3 · · · Gz1

m

· · · · · · · · · · · · · · ·
Gzn

1 Gzn
2 Gzn

3 · · · Gzn
m




I1

I2

I3

· · ·
Im

 (4.1)

~B = G~I (4.2)

The Gij
k coefficients are determined by recording the fluxgate magnetometer measure-

ment values while changing the current in one coil at a time. The minimum number of
3-dimensional fluxgate sensors necessary to uniquely establish the coil currents depends
on the number of coils in the system. Only two sensors are required for that purpose,
in the case of this rectangular coil system. However, such a system would compen-
sate the field changes only in two points (the location of fluxgate sensors) ignoring the
field changes in other parts of the controlled volume. Moreover, the uncertainties of the
measured fields propagate to the calculated correction currents. In order to reduce these
drawbacks the system utilizes more fluxgate sensors leading to an overdetermined set
of equations.
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In general, such a set of linear equations does not have solutions, but it is possible
to solve the least-square problem instead:

Ileastsquare = min
~I

∥∥∥G~I − ~B
∥∥∥ = G̃−1 ~B, (4.3)

where ‖·‖ denotes the euclidean norm. The pseudoinverse matrix G̃−1 is calculated
using the Singular Value Decomposition method [52].

In this method the G matrix of size m × n is decomposed into a product of three
matrices:

G = UΣV†, (4.4)

where: U and V are unitary matrices (U−1 = U†) of sizesm×m and n×n, respectively,
† denotes conjugate transpose and Σ is a diagonal m × n matrix with diagonal values
Σi.

Properties of such matrices make the pseudoinverse matrix easy to calculate:

G̃−1 = VΣ−1U†, (4.5)

with Σ−1 = diag (1/Σi) - diagonal matrix with values 1/Σi.

Elements of matrix G include noise, no matter if it is induced by measurement or
calculation. Even a small change, introduced by finite numerical precision of the com-
puter floating point algebra, would result in significant differences of current solutions.
To limit this problem, the so called Tikhonov regularization (see Ref. [53]) is introduced
in pseudoinverse calculation. This approach solves not the least-square problem of Eq.
(4.3), but the more general one:

Itikhonov = min
~I

(∥∥∥G~I − ~B
∥∥∥2

+
∥∥∥Γ~I∥∥∥2

)
= Ğ−1 ~B, (4.6)

where Γ is an additional matrix, usually chosen as a scaled identity matrix Γ = α1n×n.

The solution to such a problem is given by:

Ğ−1 = VΣ̆−1U†, (4.7)
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where Σ̆−1 is a diagonal matrix with elements given by:

Σ̆−1 = diag

(
Σi

(Σi)
2 + α2

)
, (4.8)

which, in comparison to regular pseudoinverse, results in decreasing value of the inverse
of the smallest singular elements Σi. The parameter α needs to be optimized for the
specific case. The most common way of finding the optimal α, is the use of the so-
called L-curve (see Ref. [54]). It is a log-log plot of the residual

∥∥∥G~I − ~B
∥∥∥ as a

function of the norm ‖x‖ for different values of the regularization parameter α. The
name originates from the shape of this curve, which is similar to the L letter. The point
of the greatest curvature estimates the optimal α value.

4.1.1 Residual distributions of compensation
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Figure 4.2: Maps of the simulated average ∆ for the rectangular magnetic field compensation
system for disturbance sources located randomly 20 m away from the centre of system – left
panel and 200 m – right panel. The map plane is at x = 0.01 m. The coil positions are marked
with black crosses and positions of three (out of 10) feedback sensors are marked with black
stars.

The simulations were performed to compare SFC system to other considered sys-
tems. For the calculations the magnetic field values at 10 fixed positions were used.
These positions are common to all systems. The SFC system of coils is the simplest one
of all considered in this thesis. The distribution of ∆ for sources located closely and
further away are presented in Fig. 4.2. The smallest values, meaning better compensa-
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tion, are in a close neighbourhood of sensors. Even there, ∆ is not smaller than 10−2.
With increasing distance to the source of magnetic field disturbance, the volume with
lower ∆ is increasing which will be described, in detail, in Chapter 5.

4.1.2 Measurement results

The ability for compensation of the changing field is quantified by Allan standard devi-
ation and dynamic shielding factor. They are defined in the following chapter.

The Allan standard deviation and Dynamic Shielding Factor

Consider a series of measurements of the changing magnetic field ~Bi, performed in the
time sequence. Each ~Bi(τ) represents a measurement averaged over an i-th integration
period of length τ . In such a measurement series, one can define the Allan standard
deviation σy(B, τ):

σy(B, τ) =

√√√√ 1

2(N − 1)

N−1∑
l=1

(
B̄l+1(τ)− B̄l(τ)

)2
, (4.9)

where: N - number of τ intervals in the whole measurement (N = T/τ , where T - total
measurement interval) , B̄l(τ) is the average over an l-th interval.

Allan standard deviation will be used in the definition of the dynamic shielding
factor (see below).

During operation of an active magnetic shielding system, information about the
magnetic field vectors at the position of sensors and current is supplied to the coils.
With these information, it is possible to reconstruct what the magnetic field would look
like, if the compensation system was not working (see section 4.1):

B(j)not compensated = B(j)compensated −
12∑
i=1

Gj,iIi, (4.10)

where Ii is the current driven into i-th coil, B(j)compensated is the magnetic field measured
by j-th sensor (compensated field). The dynamic shielding factor (DSF ) is defined as
a ratio of the Allan standard deviation of uncompensated and compensated fields and
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thus, is a function of the integration time:

DSFj(τ) =
σy
(
B(j)not compensated, τ

)
σy
(
B(j)compensated, τ

) (4.11)

Measurement results

Operation of this system is described in Ref. [55].
Experimental investigation revealed that regularization is crucial to operation of this

system. Without it, the compensation system introduces additional noise instead of
preventing it. Results from the most optimal configuration (a regularized pseudo-inverse
matrix used for calculation of currents from 24 magnetic field sensors) are presented in
Fig. 4.3. The dynamic shielding factor for τ = 100 s is spread out between 2 and 12.

45



4.1. SURROUNDING FIELD COMPENSATION SYSTEM (SFC)

Figure 4.3: Shielding factors from a measurement using the SFC system with 24 sensor feed-
back, including a regularized matrix. The plot shows DSFj for all SFC sensors as a function
of integration time, sorted by their orientation: x-sensors in the upper, y-sensors in the mid-
dle, and z-sensors in the lower graph, respectively. Feedback sensors are plotted with dashed
lines and monitoring sensors are plotted with solid lines. The solid black line is an emphasized
grid line at DSF = 1; shielding factors lower than 1, indicate noise increase by dynamic SFC
implementation. The grey area depicts the region of interest for the nEDM experiment.
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4.2 Merritt system

The simplest extension to the 6-coil system is by adding more degrees of freedom with
additional coils. The main goal for this extension was to increase the volume, inside
which, it is possible to compensate external perturbation effectively. Based on the anal-
ysis from Ref. [56], the four parallel coil system proposed by Merritt, Purcell and
Stroink in Ref. [49] would be responsible for the compensation of one Cartesian field
component. In order to compensate independently in 3D, we consider installing three
such sets along all three spatial directions. This results in 12 square coils in total.

According to Ref. [56], 4 square coils of edge length d aligned parallelly (see Fig.
4.4a at −0.5005d, −0.1281d, 0.1281d and 0.5005d with a current flowing through an
inner coil pair being 11/26 of the current of outside coils, generate the most uniform
field, seen in Fig.4.4b.

(a) Geometry of the system (b) Uniformity of the magnetic field shown in
the plane sectioning the coils through their geo-
metrical centre

Figure 4.4: Merritt et al. 4-coil system. Figure taken from [56]
.

4.2.1 Geometry optimization

Due to mechanical limitations, the geometry of the 3D system has to be adjusted. The
outer pair of coils have to be located closer to the centre of the system than in the original
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setup. This change makes it necessary to find a new optimal position and number of
wires for two internal coils.

Fixing the distance between the outer coils to be 0.96d, where d is length of the edge
of the square coil, there are two parameters, which have to be optimized:

• Position of two inner coils

• Winding ratio k = Iinner/Iouter

The figure of merit, u, is defined as the frequency of the relative (to the centre) field
remnant below a given threshold.

u = number of points with
|Bcentre −Bpoint|
|Bcentre|

< uthreshold (4.12)

The parameter space was scanned with 10, 000 random points uniformly distributed in
the volume enclosed by coils. The uthreshold was set to 2 · 10−2.

The results of the parameter scan are presented in Fig. 4.5. The optimal setup is
the distance between coils equal to 0.25 · d and Iinner = 0.4375Iouter. Such a setup
generates the remnant magnetic field presented in Fig. 4.6.
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Figure 4.5: Results of optimization of number of windings and position of two centre coils in
Merritt-like configuration. Optimal configuration is seen in coils positioned at ±0.125 · d with
k = 0.4375.
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(a) for x = 0 (b) for x = 1

(c) for x = 1.8

Figure 4.6: Simulated distribution of |Bcentre−Bpoint||Bcentre| for calculated, optimized 4 square coil
configuration with edge length of coil d = 4 m.
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4.2.2 Compensation performance

Considered system maps of the shielding factor ∆ (see Eq. (3.1)) for disturbances lo-
cated at 20 m and 200 m from the system are presented in Figures 4.7a and 4.7b, respec-
tively. Comparing to the similar maps for the SFC system (see Fig. 4.43), one concludes
that, at close distances of the perturbation source, the performance of the Merritt sys-
tem is similar. When the source is further away, the 12 coil system is compensating the
outside disturbance better than the simpler one achieving ∆ ≤ 10−2.

(a) Sources 20 m away (b) Sources 200 m away

Figure 4.7: Maps of simulated average ∆ for 12 Merritt coil magnetic field compensation system
for disturbance sources located randomly 20 m and 200 m away from the centre of system. The
map plane is at x = 0.01 m. The coil positions are marked with black crosses.

4.2.3 Prototype of Merritt system

The mechanical construction of coils is presented in Fig. 4.8 where a 5-wire cable
is wound around the aluminium profiles fixed to a frame made from the same material.
The inner volume is a cube with 128-cm-long edges. The positions of the coils are listed
in Tab. 4.2. In our system, we use 10 Steffan Mayer FLC3-70 fluxgate magnetometers
Their positions and orientations are gathered in Tab. 4.3. Nine of those sensors are
positioned near the coils on the aluminium frame and provide input to the feedback
loop. The tenth sensor was used for monitoring and is located in the centre of the
system.
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Figure 4.8: 12 coils of active magnetic field compensation system.

Table 4.2: Dimensions of prototype 12-coil Merritt setup

Coil Position along axis [mm] long edge [mm] short edge [mm]
X1 0

1299 1249
X4 1280
X2 480

1289 1259
X3 800

Y1 0
1450 1390

Y4 1440
Y2 540

1460 1392
Y3 910

Z1 0
1445 1445

Z4 510
Z2 860

1450 1435
Z3 1360
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Table 4.3: Orientation and positions of fluxgate magnetometers. Sensor 0 (marked with *) is not
used for feedback.

Field in Position
X Y Z X Y Z

Number direction measured by [mm]
1 y z x 1350 270 191
2 -z y x 1140 1445 875
3 -y x z 200 470 490
4 y -z -x 310 1220 275
5 x -z y 1057 1300 1240
6 -y -x -z 120 1013 1020
7 x z -y 630 230 1230
8 -x -z -y 700 1015 0
9 -z y x 1280 1300 680

0*
√

1
2
z -
√

1
2
y
√

1
2
z+
√

1
2
y -x Centre of system

Custom-built RC filters were used to filter high frequency noise from magnetome-
ters. Their scheme is shown in Fig. 4.9. The frequency response of this circuit is plotted
in Fig. 4.10.

160Ω 1.6kΩ 16kΩ

1μF 100nF10μF
in out

Figure 4.9: Scheme of RC filter

After filtering, analogue signals were read out by two National Instruments PXI-
6284 cards. They are multiplexing 18-Bit Analogue Input digitizing cards.

Multiplexing with connected RC filters caused the so called “ghosting” [57] which
is experienced when the acquired value in one channel depends on the value from the
previous one. This phenomenon is illustrated with Fig. 4.11. Two readout modes are
presented for the same sensor (located at the same position). In the first one, marked
with +, the presented sensor was the only one read out. In this case, there is no ap-
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Figure 4.10: Frequency characteristics measured for two input filters for the 12-coil active com-
pensation system

parent dependence between the acquired value and the sampling rate. In the second
mode, marked with × symbols, measurements were done in the multi-channel mode.
The channel preceding that read out was disconnected. In this mode, there is a clear
dependence between measured values and the sampling rate, which for high sampling
rates tends to be linear.

This problem is caused by an internal capacitance of the ADC card. For high
impedance input, the charging time may be longer than the time window allocated to
one channel at a given sampling frequency. The digitized voltage is not saturated to that
of the input. Because of the shortage of resources, we have decided to minimize this
problem by lowering the sampling rate.

A dedicated setup shown in Fig. 4.12 was built to measure the ghosting effect. One
fluxgate (generator) was positioned between Helmholtz coils. They were supplied by
a sinusoidal voltage source. The second fluxgate (monitor) was positioned in another
room, about 5 m away from the rest of the setup. It was enclosed in a multi-layer mag-
netic shield built from Metglas Magnetic Alloy 2705M (Cobalt-based) [58] to suppress
influence from Helmholtz coils. The fluxgates were positioned so that the Z component
of the generator fluxgate was oriented along the axis of Helmholtz coils (to generate the
biggest field) and the X component of the monitor sensor was oriented perpendicularly
to that direction.
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Figure 4.11: Readout of the field from fluxgate in two configurations - as one of 15 read channels
in multiplexed mode (×) and as the only read channel (+).

The size of the ghosting effect was described by the crosstalk parameter T defined
as:

T =
B1channel −B15channel

Bprev.channel
, (4.13)

where B1channel is the field read out by the monitor sensor in one channel mode,
B15channels and Bprev.channel are the measurements from the monitor and generator sensor,
respectively, obtained in the multiplexed mode of the digitizer card. To correct for linear
drifts of the field, B1channel is the average of two values, measured before and after the
multiplexed mode measurement and is plotted in Fig. 4.13 as a function of sampling
rate. This plot was used for optimizing the sampling rate – the sampling frequency of
100 Hz was used, where the ghosting effect is still small.
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Figure 4.12: Setup for measurement of crosstalk between channels.
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Figure 4.13: Relative crosstalk as a function of sampling rate for readout of magnetic field.
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Figure 4.14: Schematic of the current sources used in Modified Merritt setup

Feedback - calculation of reaction currents

The coil currents were supplied by the custom built power supply [59] controlled by
DC voltage delivered by a DAC card (National Instruments PCI-6733). The electrical
schematic of the power supplies is presented in Fig. 4.14.

Matrix determination Before application of control algorithm it is necessary to find
the relation between the measured magnetic field and voltage used to control current
sources (response matrix G from Eq. (4.2)). To do that, designated calibration mea-
surement was performed where the control voltage (within range of current sources)
was applied to coils. The field was measured with all 10 three-dimensional sensors. For
each of the relations between the field and the input voltage, a linear function was fitted
which slope defines one element of G matrix.

Matrix inversion and finding optimal parameters Response matrix G, obtained
from the calibration procedure described above, needs to be (pseudo)-inverted (see Sec.
4.1) before using it in the feedback algorithm.
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In the first step, the l-curve (see Sec. 4.1) was drawn (Fig. 4.15) to find the optimal
regularization constant α. In this log-log plot, abscissas are the norms of the residuals of
currents (solutions of equation ~B = G~I). Ordinates are the norms of the solutions. In
this plot, the point of the highest curvature is connected with the optimal regularization
parameter. Having this theoretically optimal regularization parameter α = 0.06, three
different values were tested empirically:

1. α = 0 - no regularization

2. α = 0.06 - theoretically optimal regularization

3. α = 0.1 - theoretically over-regularization.

All three G−1 matrices were tested in the system working for 24 hours to include
both noisy time during day and quiet conditions in the night. The results are non-
conclusive, although slightly better performance is achieved using the theoretically op-
timal regularization at α = 0.06.

Figure 4.15: L-curve for the regularized pseudo-inverse of the G response matrix. Labels mark
the value of regularization constant α for some of the points.

Feedback algorithm The power supplies were not able to drive enough current to
compensate the Earth magnetic field, so it was decided to cancel only changes of the
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magnetic field around ~Bgoal. ~Bgoal was chosen to be the first measured field vector in
the run.

First
Magnetic field
measurement

‐

Magnetic field
measurement

Multiply by G-1 

Output to current
sources 

PID

Figure 4.16: Flow diagram of the control algorithm

The feedback algorithm was implemented using the National Instruments LabView
2008 programming platform. After initialization, the system works in a loop. Each loop
consists of the following steps (see the flow diagram in Fig. 4.16):

Measurement of the field The three consecutive readout values of each of field com-
ponents are averaged and used for further calculations.

Multiplication of the measurement field by the inverse matrix To calculate the change
in magnetic field that needs to be compensated, the ~Bgoal magnetic field is sub-
tracted from all measured and averaged 27 magnetic field components. The result-
ing field disturbance (from ~Bgoal) vector is multiplied by the inverse of response
matrix (see section 4.1), which established a set of currents required to compen-
sate this departure:

~̃In = G−1( ~Bmeas,n − ~Bgoal), (4.14)

where n denotes the loop number.
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PID Calculated current information is used as an input to a PID controller, which cal-
culates the final set of currents to be driven to coils.

~In+1 = 0.8 ~̃In︸︷︷︸
P part

+0.9
n∑
i=0

~̂Ii︸ ︷︷ ︸
I part

(4.15)

The differentiation part of the PID controller puts the compensating system into
an unstable state, so it was decided to use only the proportional and integrating
part of this solution.

Setting of currents Currents calculated by the PID controller are passed to outputs of
the DAC card controlling the current sources.

Waiting period Before starting a new loop iteration, we waited for 50 ms, correspond-
ing to the maximal setting time for the current in this system. This time was
established experimentally by setting the currents within the allowed range and
observing how long it takes to stabilize the current.

The new currents were calculated with the frequency of ≈ 10 Hz, which is mostly a
result of 50 ms waiting time and delays caused by computer calculations.

Background magnetic field

The prototype 12-coil compensation system was installed in the basement of the Insti-
tute for Particle Physics, ETH Zürich. Tests were performed in the neighbourhood of
other experiments and installations, which generate contributions to the ambient mag-
netic field. Evolution of this field was measured and the results are presented in Fig.
4.17. During the day, the biggest field noise was observed in vertical direction. This
component of ambient field decreases significantly during the night. The frequency
of 162

3
Hz is clearly present, which may be related to the train system in Switzerland

supplied by the alternating current with this frequency.

Measurement results

The most significant results are the values measured by the sensor 0 (see Tab. 4.3),
which was positioned in the centre of the system and not used in feedback. This is the
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sensor checking what is the real performance in the centre of the system.
An example of magnetic field evolution measured by this sensor is presented in Fig.

4.18. The compensated magnetic field is the one measured directly by the fluxgate sen-
sor while the not compensated field is calculated back using information about currents
in coils. Even without calculation of the Allan Deviation, it is visible that noise is signif-
icantly suppressed, especially the vertical direction. The suppression of long-term drifts
is clearly visible in all directions. It is not possible to compensate sudden magnetic field
jumps shorter than 200 ms (twice the feedback loop period), since the system needs this
time to react.

The Allan standard deviation plots are presented in Fig. 4.19. Dividing the re-
spective Allan deviation of not compensated and compensated magnetic fields gives the
Dynamic Shielding Factor, as shown in Fig. 4.20. Comparing three considered val-
ues of the regularization parameter α, the differences of operation are not significant -
all three possibilities give maximal DSF of 10 for 10 s integration time for the verti-
cal component. Other two components are compensated with DSF of order of 2 ÷ 3.
The SFC system, which is currently operating in the nEDM experiment at PSI, usually
achieves better performance (see Chapter 4.1.2), which is probably due to the less noisy
environment on the site of the measurement of the SFC at the Paul Scherrer Institute.
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(a) X coordinate

(b) Y coordinate

(c) Z coordinate

Figure 4.17: Background magnetic field, registered on site of operation of 12 coil compensation
system.
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(a) X direction

(b) Y direction

(c) Z direction

Figure 4.18: Magnetic field measured (compensated) and calculated using information about the
currents in coils (non-compensated) for the 12-coil system
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(a) Non-compensated field calculated using information about the currents

(b) Compensated field

Figure 4.19: Allan deviation of magnetic field measured (compensated) and calculated using the
information about the currents in coils (non-compensated) for the 12-coil system
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(a) α = 0 (no regularization)

(b) α = 0.06 (optimal regularization)

(c) α = 0.1 (over-regularization)

Figure 4.20: Dynamic shielding factors for the different regularization constant α used to calcu-
late the pseudoinverse of the response matrix G.
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4.2.4 Possible improvements

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

x 10
−6

coil X1
coil X2
coil X3
coil X4
coil Y1
coil Y2
coil Y3
coil Y4
coil Z1
coil Z2
coil Z3
coil Z4

Harmonic number

E
xp

an
si

on
 c

oe
ff

ic
ie

nt
 [

T
m

-(
l-

1)
]

Figure 4.21: Decomposition of 12 Merritt coils into Cartesian harmonic functions.

Merritt coil setup is designed to generate uniform magnetic fields. Looking at cal-
culated decomposition of the field created by those coils into Cartesian harmonics (see
Fig. 4.21) one realizes, that the first three coefficients are the biggest. However, more
important for compensation are the next 5 components representing the first order gra-
dients. Unfortunately, three of those gradients cannot be compensated by this set of
coils, because neither of the coils can generate the field described by any of following
functions:

~Bl=2,m=−2 ∝ grad(xy) (4.16)
~Bl=2,m=−1 ∝ grad(xz) (4.17)
~Bl=2,m=1 ∝ grad(yz). (4.18)

These fields can be generated by an additional 12 coils positioned diagonally with re-
spect to Merritt coils. The resulting setup is shown in Fig. 4.22, where the additional
coils are marked with yellow colour.

The map of the average ∆ is presented in Fig. 4.23, showing improved performance
with respect to the 12-coil system. What is interesting, is the small change in perfor-
mance when the source of disturbance is moving closer. Further discussion of those two
systems is done in Sec. 5.
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Figure 4.22: Proposition of additional 12 coils to the Merritt-based compensation system.
Twelve Merritt setup coils are marked with blue colour, while additional 12 diagonal coils are
marked with yellow colour.

(a) Disturbance source 20 m away (b) Disturbance source 200 m away

Figure 4.23: Maps of the simulated average ∆ for the magnetic field compensation system
consisting of 12 Merritt coils and additional 12 diagonal coils. Disturbance sources are located,
randomly, 20 m and 200 m away from the centre of system. The map plane is at x = 0.01 m.
The coil positions are marked with a black circle.
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4.3 Cellular system

Another approach, considered in this thesis, is based on the operation principle of pas-
sive magnetic shields. The ferromagnetic and superconducting closed shields compen-
sate, with eddy currents, the magnetic field component perpendicular to the surface. The
same approach is used in the “cellular coil” system.

The cellular system consists of a large number of square coils, located on the surface
of the controlled volume. They cover it completely. The feedback sensors would be
positioned in the centre of each coil. Two cubic examples of coils for such a system are
shown in Fig. 4.24.

(a) 6x9 coils (b) 6x64 coils

Figure 4.24: Cellular coil systems

4.3.1 Considered configurations

There are two parts of this system which can be optimized: (i) the number of coils and
(ii) the feedback system. We consider systems being built up from 6×9 and 6×64 coils.
In both cases, the feedback sensors are positioned in the centres of all coils, giving 54

and 384 measurement points, respectively.
Three possibilities of the feedback system were considered:

Local scalar feedback mode – Each loop compensates only the field component nor-
mal to the loop plane, measured in the loop centre. The maps of ∆ being a result
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of this method of calculation of currents are presented in Fig. 4.25.

Global scalar feedback mode – One dimensional sensors in the centre of each of the
coils send the measured field value to the main controller, which uses the whole
information to calculate the necessary reaction currents. The response matrix
relating currents and fields generated by individual coils has the square matrix
form, hence no regularization is needed. The ∆ maps corresponding to this way
of operation are presented in Fig. 4.26.

Global vector feedback mode – Three-dimensional sensors located in the centre of
each coil send the full information about the measured field to the main con-
troller. In this way, more measurements are generated than needed, meaning that
the regularization may be advantageous. This solution is the most advanced and
expensive because of price of three-dimensional sensors. The results of simula-
tions for this mode are presented in Fig 4.27. Application of regularization (see
Sec. 4.1) improves the performance significantly, as shown in Fig. 4.28.

The maps of ∆ presented in Figs. 4.25 - 4.28 prove that the choice of the calculation
method of the reaction currents is crucial for this family of compensation systems. The
global vector feedback model is beneficial over the global scalar model only, if the
regularization is applied.

What is interesting in the non-regularized feedback modes is that ∆ is uniformly
distributed inside the controlled volume. Also, there is no significant change in val-
ues of ∆ when changing the distance to the disturbance source. However, the overall
performance is poor.
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(a) 6x 9 coil system

(b) 6x64 coil system

Figure 4.25: Maps of simulated average ∆ (See Eq.(3.1)) for small coil-based magnetic field
compensation systems (local scalar feedback mode) for disturbance sources located randomly
20 m away from the centre of system – left panel and 200 m – right panel. Map plane is at
x = 0.01 m. The coil positions are marked with black crosses.
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(a) 6x 9 coil system

(b) 6x64 coil system

Figure 4.26: Same as Fig. 4.25 but for the global scalar feedback mode.
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(a) 6x 9 coil system

(b) 6x64 coil system

Figure 4.27: Same as Fig. 4.25 but for the non-regularized global vector feedback mode.
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(a) 6x 9 coil system

(b) 6x64 coil system

Figure 4.28: Same as Fig. 4.25 but for the regularized global vector feedback mode.
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4.4 Spherical coils

After a relatively modest level of improvement offered by advanced rectangular coil
systems as compared to a simple 3-pair Helmholtz system (SFC), we decided to follow
a more general approach which does not assume any specific coil shape right at the
beginning. Rather the coil shape will be deduced mathematically. The starting point
for this approach will be the decomposition of the static magnetic field in terms of
the vector spherical harmonics [60], which are orthogonal functions. The coil will be
designed such that one particular coil generates a single (orthogonal) spherical field
component.

4.4.1 Magnetic field decomposition in terms of vector spherical har-
monics

Vexp

VC

VD

SC

Figure 4.29: The definition of geometrical components used in the derivation of the spherical coil
system. Vexp is the volume, where the field is supposed to be compensated. VC is the volume,
where compensating coils are supposed to be located. SC is the surface (see section 4.5), on
which the solutions for coil turns will be obtained. VD is the volume, where the disturbing field
originates from.

The general situation is illustrated in Fig. 4.29. We divide the whole space into
three distinct regions. The central volume called the controlled volume Vexp is free of
magnetic field sources (electric currents) and is supposed to also be free of magnetic
fields penetrating from external sources when the compensation system is active. The
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controlled volume Vexp is surrounded by a shell VC where electrical currents of the
compensation system are contained. Outside VC , in the volume VD, magnetic field dis-
turbances will be generated. SC is the surface, on which the solutions for coil turns will
be obtained. We assume that all materials within Vexp are isotropic and non-magnetic
(µr = 1) leading to the scalar magnetic potential φ(~r), which has to fulfil the Laplace
equation.

Electrical currents in the shell VC generate a magnetic field fulfilling Ampere’s law:

∇×∇× ~A = µ0
~J, (4.19)

where ~A is a vector potential and ~J is a current density.

Spherical harmonic decomposition of the scalar potential

In the spherical coordinate system, the scalar potential φ(~r) - the solution of the Laplace
equation - is a series of spherical harmonics:

φ(~r) =
∞∑
l=0

l∑
m=−l

φlmr
lYlm(θ, ϕ), (4.20)

where a set of {φlm} describes, uniquely, the scalar potential function.

For not too large field disturbances coming from external sources one expects in
the neighbourhood of the origin a fast convergence of expression (4.20). Only the first
few terms with small l values will contribute to the field description. An additional
advantage of this form comes from the orthogonality of spherical harmonics. If the
external field changes only a limited number of the terms in Eq. (4.20), then the reacting
compensation system will have to drive currents only to the corresponding coils without
affecting others.

Current density distribution

In order to compensate a field disturbance in the controlled volume Vexp, one has to
drive currents in the shell VC such that the magnetic field distribution caused in Vexp
has the same amplitude as the disturbance and opposite sign. This problem is often
referenced as the “Inverse source problem” (see e.g. Ref. [61]) and has been the subject
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of many studies. Here we will present an analytical solution for a system exhibiting
spherical symmetry. To accomplish this we begin with a synopsis of the vector spherical
harmonics (VSH) essentials. A more detailed discussion can be found e.g. in [60].
Vector spherical harmonics are related to the scalar spherical harmonics in the following
way:

~Ψlm(θ, ϕ) ≡r∇Ylm(θ, ϕ) (4.21)
~Ylm(θ, ϕ) ≡r̂Ylm(θ, ϕ) (4.22)
~Φlm(θ, ϕ) ≡r̂ × ~Ψlm(θ, ϕ). (4.23)

This triad is a complete and orthogonal basis set, meaning that any vector function can
be expressed as a series of VSH:

~f(r, θ, ϕ) =
∞∑
l=1

l∑
m=−l

fYlm(r)~Ylm(θ, ϕ) + fΦ
lm(r)~Φlm(θ, ϕ)+

+ fΨ
lm(r)~Ψlm(θ, ϕ), (4.24)

where fYlm, fΨ
lm, fΦ

lm are the coefficients given by:

fYlm =

∫
dΩ~f · ~Y ?

lm (4.25)

fΨ
lm =

1

l(l + 1)

∫
dΩ~f · ~Ψ?

lm (4.26)

fΦ
lm =

1

l(l + 1)

∫
dΩ~f · ~Φ?

lm. (4.27)

A significant advantage of VSH is their well known behaviour under the action of
differential operators (see Ref. [60]).

After acting with a gradient operator on these functions we get a description of the
magnetic field in terms of the vector spherical harmonics:

~B = −∇φM = −
∞∑
l=0

l∑
m=−l

(
d

dr
φlm(r)

)
~Ylm +

φlm(r)

r
~Ψlm. (4.28)

In Eq. 4.28, there is no component proportional to ~Φl,m because this vector spherical
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harmonic cannot be a result of a gradient operator acting on any function. The aim
of this calculation is to find the current density, which would generate magnetic field
described in equation (4.28). To achieve this, it is necessary to abandon the assumption
that ~J = 0 and solve the Ampere’s law (in differential form):

∇× ~B = ∇×
(
∇× ~A

)
=

4π

c
~J. (4.29)

General vector potential A(r, θ, φ) can be decomposed into a series of vector spherical
harmonics (compare Eq. (4.24)) :

~A(r, θ, φ) =
∞∑
l=0

l∑
m=−l

(
AYlm(r)~Ylm + AΨ

lm(r)~Ψlm + AΦ
lm(r)~Φlm

)
. (4.30)

Inserting the above series expansion into Eq. (4.29) leads to the current density form
compatible to the (known) vector potential:

~J(r, θ, φ) =
∞∑
l=0

l∑
m=−l

(
l(l + 1)

r2

(
AYlm −

d

dr
rAΨ

lm

)
~Ylm +

1

r

d

dr

(
AYlm −

d

dr
rAΨ

lm

)
~Ψlm

+
1

r

(
l(l + 1)

r
AΦ
lm −

d2

dr2
rAΦ

lm

)
~Φlm

)
. (4.31)

Setting:
~B = ∇× ~A

!
= −∇φM , (4.32)

results in the condition that ~A should contain only the ~Φ part of the series expansion
which significantly simplifies Eq. (4.31):

1

r2

d
dr

(
r2 d

dr
AΦ
lm(r)

)
− l(l + 1)

r2
AΦ
lm(r) = −4π

c
JΦ
lm(r) (4.33)

It is worth noticing that the application of the vector spherical harmonics reduces a
3-dimensional partial differential equation to an ordinary inhomogeneous differential
equation.

The Green function (solution for JΦ
lm = δ(~r − ~r′)) for this problem (for details see
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Ref. [62]) is:

AΦ
lm,G =

4π

(2l + 1)c

rl<
rl+1
>

(r′)2, (4.34)

where:

(r>, r<) =

{
(r, r′) for r > r′,
(r′, r) for r < r′.

(4.35)

It is assumed that currents flow outside Vexp. This means that the integration variable is
limited to r′ > r, which corresponds to the second case of (4.35), leading to

AΦ
lm = rl

4π

(2l + 1)c

∫ ∞
0

(r′)−l+1JΦ
lm(r′)dr′ ≡ rlαlm, (4.36)

where αlm is a coefficient which depends only on currents flowing outside the controlled
volume VC . After inserting (4.36) into Eq. (4.29) we obtain the expression for the
magnetic field ~B:

~B = ∇× ~A =
∞∑
l=0

l∑
m=−l

αlm∇×
(
rl~Φlm(θ, φ)

)
=
∞∑
l=0

l∑
m=−l

(
− l(l + 1)

r
rl~Ylm −

1

r

d
dr
rl+1~Ψlm

)
αlm. (4.37)

Comparing equations (4.37) and (4.28), one can easily find that the scalar potential is
given by:

φlm(r) = (l + 1)rlαlm =
4π

c
rl
l + 1

2l + 1

∫ ∞
0

(r′)−l+1JΦ
lm(r′)dr′, (4.38)

This means, that to generate magnetic field related to scalar potential with only one
spherical harmonic φM = rlφl′m′Yl′m′ term, it is sufficient to use the current described
by the single harmonic of the same rank~j = JΦ

l′m′
~Φl′m′ . This property makes it possible

to generate each term of the field expansion in Eq. (4.28), independently.
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General current densities

If we relax the constraints of an infinitely thin current density (the coefficients JYlm and
JΨ
lm do not vanish any more), we obtain the general expression:

µ0
~J(r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

(
l(l + 1)

r2

(
AYlm −

d

dr
rAΨ

lm

)
~Ylm+

+
1

r

d

dr

(
AYlm −

d

dr
rAΨ

lm

)
~Ψlm+

+
1

r

(
l(l + 1)

r
AΦ
lm −

d2

dr2
rAΦ

lm

)
~Φlm

)
. (4.39)

Making use of the continuity relation for current (∇ · ~J = 0) and Gauss’s law for
magnetism (∇ · ~B = 0), as well as exploiting the relations for the divergence of the
VSH, we arrive at:

JΨ
lm(r) =

1

l(l + 1)

1

r

d

d r

(
r2JYlm(r)

)
(4.40)

AΨ
lm(r) =

1

l(l + 1)

1

r

d

d r

(
r2AYlm(r)

)
. (4.41)

This means that the Y and Ψ parts of the series expansion of ~A and ~J (see Eqns. (4.24)
and (4.30)) are dependent and only one of them needs to be considered, e.g. Y . From
the rotation of VSH (see [60]), we get:

µ0J
Y
lm(r) = − l(l + 1)

r
BΦ
lm(r), (4.42)

where BΦ
lm(r) is the function describing the expansion of the magnetic field into ~Φ

component of the VSH. This means that for ~x ∈ Vexp, ( ~J = 0) also

~BΦ
lm(r(~x)) = 0. (4.43)

The conclusion is that in the current density expansion in VC the terms proportional to
~Ylm(θ, ϕ) and ~Ψlm(θ, ϕ) do not contribute to the field generated in the controlled volume
Vexp. This means that only currents flowing on the surface of the sphere generate field
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inside that sphere.

Verification

To verify this description of the field, two simple configurations with known analytic
solutions are used: (i) a single current loop and (ii) a Helmholtz coil pair.

x

y

z

R

P
R

I

ϕ

Figure 4.30: Single loop with current. Current flows in a φ̂ direction. The path marked with a
thick red line and point P are used for a visualisation of results.

(i) Single loop The configuration used in this calculation is shown in Fig. 4.30. The
current density function is described by:

~J(r, θ, φ) = Iδ(cos θ)
δ(r −R)

R
φ̂ (4.44)
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The coefficients for the vector spherical harmonic expansion series can by calculated by
the integration:

J
(2)
lm (r) =

1

l(l + 1)

∫
Ω

d(cos θ)dφ~J · ~Φ∗lm =

=
I

l(l + 1)R
δ(r −R)

∫ 2π

0

∂

∂θ
Y ∗lm

∣∣∣∣∣
θ=π/2

dφ. (4.45)

This integral equals 0 for every m 6= 0. For m = 0 one obtains:

J
(2)
l0 =

2πI

l(l + 1)R
δ(r −R)

∂

∂θ
Y ∗lm

∣∣∣∣∣
θ=π/2

(4.46)

αl0 =
8π2I

(2l + 1)l(l + 1)c
R−l+1 ∂

∂θ
Y ∗lm

∣∣∣∣∣
θ=π/2

(4.47)

~B(r, θ, φ) =−
∞∑
l=1

l(l + 1)rl−1αl0~Yl0 − (l + 1)rl−1αl0~Ψl0 (4.48)

Spherical harmonics form = 0 become proportional to Legendre Polynomials Yl0(θ) ∝
P 0
l (cos(θ)). From [63]:

dP µ
ν (x)

dx

∣∣∣∣∣
x=0

= 2µ+1π−
1
2 sin

(
1

2
π (ν + µ)

)
Γ
(

1
2
ν + 1

2
µ+ 1

)
Γ
(

1
2
ν − 1

2
µ+ 1

) , (4.49)

where Γ is the Gamma function. For µ = 0, ν = l and x = cos(θ):

dPl(cos θ)

d(cos θ)

∣∣∣∣∣
θ=π

2

= 2π−
1
2 sin

(
π
l

2

)
, (4.50)

which is equal to 0 for even values of l. This means that in the expansion in Eq. (4.48)
l takes only odd values. For comparison, we use analytic expressions for the magnetic
field taken from [64]:

Btheor
x =

Cxz

2α2βρ2

(
(a2 + r2)E(k2)− α2K(k2)

)
(4.51)
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Btheor
y =

Cyz

2α2βρ2

(
(a2 + r2)E(k2)− α2K(k2)

)
(4.52)

Btheor
z =

C

2α2β

(
(a2 − r2)E(k2) + α2K(k2)

)
, (4.53)

where: ρ2 = x2 + y2, r2 = x2 + y2 + z2, α2 = a2 + r2 − 2aρ, β2 = a2 + r2 + 2aρ,
k2 = 1 − α2/β2, γ = x2 − y2, C = µ0I/π, E(k2) is a complete elliptic integral of a
second kind and K(k2) is the complete elliptic integral of the first kind [63]:

K(k2) =

π/2∫
0

(
1− k2 sin2 θ

)−1/2
dθ

E(k2) =

π/2∫
0

(
1− k2 sin2 θ

)1/2
dθ.

The first way to compare the exact predictions (equations (4.51), (4.52) and (4.53)) with
calculations using the vector spherical harmonics (equation (4.48)) was by plotting BZ

component along x = 0, z = 0 axis (see red axis in Fig. 4.30). Exact value and values
calculated for the VSH expansion cut off to l = 1, 3, 5 are shown in Fig. 4.31, while the
relative difference of them is presented in Fig. 4.32.

In Fig. 4.33, we present a relative difference at the point P (Fig. 4.30) as a function
of lmax, at which the VSH expansion series is cut off. The last parameter, which was
calculated, is the “radius of convergence” (rmin). It is the maximum size of a sphere,
inside which the maximum relative difference is less than 0.01 (set arbitrarily). rmin
is interpreted as the size of spherical control volume, therein the relative error in the
reproduction of the magnetic field by the truncated VHS series is less than 0.01.
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Figure 4.31: z component of magnetic field on x = 0, y = 0 axis for exact analytical solution
and VSH series expansion ending on l = 1, l = 3 and l = 5 for a single current loop
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Figure 4.32: Relative difference between the analytical ~B and the one calculated with VSH
for a single current loop in the function of the position on the axis x = 0, z = 0 (∆ =∣∣∣ ~Bexact − ~Bapprox

∣∣∣ /∣∣∣ ~Bexact
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Figure 4.33: Relative difference between the analytical Bz component and the one calculated as
the VSH expansion as a function of the number of terms after which the series is cut off taken at
point P (0, 0.5, 0) (Fig. 4.30)
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Figure 4.34: Radius of convergence for relative difference < 0.01 calculated along line with
θ = π/2, φ = π/2 as a function of lmax, order after which the VSH expansion series is cut off
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x
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z
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R

ρ

ρ

Figure 4.35: Helmholtz coil setup with definition of points and paths used in visualization of
results. The path marked with a thick red line and point P are used for visualisation of the
results.

(ii)Helmholtz coils A similar test was made for Helmholtz coils. The setup is pre-
sented in Fig. 4.35. The current density function is expressed as:

~J(r, θ, φ) =I (δ(θ − ω) + δ(θ − π + ω))
δ(r −R)

R
φ̂, (4.54)

ω = arctan 2

The coefficients for the VSH expansion are:

J
(2)
lm =

1

l(l + 1)

∫
Ω

d(cos θ)dφ~J · ~Φ∗lm =

=
Iδ(r −R) sin(ω)

l(l + 1)R

∫ 2π

0

(
∂

∂θ
Y ∗lm

∣∣∣∣∣
θ=ω

+
∂

∂θ
Y ∗lm

∣∣∣∣∣
θ=π−ω

)
dφ (4.55)

This integrals are equal to zero, if m 6= 0. For m = 0:

J
(2)
l0 =

2πIδ(r −R) sin(ω)

l(l + 1)R

(
∂

∂θ
Y ∗l0

∣∣∣∣∣
θ=ω

+
∂

∂θ
Y ∗l0

∣∣∣∣∣
θ=π−ω

)
(4.56)

αl0 =
8π2I

(2l + 1)l(l + 1)c
R−l+1

(
∂

∂θ
Y ∗l0

∣∣∣∣∣
θ=ω

+
∂

∂θ
Y ∗l0

∣∣∣∣∣
θ=π−ω

)
(4.57)
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~B(r, θ, φ) =−
∞∑
l=1

l(l + 1)rl−1αlm~Ylm − (l + 1)rl−1αlm~Ψlm. (4.58)

For l = 3:
∂

∂θ
Y ∗3,0

∣∣∣∣∣
θ=ω

= 0 and
∂

∂θ
Y ∗3,0

∣∣∣∣∣
θ=π−ω

= 0, (4.59)

which is the reason why Helmholtz coils generate highly uniform magnetic field: coef-
ficients for l = 2 and l = 3 are equal 0, meaning that the most important non-uniform
field component is l = 5,m = 0. This is why, in Figs. 4.36 and 4.37, plots for lmax = 1

and lmax = 3 are identical.
Analytical expressions for magnetic field for Helmholtz coils in cylindrical coordi-

nates are (taken from [65]):

Banal
r =

µ0

2π

I(z +R/2)

r ((R + r)2 + (z +R/2)2)1/2

(
−K1 +

R2 + r2 + (z +R/2)2

(R− r)2 + (z +R/2)2

)
+

+
µ0

2π

I(z −R/2)

r ((R + r)2 + (z −R/2)2)1/2

(
−K2 +

R2 + r2 + (z −R/2)2

(R− r)2 + (z −R/2)2

)
(4.60)

Banal
z =

µ0

2π

I

((R + r)2 + (z +R/2)2)1/2

(
K1 +

R2 − r2 − (z +R/2)2

(R− r)2 + (z +R/2)2

)
+

+
µ0

2π

I

((R + r)2 + (z −R/2)2)1/2

(
K2 +

R2 − r2 − (z −R/2)2

(R− r)2 + (z −R/2)2

)
. (4.61)

The z component of magnetic field is plotted as a function of position for the exact
solution and the VSH expansion series cut off after lmax = 1, 3, 5 in Fig. 4.36. For the
same cases, relative difference is presented in Fig. 4.37. Relative difference at point P
(see figure 4.35) is shown as a function of lmax on figure 4.38. Radius of convergence for
∆ < 0.01 is shown in Fig. 4.39. Changes in monotonicity of the last two relations are
caused by selection of point P and the search path of the convergence radius. They are
localized between two current loops, changing their position also changes the relations,
e.g. Fig. 4.40.
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Figure 4.36: Comparison of exact solution of z component of magnetic field generated by
Helmholtz coil pair and the VSH series expansion cut off after lmax = 1, 3, 5 taken on
x = 0, z = 0 axis
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Figure 4.37: Relative difference between exact values and the VSH expansions series, cut off
after lmax = 1, 3, 5 for a Helmholtz coil pair.
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Figure 4.38: Relative difference between exact values and the VSH expansions series, taken at
point P (0, 0.5, 0) as a function of lmax, order after which the VSH expansion series is cut off
for a Helmholtz coil pair
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Figure 4.39: Convergence radius (∆ < 0.01) for a Helmholtz coil pair.
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Figure 4.40: Convergence radius (∆ < 0.01) for a Helmholtz coil pair, calculated along the axis
with spherical coordinates θ = π/4, φ = π/6.

Above two examples show that the proposed description of magnetic field as the
series of vector spherical harmonics is consistent. From the comparison between the
exact magnetic field calculations and its approximation by the VSH expansion series,
we can generalize that adding the following terms to the cut off series improves the
average accuracy by almost an order of magnitude for each additional term. The level
of improvement depends on the shape of the approximated field. Given the maximum ∆

allowed in the control volume, it is possible to optimize the truncation point lmax. This
can be performed using Figs. 4.39 and 4.34. For example, if the required accuracy is
∆ < 0.01 and the control volume is a sphere with r = 0.5 m, we would need lmax = 7

((7 + 2) · 7 = 63 terms) to fulfil the requirement.
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4.5 Coils - discretization of the current density distribu-
tion

In a practical application the required current density distribution ~J(x, y, z), where
(x, y, z) ∈ VC , will be generated using a coil system. We assume that coils consist
of thin wire windings distributed on a sphere so that the volume VC reduces to a surface.
Since all wire turns in a coil are connected serially, the only way to construct a given
current density is by proper shaping and distributing of the wire turns. To perform this,
we use the stream function from Ref. [66]. This approach is based on the fact that for a
static current density function ~J(x, y, z) the divergence vanishes

∇ · ~J(x, y, z) = 0. (4.62)

If currents are constrained to a surface defined by a normal vector ~̂n, then the current
density can be written as:

~J(x, y, z) = ∇ψ(x, y, z)× ~̂n, (4.63)

where ψ(x, y, z) is the so called stream function defined on the surface containing cur-
rents. This function must be differentiable on that surface. In order to fulfil the relation
(4.62), it must be constant on the boundary of the surface leading to the requirement that
currents are allowed to flow along the isolines of the stream function. We can identify
the isolines with the coil wire turns.

Comparing Eq. (4.63) with the ~Φ part of the VSH series in Eq. (4.23) we realize that
wire turns of the spherical coils (isolines of ~Φ) are identical to the isolines of spherical
harmonics.

ψ(x, y, z) ∝ Ylm(θ, ϕ) (x, y, z) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ), r = const.

(4.64)
The necessary number of coil wire turns depends on the required field reproduction
accuracy. Fig. 4.41 shows the dependence of the average relative reproduction accuracy
as a function of the number of wire turns. Obviously, the more turns in a coil, the more
accurate the reproduction of the continuous current distribution will be.
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Figure 4.41: Accuracy of the current density discretization calculated with the stream function
approach. Average relative error of the field reproduced by a coil with a given number of turns
is shown for two coils: (l = 1, m = 0) - solid lines and (l = 3, m = 2) - dashed lines. The
average is taken over the sphere with radius of 0.3R - black lines and 0.9R - grey lines. R is the
coil radius.

The example of such discretization on a sphere is presented in Fig. 4.42. For l = 1

the result was three coils (Fig. 4.42a), the so called cos θ coils [67], identical to those
obtained by J. E. Everett and J. E. Osemeikhian [68], produce a uniform magnetic field.
Figures 4.42b and 4.42c present the wire distribution for l = 2 and l = 3, respectively.

For simulation done in this thesis, the isolines of spherical harmonics, which define
the positions of wires, are calculated using the Marching Squares algorithm. It is a 2d
modification of the Marching Cubes [69] algorithm, which allows to find isolines of
functions using parallel processing. In this way, we used whole computing power of
nVIDIA Tesla cards which were available gaining much performance in comparison to
other, non-parallel algorithms.

4.5.1 Compensation performance

For comparison, we have used the coil systems with 8 and 15 coils. This shows how we
can improve the compensation when adding higher orders to the VSH expansion series.
Maps presented in Fig. 4.43 show the distribution of ∆.
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(a) Coils creating uniform magnetic fields (l = 1 case).

(b) Coils creating quadrupolar field(l = 2 case).

(c) Coils creating octupolar field (l = 3 case).

Figure 4.42: Coils wound on a sphere. For clarity, the number of turns is taken to be n = 9.
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(a) 8 coil spherical system
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(b) 15 coils spherical system

Figure 4.43: Maps of simulated average ∆ for spherical magnetic field compensation systems
for disturbance sources located randomly 20 m away from the centre of system – left panel and
200 m – right panel. The map plane is at x = 0.01 m. The coil positions are marked with a
black circle and position of two of the feedback sensors are marked with black stars.

These maps allow us to conclude that, for the spherical system, the magnetic field is
fairly well compensated in almost an entire controlled volume. Adding the third order
coils (l = 3) in the spherical systems still improves the shielding factor by almost an
order of magnitude.

A more detailed discussion about simulated compensation performance of all con-
sidered systems is presented in Chapter 5.
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Chapter 5

Simulation results

In the previous chapters, four magnetic field compensation systems were presented.
They all work in a similar way: the magnetometers continuously sample the field and
this information is then used for calculation of the reaction currents driven into the coils.
The whole operation was simulated. In order to obtain comparable results, the systems
were scaled to surround a similar volume. A view of the compared systems is shown in
Fig. 5.1. For comparison, the sphere with r = 1 m is drawn inside the systems.

The first comparison of the systems was done with varying size of controlled volume
Vexp. For all the systems except cellular, the position of simulated feedback sensors was
chosen randomly from points laying on the surface of the control volume. The cellular
system utilizes sensors in the centre of coils. Two different shapes of control volume
are considered in this comparison - sphere (Figs. 5.2 and 5.3) and cube (Figs. 5.4 and
5.5). Two plots for each of the control volume shapes show relation for two differ-
ent disturbance field source locations - more distant and closer to the system. In these
plots, the averaged (over the controlled volume) ∆ is plotted against the size of the con-
trolled volume. All systems except cellular, show a distinct decrease of compensation
performance with an increasing size of Vexp, thus decreasing distance from coils to the
feedback field measurement point. Cellular coils show approximately constant shield-
ing inside the whole volume. This is unique for these systems and this property is no
longer valid when regularization is used for calculation of currents.

The lowest average ∆, meaning lowest value of field after compensation, is obtained
with the spherical coil system with 15 coils. Around 2 orders of magnitude worse is
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Figure 5.1: Three compensation systems used in the performance comparison - 6 rectangular
coils of SFC, 24 coils of the Merritt setups (in blue 12 Merritt and in red additional 12 diagonal
coils), 6x64 cellular coils and one example coil from the spherical system. For comparison, the
spherical controlled volume with r = 1 m is drawn for all setups.

the system with 8 spherical coils and 24 modified Merritt coils. The result of a 24
rectangular coil system is a big improvement over the 12 Merritt coil system, which has
a similar performance as the reference SFC setup. The only improvement over the 6
coil system is visible for big control volume sizes and source further away from system.
This is a result of higher uniformity of the magnetic field, which is possible to obtain by
Merritt coils, compared to Helmholtz-like setup of the SFC system.

Two considered cellular coil systems with regularized vector feedback show similar
performance in simulations. It is the result of the big sensitivity of the system’s perfor-
mance to regularization parameter, which pays a bigger role than the number of coils in
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the system.
The biggest advantage of the cellular coil systems is shown in the plot of relative

spread of the ∆ distribution inside the control volume (Fig. 5.6 for spherical control
volume). The relative spread is defined as ratio of standard deviation of ∆ distribution
to average ∆. Cellular coil systems with global scalar feedback exhibit 2-3 orders of
magnitude lower values of this figure of merit, meaning much narrower ∆ distribution
than obtained with other systems.

Another way to compare the compensation system is to draw performance as a func-
tion of the disturbance field source’s distance to the system - Fig. 5.7. For each of the
points on this plot, 100 random positions and orientations of the sources at a given
distance were used to get the most universal picture. To emphasize the theoretical lim-
itations of the spherical coil system, in Fig. 5.8 the same relation for the 8 and 15 coil
spherical systems is shown, marking a difference between coils consisting of 100 and
400 wires. The performance of the SFC and the cellular coil systems is almost indepen-
dent on the distance from the disturbance source.

For spherical systems, the average ∆ decays with distance to the source as r−(lmax).
The only deviation from this law can be observed for the 15 coil system. For big dis-
tances, the average ∆ flattens. This effect can be attributed to errors introduced by
using wire approximation instead of perfect continuous current distribution. Increasing
the coil wire density (from 100 to 400 wires per coil) the lowest value of ∆ gets 10 times
smaller than before. For the 8 coil system, we do not see this effect because the error
resulting from the cut-off of the vector spherical harmonic expansion is bigger than the
one from the current discretization.

This gain in performance is not caused by increasing the number of degrees of free-
dom. Adding 6 new coils, resulting in a Merritt 12 coil system, does not improve the
performance significantly, as can be seen on all of the plots. We have found the only no-
ticeable improvement in larger sizes of controlled volume, where improved uniformity
of the field created by the 12-coil system matters.
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Table 5.1: Meaning of symbols used in graphs

6 SFC coils
8 Spherical coils
15 Spherical coils
12 Merritt coils
24 Modified Merritt coils
6x9 Cellular coils with global scalar feedback
6x64 Cellular coils with global scalar feedback
6x9 Cellular coils with regularized global vector feedback
6x64 Cellular coils with regularized global vector feedback
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Figure 5.2: Average ∆ as a function of the size of the spherical control volume with feedback
sensors located on that surface for the disturbance field source located at (10, 15, 20) m. Lines
are to guide the eye.
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Figure 5.3: Same as Fig. 5.2 but for the disturbance field generated by the current loop located
at (50, 70, 60) m.
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Figure 5.4: Same as Fig. 5.2, but for cubic controlled volume and disturbance field generated
by current loop located at (10, 15, 20) m.
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Figure 5.5: Same as Fig. 5.2, but for cubic controlled volume and disturbance field generated
by current loop located at (50, 70, 60) m.
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(a) Disturbance source located at (50, 70, 60) m.
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(b) Disturbance source located at (10, 15, 20) m.

Figure 5.6: Relative spread of ∆ distribution divided by average ∆ as a function of the size of
the spherical control volume. Lines are to guide the eye
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Figure 5.7: Average ∆ as a function of the distance to the source of the disturbance of magnetic
field. Lines are to guide the eye.
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Figure 5.8: Average ∆ in function of the distance of disturbance field (spherical control volume)
for spherical coil systems. © mark the 8-coil spherical system, 4 – 15 coil. Empty symbols
denote less dense coils (100 windings), while full ones correspond to 400 windings. The solid
line marks the theoretical relation for the 15 coil system: ∆ ∝ r−3
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The magnetic field compensation systems described in this part cover a broad spec-
trum of possibilities. Simple rectangular coil systems are the easiest to build, but the
performance is modest as compared to e.g. spherical systems.

The modified Merritt system, built and tested, is the easiest improvement over the
6 coil SFC system. Its test operation, due to technical imperfections of current sources
and readout system, was not optimal, thus obtained results were worse than the original
SFC system. The most significant improvement of the test setup would be using of
better current sources and replacing the analogue filter with the digital one. This should
eliminate the ghosting effect.

Although, basing on the simulation results, the performance improvement would be
visible only for perturbations of magnetic field located far away from the system. To
improve the operation of this compensation system also against closer located magnetic
field disturbances, one should consider adding additional 12 coils. This change makes
the performance of the rectangular coil system comparable to the spherical system with
8 coils.

Spherical coil systems are the solutions with the best performance. The gain may
be significant - ∆ around 10−3 corresponds to the shielding factor of 1000, comparable
to the performance of two-layer passive shields [70]. The drawbacks are purely of
technical nature - building the coil system by covering a full sphere, makes it very hard
to access the controlled volume.

Interesting solutions are “cellular” coil systems. They show unique features, like
the uniformity of shielding factor inside the system and independence of the shielding
performance on the distance to the perturbation source. They are also relatively easy to
build, thus may be an optimal option in many applications.
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Part III

Magnetic field mapping
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Chapter 6

Magnetic field mapping analysis

6.1 Introduction

Magnetic field gradients are the source of the biggest systematic uncertainties in mea-
surement of the neutron electric dipole moment. In the nEDM experiment at PSI, be-
sides the main coil, additional 33 coils are used in order to reduce the field gradients.
In order to properly tune the trim coils, one should know the gradients’ distribution.
For this, measurement accuracy of one nT is crucial. To achieve that, it is necessary
to take into account not only the sensor accuracy, but also imperfections of mechanical
construction of the mapping device. This part of the dissertation is dedicated to the
description and dealing with imperfection of the magnetic field mapping measurement.

The magnetic field mapping device was designed and built by workshops in the Lab-
oratoire de Physique Corpusculaire de CAEN and is shown in Fig. 6.1. Its construction
allows the use of both the fluxgate magnetometer and the vector caesium magnetometer.
In this work, I will focus on the analysis of data taken by the fluxgate magnetometer.

6.2 The mapper

Basing on experience with previous mapping devices, this mapper is built completely
from non-metallic parts. It consists of a rotating and vertically moving shaft, mounted
to the aluminium vacuum chamber of the nEDM spectrometer with two bearings. A
horizontal mapper arm is fixed to this shaft, holding a radially moving carrier with a
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Figure 6.1: Mapping device located inside the vacuum tank.

magnetic field sensor. The rotation angle, height of arm and radial position of carrier are
measured by reading out voltage drop on potentiometers connected to the mechanical
parts by non-elastic threads.

The sensor is mounted inside a tube with a helix, used for rotating the fluxgate 180◦

around a radial axis, what is necessary for correcting the so-called reading offset.

Because of the construction of the mapper, the cylindrical system of coordinates
is natural for the description of the field. Both measurements (field and position) are
obtained in this system. Because the magnetic field is to be decomposed to the Cartesian
harmonics (see Appendix A), it is necessary to transform this readings to the Cartesian
coordinate system.

The change of the measurement position is performed by rotating the arm and then
changing the position of the carrier. This results in data taken along circles of constant
r and z coordinates. Measurements are performed with the mapper at rest.

6.3 Imperfections of the field mapper

Having in mind the requirement for the magnetic field uniformity and stability, it is
mandatory to consider imperfections of the mapper itself and of the mapping proce-
dure. They must be included in the analysis of maps and estimation of the resulting
uncertainties. Some of those effects can be determined from an independent calibration
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measurement. Others are not directly accessible, but influence the measured value in a
systematic way and can be included in the analysis in a form of a model. Thus, the gen-
eral fit of the model to the set of measured values may deliver both the field expansion
coefficients and the imperfection parameters of the mapping procedure.

Real directions of measurement, marked as X̃, Ỹ , Z̃, are related to orthogonal direc-
tions X̂ = −ϕ̂, Ŷ = −ẑ, Ẑ = r̂ via seven angular parameters and three offset values,
describing the imperfections of the measurement device. These parameters can be di-
vided into two such sets:

1. Sensor related:

• Offsets - fluxgate sensors have internal offsets, which cause the readout
value to be shifted by a constant, that does not change within a few sub-
sequent readings. However, this imperfection may drift in time and there is
a dedicated measurement needed for the offset value before and after each
map measurement. There are 3 offset values to determine, one for each of
the 3d sensor directions.

• Non-orthogonality - it is related to the fact that 3 sensors creating one 3d
fluxgate magnetometer are not aligned with an exact right angle. 5 inde-
pendent angles marked with capital letters such as A,B,C,D,E, are used
to describe the real sensor orientation X̃, Ỹ , Z̃ with respect to the set of or-
thogonal directions, X ′, Y ′, Z ′ (see Fig. 6.2). According to the specification
[71], relative non-orthogonality of the Stefan Mayer FLC3-70 fluxgate sen-
sors shall be smaller than 0.1◦.

2. Mapper related - Two angles, α - pitch and β - roll, describe the rotation relation
between orthogonal directions X ′, Y ′, Z ′ and vectors describing directions in the
cylindrical set of coordinates – X̂ = −ϕ̂, Ŷ = −ẑ, Ẑ = r̂ (see Fig. 6.2).

We assume that only offsets change with time. Other parameters are determined once
for the whole measurement campaign. For determination of the offset values dedicated
evaluation is performed before and after every field measurement.

A three dimensional fluxgate magnetometer consists physically of 3 separate sen-
sors joined together inside one housing. This means that besides the non-orthogonality
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angles, one also has to take into account the fact that 3 sensors measure the magnetic
field in 3 separate places, 20 mm apart.
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Figure 6.2: Real measurement axes - X̃, Ỹ , Z̃ and their relation to ideal measurement axes
X̂ = −ϕ̂, Ŷ = −ẑ, Ẑ = r̂
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6.3.1 Offsets and non-orthogonalities

When measuring the magnetic field at angle ϕ, the measured field is described by: B̃X

B̃Y

B̃Z

 =

 (Rz(ϕ)X̃) · ~B + xoffset

(Rz(ϕ)Ỹ ) · ~B + yoffset

(Rz(ϕ)Z̃) · ~B + zoffset

 , (6.1)

where Rz(ϕ) is the rotation matrix with angle ϕ around Z axis, xoffset, yoffset, zoffset
are three offset values and X̃, Ỹ , Z̃ are three non-orthogonal axes, defined as:

• X̃ is a X ′ = −ϕ̂ direction rotated around the Y ′ axis by angle C and then rotated
by angle B around Z ′ axis.

• Ỹ is a Y ′ = −ẑ direction rotated around the Z ′ axis by angle D and then rotated
by angle E around Y ′ axis.

• Z̃ is a Z ′ = r̂ direction rotated around the Y ′ axis by angle A

In this way each of the sensor’s directions can be described by:

X̃ =

 1 0 0

0 cos(B) − sin(B)

0 sin(B) cos(B)


 cos(C) − sin(C) 0

sin(C) cos(C) 0

0 0 1


 0

−1

0

 , (6.2)

Ỹ =

 cos(E) − sin(E) 0

sin(E) cos(E) 0

0 0 1


 1 0 0

0 cos(D) − sin(D)

0 sin(D) cos(D)


 0

0

−1

 , (6.3)

Z̃ =

 cos(A) 0 sin(A)

0 1 0

− sin(A) 0 cos(A)


 1

0

0

 , (6.4)

in basis (r̂, ϕ̂, ẑ). To correct for non-orthogonalities, the inverse of Eq. (6.1) has to be
applied, solving for ~B, resulting in cylindrical coordinates of the field, (B′r, B

′
ϕ, B

′
Z).
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6.3.2 Misalignments

Misalignment angles result from imperfections of the mechanical design of the mapper.
In this model, they are described by two angles, α - roll, which is related to plasticity
leading to the arm bending, and β - pitch, which is related to the shape of the surface
on which the carrier is moving. These angles are functions of the z, r global position
coordinates in the cylindrical system.

Assuming Br, Bϕ, Bz to be the cylindrical coordinates of the magnetic field (after
correction for non-orthogonalities), misalignments would result in the following rota-
tion of measured field:

 B̂r

B̂ϕ

B̂z

 = Rϕ(β)Rr(α)

 B′r

B′ϕ

B′z

 , (6.5)

where Rϕ(β) - rotation matrix around the ϕ̂ axis by pitch angle β, Rr(α) - a rotation
matrix around the r̂ axis by roll angle α. To correct for these misalignments, one needs
to apply:

~Bcorrected = Rr(−α)Rφ(−β) ~Bnotcorrected. (6.6)

6.4 Determination of imperfection parameters

6.4.1 Offsets and non-orthogonality angles

Offsets are drifting in time, which make it necessary to have dedicated measurement
before and after each map. This, so-called “calibration run”, consists of the following
steps:

1. Positioning one of the axes of fluxgate magnetometer exactly on the axis of rota-
tion of the mapper,

2. Measuring the magnetic field with the mapper rotated every ϕ = 10◦,

3. Repeating the measurement for 2 other sensors,
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4. Flipping the fluxgate by 180◦ around the r̂ axis,

5. Measuring the magnetic field with the mapper rotated every ϕ = 10◦,

6. Repeating the measurement for 2 other sensors.

Description of a field measurement by an imperfect sensor measure field is ex-
pressed in Eq. (6.1). One can parametrize the magnetic field at the point (0, 0, 0) as:

~B =

 Bt cos(θ)

Bt sin(θ)

B3

 . (6.7)

After taking only first order terms in the Taylor expansion in small quantities for angles
A,B,D, the expression for measured field simplifies to:

~B1,meas =

 Bt sin(C) cos(θ)−Bt cos(C) sin(θ)

BtD cos(E) sin(θ)−BtD sin(E) cos(θ)

Bt cos(θ)

 cos(ϕ)+

+

 Bt sin(C) sin(θ) +Bt cos(C) cos(θ)

−BtD sin(E) sin(θ)−BtD cos(E) cos(θ)

Bt sin(θ)

 sin(ϕ)+

+

 xoffset −B3B cos(C) +O (B2)

(yoffset −B3) +O (D2)

zoffset − AB3 +O (A2)

 =

=

 A1cosx

A1cosy

A1cosz

 cos(ϕ) +

 A1sinx

A1siny

A1sinz

 sin(ϕ) +

 A1cx

A1cy

A1cz

 . (6.8)

Magnetic field seen by the flipped sensor positioned in the same point as in Eq. (6.8)
can be expressed as:

~B2,meas =

 Bt sin(C) cos(θ) +Bt cos(C) sin(θ)

−BtD sin(E) cos(θ)−BtD cos(E) sin(θ)

Bt cos(θ)

 cos(ϕ)+
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+

 Bt sin(C) sin(θ)−Bt cos(C) cos(θ)

BtD cos(E) cos(θ)−BtD sin(E) sin(θ)

Bt sin(θ)

 sin(ϕ)+

+

 xoffset +B3B cos(C) +O (B2)

(B3 + yoffset) +O (D2)

zoffset + AB3 +O (A2)

 =

=

 A2cosx

A2cosy

A2cosz

 cos(ϕ) +

 A2sinx

A2siny

A2sinz

 sin(ϕ) +

 A2cx

A2cy

A2cz

 . (6.9)

The relation between angle and field seen by an imperfect sensor is shown in Fig. 6.3.
The fitted trigonometric functions are marked with solid lines. Coefficients in brackets
in Eqs. (6.8) and (6.9) can be extracted from measurements using the Fast Fourier
Transform algorithm. From this, all needed angles and offset values can be calculated:

tan θ =
A1sinz + A2sinz

A1cosz + A2cosz

(6.10)

At =
1

2

(√
A2

1cosx + A2
1sinx +

√
A2

2cosx + A2
2sinx

)
, (6.11)

tan(C) =
1

2

(
− tan θ

A1cosx + A2cosx

A1cosx − A2cosx

+
1

tan θ

A1sinx + A2sinx

A1sinx − A2sinx

)
, (6.12)

tan(E) =
1

2

(
− tan θ

A1cosy + A2cosy

A1cosy − A2cosy

+
1

tan θ

A1siny + A2siny

A1siny − A2siny

)
, (6.13)

A =− A1cz − A2cz

2A3

, (6.14)

B =− A1cx − A2cx

2A3 cos(C)
, (6.15)

D =
1

4

(
− A1cosy

At sin(E − θ)
− A2cosy

At sin(E + θ)
− A1siny

At cos(E − θ)
+

A2siny

At cos(E + θ)

)
,

(6.16)

xoffset =
1

2
(A1cx + A2cx) , (6.17)

yoffset =
1

2
(A1cy + A2cy) , (6.18)

zoffset =
1

2
(A1cz + A2cz) . (6.19)
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Equations (6.17) - (6.19) are used for determination of the offset values from each
of the calibration runs.
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Figure 6.3: The magnetic field measured during calibration runs as a function of angle ϕ. Orien-
tation 0 corresponds to the X sensor in the ϕ̂ direction, orientation 1 is rotated by π around the
r̂ direction. This measurements are not corrected for any imperfections. Solid lines correspond
to the result of the FFT fitting (for details see text).
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6.4.2 Misalignments

To determine the misalignment angles α and β two assumptions are needed:

1. These two angles change only while changing the radius - for each measurement
cycle at constant r, z (cylindrical coordinates) they stay constant.

2. The magnetic field for each measurement cycle at constant (r, z) can be expressed
as:

~B =

 Bx

By

Bz

+G1

 sin(ϕ)R

cos(ϕ)R

0

+G2

 0

Z

sin(ϕ)R

+

+G3

 −2 cos(ϕ)R

−2 sin(ϕ)R

4Z

+G4

 Z

0

cos(ϕ)R

+G5

 −2 cos(ϕ)R

−2 sin(ϕ)R

0

 ,

(6.20)

where (Bx, By, Bz) describe an uniform component of magnetic field in Carte-
sian coordinates while G1 to G5 describe 5 independent first order gradients in
Cartesian coordinates (x, y, z) expressed as a function of angle ϕ in cylindrical
coordinates. This assumptions mean that we neglect other components of the
field.

With this two assumptions we can calculate the real value as a function of the cylin-
drical angle ϕ: B′

r

B′
ϕ

B′
z

 = Rϕ(β)Rr(α)

 cos(ϕ) sin(ϕ) 0

− sin(ϕ) cos(ϕ) 0

0 0 1

 ~B =

 (Bz + 4G3Z) sin(β)

(Bz + 4G3Z) cos(β) sin(α)

(Bz + 4G3Z) cos(α) cos(β)

+

+ sin(ϕ)

 −By cos(β)−G2Z cos(β) +G2R sin(β)

Bx cos(α) +G4Z cos(α) +G2R cos(β) sin(α) +By sin(α) sin(β) +G2Z sin(α) sin(β)

G2R cos(α) cos(β)−Bx sin(α)−G4Z sin(α) +By cos(α) sin(β) +G2Z cos(α) sin(β)

+
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+ cos(ϕ)

 Bx cos(β) +G4Z cos(β) +G4R sin(β)

By cos(α) +G2Z cos(α) +G4R cos(β) sin(α)−Bx sin(α) sin(β)−G4Z sin(α) sin(β)

G4R cos(α) cos(β)−By sin(α)−G2Z sin(α)−Bx cos(α) sin(β)−G4Z cos(α) sin(β)

+

+ sin(2ϕ)

 2G3R cos(β) + 2G5R cos(β)

G1R cos(α)− 2G3R sin(α) sin(β)− 2G5R sin(α) sin(β)

−G1R sin(α)− 2G3R cos(α) sin(β)− 2G5R cos(α) sin(β)

+

+ cos(2ϕ)

 2G5R cos(β)− 2G3R cos(β)

G1R cos(α) + 2G3R sin(α) sin(β)− 2G5R sin(α) sin(β)

−G1R sin(α) + 2G3R cos(α) sin(β)− 2G5R cos(α) sin(β)

 ≡ (6.21)

≡

 Afr

Afϕ

Afz

+ sin(ϕ)

 Asr

Asϕ

Asz

+ cos(ϕ)

 Acr

Acϕ

Acz

+ sin(2ϕ)

 As2r

As2ϕ

As2z

+ cos(2ϕ)

 Ac2r

Ac2ϕ

Ac2z

 ,

(6.22)

where Rφ(β) is the rotation matrix around the basis vector by angle β, Rr(α) is the
rotation matrix around the first basis vector by angle α, ϕ is the angular position of the
sensor and Afi, Asi, Aci, As2i and Ac2i for i ∈ {r, ϕ, z} are coefficients of the Fourier
series describing the field as a function of measurement angle ϕ. Using the Fast Fourier
Transform algorithm we obtain from measurement data the experimental values of those
coefficients, denoted by Bfi, Bsi, Bci, Bs2i and Bc2i for i ∈ {r, ϕ, z}, respectively. To
get misalignment angles, we minimize the chi-square function:

χ2 =
∑

i∈{f,s,c,s2,c2}

∑
j∈{r,ϕ.z}

(Aij −Bij)
2, (6.23)

using for example GSL [50] multidimensional minimization functions, resulting in es-
timation of angles α and β as a function of distance from rotation axis r and height
z.

6.5 Fit of the expansion coefficients and estimation of
their uncertainties

A measurement run is performed using the mapping device for a set of points. This set
may change from measurement to measurement, making a direct (point-to-point) com-
parison impossible. Instead, we expand the measured field maps in Cartesian harmonics
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defined in Tab. A.1 and compare the expansion coefficients. We can then express the
magnetic field in whole volume as a set of components hi:

~B(x, y, z) =
48∑
i=1

hiHi(x, y, z), (6.24)

where ~B(x, y, z) is the magnetic field induction at each point inside the precession vol-
ume andHi(x, y, z) is Cartesian Harmonic (see Tab. A.1). To obtain the decomposition
coefficients hi, we have to solve the following set of equations:

Bx(x1, y1, z1) =
48∑
i=1

hiHx,i(x1, y1, z1)

By(x1, y1, z1) =
48∑
i=1

hiHy,i(x1, y1, z1)

Bz(x1, y1, z1) =
48∑
i=1

hiHz,i(x1, y1, z1)

Bx(x2, y2, z2) =
48∑
i=1

hiHx,i(x2, y2, z2)

· · ·

Bz(xN , yN , zN) =
48∑
i=1

hiHz,i(xN , yN , zN), (6.25)

where (x1, y1, z1) . . . (xN , yN , zN) are coordinates of measurement points. These equa-
tions can be written as a matrix equation:

Bx(x1, y1, z1)

By(x1, y1, z1)

Bz(x1, y1, z1)

Bx(x2, y2, z2)

By(x2, y2, z2)

· · ·
Bx(xN , yN , zN )

By(xN , yN , zN )

Bz(xN , yN , zN )


=



Hx,1(x1, y1, z1) Hx,2(x1, y1, z1) · · · Hx,48(x1, y1, z1)

Hy,1(x1, y1, z1) Hy,2(x1, y1, z1) · · · Hy,48(x1, y1, z1)

Hz,1(x1, y1, z1) Hz,2(x1, y1, z1) · · · Hz,48(x1, y1, z1)

Hx,1(x2, y2, z2) Hx,2(x2, y2, z2) · · · Hx,48(x2, y2, z2)

Hy,1(x2, y2, z2) Hy,2(x2, y2, z2) · · · Hy,48(x2, y2, z2)

· · ·
Hx,1(xN , yN , zN ) Hx,2(xN , yN , zN ) · · · Hx,48(xN , yN , zN )

Hy,1(xN , yN , zN ) Hy,2(xN , yN , zN ) · · · Hy,48(xN , yN , zN )

Hz,1(xN , yN , zN ) Hz,2(xN , yN , zN ) · · · Hz,48(xN , yN , zN )




h1

h2

· · ·
h48



B =Ĥh, (6.26)
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where B is the column of the corrected magnetic field measured at each point, Ĥ is
the matrix of the Cartesian harmonic values and h is the column of the expansion co-
efficients. To solve Eq. (6.26) for h, we can use the Singular Value Decomposition
method.

Obviously, the field measurements have their statistical and systematic uncertainties
which are not well known. This is why we have decided to apply the Bootstrap method
(see Refs [72, 73]) for estimation of errors of the expansion coefficients hi.

Bootstrap method

Let us assume, that we have a map consisting of N points. This gives us 3N values of
field, meaning 3N equations with 48 unknown parameters. Solving them would give us
the values of harmonic expansion coefficients. Estimation of the covariance matrix of n
parameters can be obtained in the following steps:

1. Pick, randomly, 3N equations with repetitions from a set of 3N equations. This
means that some of the equations will be taken into account more than once (hav-
ing higher weight) and others are not taken into account at all.

2. From the resulting set of equations, calculate harmonic expansion coefficients
({hi}, i - coefficient number)

3. Repeat the first two stepsNboot times (in this case, Nboot = 3N/2), leading to a set
of coefficient values: {hji}, where i - coefficient number and j - repetition number
(from 1 to Nboot).

4. Treat these numbers as independent measurements and calculate the expected val-
ues and covariance matrix:

E(hi) = h̄i =
1

Nboot

Nboot∑
j=1

hji , (6.27)

Σk,l = cov(hk, hl) =
1

Nboot

Nboot∑
j=1

(hjk − h̄k)(h
j
l − h̄l). (6.28)
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Figure 6.4: Example distribution of the coefficient number 3 of expansion in Eq. (6.24) for map
number 008623X03 (map of main coil)

6.6 Analysis chain

To analyse one set of data (a field map) the following information is needed:

1. Offset values. They are obtained from a calibration run taken directly before and
after the run to be analysed.

2. Non-orthogonality angles. They are obtained from one calibration run for all the
runs. The best accuracy is obtained while using two separate calibration runs – the
map with a large horizontal field component is used for determining C,E angles
and large vertical field is used for determining remaining angles.

3. Misalignment angles. They are obtained from the map of the main field coil.

The flow chart for analysis of magnetic field mapping measurement is presented in
Fig. 6.5. The mapper data is stored in an ASCII file containing both position data and
magnetic field data in cylindrical coordinates. Firstly, this data is corrected for offset
values, then non-orthogonality of sensors, for misalignments and finally, transformed
into Cartesian coordinates. The set of corrected data points is then used in the fit to
Eq. (6.24) and the expansion coefficients of the field in the Cartesian harmonics are
deduced.
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Misalignment
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Figure 6.5: Flow graph for analysis of magnetic field mapping
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6.7 Verification

6.7.1 Simulation

The analysis chain was verified with toy data. An artificial field map was constructed
starting from the set of expansion coefficients for a real map of the main coil. This set is
presented as crosses in Fig. 6.6. Constant value of 10 nT was added to each of measure-
ments as the offset value, constant non-orthogonality angle transformation was applied.
The misalignment angles were modelled as a function of position of measurement (see
Fig. 6.7). The format of simulated data is the same as the one obtained from a real
measurement. The full analysis chain was applied to this artificial map. The expansion
coefficients were compared to that of the input field spectrum as can be seen in Fig. 6.6.
Excellent matching shows that this analysis is consistent.
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Figure 6.6: Results of simulated mapping analysis. Input was simulated with assumptions of
constant pitch and roll angles and non-orthogonalities taken from real calculation. As an in-
put field, we used field described by decomposition into harmonics defined in Tab. A.1. This
decomposition was also taken from one of the measured maps.
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Figure 6.7: Pitch angle used as an input to simulation and obtained from analysis of simulated
data

6.7.2 Impact of model corrections on real maps

Using the method described in Sec. 6.5, the analysis of the particular map No. 008650X14
was performed in two ways:

1. with application of corrections for non-orthogonalities and misalignments,

2. without these corrections.

Then the fit residuals of the field expansion are plotted in Figs. 6.8a and 6.8b. From
those plots, it is obvious that the inclusion of corrections significantly improves the fit.
Nevertheless, the distribution of the residuals for the corrected data is not centred at
(0, 0) and is relatively broad suggesting that, still, some effects are not included in the
model.

Figure 6.8a indicates that the fit residuals have an anomalous distribution, with lo-
cal minimum around (0, 0). This should not happen for the field distribution fulfilling
Maxwell’s equations. The corrected (Fig. 6.8b) field behaves better: the fit residuals
have a single and well defined maximum not too far from zero.
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Figure 6.8: Two dimensional histogram of residuals of field in x and y directions

This model can still be improved with the local correction of misalignments. This
could be possible with a magnetically quiet inclinometer mounted on the carrier along-
side the magnetometer.

Summarizing, the corrections are essential and significantly improve the field map.
However, they are still incomplete.

6.8 Results of the field map analysis

6.8.1 Corrections

Using the procedure described in the previous section, the non-orthogonality angles
were calculated from measurement data taken in 2014: A = 0.00088 rad,B = 0.0041 rad,
C = 0.0083 rad, D = 0.015 rad, E = 0.59 rad.

Offsets vary from run to run. All the values taken from calibration runs are presented
in Fig. 6.9. The offset jumps are correlated with the shield demagnetization actions
which change the magnetization of the fluxgate sensor’s iron yoke and cause shifts in
offset values. Also significant offset change from year to year is clearly visible.

Misalignment angles were evaluated in the field map analysis and it is possible to
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Figure 6.9: Fluxgate sensor offset values for all maps measured in 2013 and 2014.

verify them independently with the inclinometer, measuring the orientation of the carrier
with respect to vertical direction defined by gravity. The comparison of results obtained
with both methods for z = 0 is presented in Fig. 6.10. The shape is reproduced as-
tonishingly well, but the absolute normalizations differ most probably due to magnetic
field being not perfectly vertical. Pitch angle plot indicates clearly, that the mapper’s
arm is bent downwards when going to large r. Such a distortion of few millimetres was
observed on site by the naked eye.

Changes of roll angle with changing radial position suggest that the rails on which
the carrier is moving are not perfectly flat.

In Fig. 6.11, the comparison between measurements in 2013 and 2014 is presented.
One can clearly see the change in roll angle shape. This may be related to the fact that,
before the 2014 mapping campaign, the carrier had been equipped with rubber rings on
its wheels. On the other hand, pitch angle measurements from both years are consistent
with each other.
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(a) Roll angle α

(b) Pitch angle β

Figure 6.10: Comparison of misalignment angles α and β obtained from maps and from incli-
nometer measurements with z = 0.
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(a) Roll angle α obtained from 2013 data (b) Roll angle α obtained from 2014 data

(c) Pitch angle β obtained from 2013 data (d) Pitch angle β obtained from 2014 data

Figure 6.11: Comparison of misalignment angles α and β obtained from analysis in 2013 and
2014.

6.9 Field stability

The results obtained from maps can be used to judge the stability of the field. To do
that one can compare the results from measurements taken without any currents flowing
through main field coil and trim coils. This magnetic field is the ambient magnetic field,
resulting from material composition of the apparatus’ construction and from magnetic
field sources not related to the experiment.

In Figures 6.12 to 6.15 evolution of the harmonic expansion coefficients number
1, 2, 3 and 9 for background field are presented. Points on the left side of vertical line
present results from the 2013 mapping campaign, while the ones on the right were taken
in 2014.

Surprisingly, the results from both years are not far apart. The biggest disturbance of
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the field is observed in the maps no. 008684X04 and 008684X10 where a new (unusual)
demagnetization method of the passive shield was tested.

Figure 6.12: 1st Harmonic expansion coefficient (uniform in x direction) of background field in
the function of map number. Vertical line separates 2013 measurements from 2014.

Figure 6.13: Same as Fig. 6.12, but for the 2nd harmonic expansion coefficient (uniform com-
ponent in y direction).
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Figure 6.14: Same as Fig. 6.12, but for the 3rd harmonic expansion coefficient (uniform com-
ponent in z direction).

Figure 6.15: Same as Fig. 6.12, but for the 9th harmonic expansion coefficient (component
proportional to (x2 − z2, 0,−2xz)).
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6.10 Trim coil current optimization with data from field
mapping

The main reason for the field mapping effort was the hope that the field maps will
allow to predict the optimal currents in the trim coils such that the field gradients are
eliminated. The indication of the success would be a long T2 time.

Having the decomposition coefficients of field produced by each of the coils – hi, it
is possible to calculate optimal currents for all coils, such that the generated magnetic
field is uniform and oriented in the z direction. This corresponds to the condition, that all
the coefficients shall be equal 0 except the h3, which shall be non-zero. This condition
can be represented by the set of equations,

0 = hi,notcorrected +

ncoils∑
j=0

Ijh̃i,j for i 6= 3, (6.29)

where i - denotes the harmonic coefficient number, j - denotes the coil number, hi,notcorrected
is the harmonic expansion coefficient for the magnetic field not originating from coils,
Ij is the j-th current in coil and h̃i,j is the i-th harmonic coefficient of the magnetic field
generated by j-th coil measured during mapping, divided by the current flowing through
this coil during measurement.

The set (6.29) can be solved using the Singular Value Decomposition method. How-
ever, to estimate uncertainty of currents, the following method was used.

The analysis described in previous sections results in expectation values of the co-
efficients hi,j and their covariance matrices cov(hk,j, hl,j). Each magnetic field map
contains information about total field, i.e. field created by a coil and field coming from
other apparatus parts and outside sources. To extract net field coming from coils, the
remnant field was subtracted from the individual coil calibration maps. For that pur-
pose, two background field maps were used (one taken before and one after the coil
calibration map measurement). This operation transforms the covariance matrix cov to:

(6.30)
cov(hk,j −

hk,background,1 + hk,remnant,2

2
, hl,j −

hl,background,1 + hl,background,2

2
)

= cov(hk,j, hl,j) +
1

4
(cov(hk,background,1,

hl,background,1) + cov(hk,background,2, hl,background,2)),
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where cov(hk,j − hk,remnant,1+hk,remnant,2
2

, hl,j − hl,remnant,1+hl,remnant,2
2

) is the covariance matrix of
the expansion coefficients of the pure coil field map - obtained after removal of rem-
nant field, cov(hk,remnant,1, hl,remnant,1) is the covariance matrix of the expansion coef-
ficients of the remnant field map taken before the coil map measurement. Similarly
cov(hk,remnant,2, hl,remnant,2) is the covariance matrix of the expansion coefficients of the
remnant field map taken after the coil map measurement. Equation (6.30) assumes, that
maps are independent, resulting in cross covariation equal to 0.

This operation leads to a set of expansion coefficients and covariance matrices for
each coil. These matrices have eigenvalues λk,j and corresponding eigenvectors ~vk,j ,
where j denotes the coil number and k denotes the eigenvector/eigenvalue number. To
include complete information about uncertainties of the expansion coefficients, the fol-
lowing Monte Carlo algorithm is used:

1. Expansion coefficients vector ~hj,simulated for each of the coils (6.29) is picked at
random from equation:

~hj,simulated = E(~hj) +
48∑
k=1

~vk,j random(0,
√
λk,j), (6.31)

where ~hj,simulated is the vector containing harmonic expansion coefficients includ-
ing uncertainties, which is used later in calculation of the current, E(~hj) is the
expectation value of vector containing harmonic expansion coefficients,
random(0,

√
λk,j) is a pseudo-random number taken from the Gaussian distribu-

tion centred around zero with σ =
√
λk,j .

2. Randomly picked expansion coefficients are used as an input to solve Eq. (6.29)
for currents in coils Ij .

3. This procedure is repeated 10, 000 times. The expected values for currents and
their uncertainties are estimated using arithmetic mean and standard deviation
estimators.

Results of these calculations are presented in Figs 6.16 for the main field in down
direction and 6.17 for the field in up direction. They are compared with the results of
previous trim coils’ currents optimization, performed in 2010 by Gilles Quemener [74,
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75]. The optimized currents for some of the coils are consistent, but there are significant
differences in other coils, like BTC, HVK and BAC. Potentially the proposed approach
can improve the T2 time leading to better sensitivity of measurement of neutron EDM,
but still it has to be verified on site.

Figure 6.16: Optimal currents calculated for each of the trim coils for the main field down
configuration.
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Figure 6.17: Same as Fig. 6.16 but for the main field up configuration.
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Chapter 7

Summary

Magnetic field control is a crucial issue in measurements of the neutron electric dipole
moment. Magnetic field in such precise experiments must be as stable as possible and
also well known. The first goal is achieved using a passive shield working together with
an active magnetic shielding. In this work, four magnetic field compensation systems
were considered and compared. It turns out that the field is shielded most efficiently by
the spherical coil system configured using solid mathematical foundations.

The simplest considered system, the SFC, is in operation as a part of the nEDM
experiment at PSI. It has a relatively simple construction consisting of 6 coils. As-
tonishingly, the measured performance is significantly better than the first results from
the more sophisticated Merritt setup, but simulations show that it is possible to achieve
better results with other systems.

The Merritt setup is based on a concept for highly uniform magnetic field generation.
This is achieved by adding 6 coils to the SFC setup, resulting in 12 coils in total. The
prototype was built, but it was performing below expectations. The main reasons were
the hardware problems mostly related to crosstalk between acquisition channels. The
simulation of operation of this system shows that the expected improvement over the
SFC setup is modest. In order to significantly improve performance adding 12 diagonal
coils is considered. This would result in satisfactory operation, but on the cost of much
more complicated construction and much higher costs of power supplies needed to drive
current through coils.

The third compensation system is the cellular coil setup, consisting of a large num-
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ber of small coils with sensors in the coil centres. The simulated performance of such
a setup is the worst (in terms of relative difference ∆) of all considered systems, but
it compensates the magnetic field uniformly inside the volume surrounded by the com-
pensation coils. It has also some practical advantages. The implementation of doors and
other openings would be easier than in other systems.

According to simulations, the spherical coil system provides an optimal compen-
sation: its performance is 2-5 orders of magnitude better than for other setups. This
property comes from the fact that it utilizes orthogonal decomposition of the field by
vector spherical harmonics. Combining these basis functions with stream function for-
malism for determining wire shapes and positions results in a set of spherical coils,
grouped in multipoles. Further performance improvement is possible by simply adding
higher multipole coils. However, the practical realization of such a system is difficult.
Several design possibilities were considered, but none of them solved the problem –
how to design doors through wires covering the whole surface of a sphere.

Another crucial part of the magnetic field control in the nEDM experiment at PSI is
based on magnetic field mapping on the experiment site. The magnetic field map would
allow to estimate systematic effects, but also to tune the field uniformity. Field mapping
is performed by a specially constructed robot placed inside the passive shield and using
a fluxgate sensor or a c vector caesium magnetometer. In this work, I have concentrated
my efforts on the analysis of data taken by a fluxgate sensor.

Both the used sensor and mapping device itself are not perfect, leading to necessary
corrections. A special model was developed to include in the analysis misalignments
of the mapper elements and non-orthogonalities of sensors. Dedicated runs were used
for estimation of the read offset values. The misalignment angles, extracted from the
fit of the model to the experimental data were verified with the measurement using an
inclinometer. Validation of the analysis was performed using a simulated field map with
assumed imperfection parameters.

It was shown with a real field map, that the application of correction deduced from
model fit, significantly improve the map consistency.

For easier comparison, the results of the map analysis are expressed in terms of the
Cartesian harmonic expansion coefficients. In this way, it is possible to compare the
maps spanned on different mesh structures. Comparisons show stability of the field
at a level of one nT throughout two measurement campaigns. The uncertainty of the
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CHAPTER 7. SUMMARY

expansion coefficients was described by the covariance matrices, estimated using the
Bootstrap method. Additionally, the successful verification of this process was per-
formed.

For the nEDM Experiment at PSI, the most important result delivered by the analysis
of field maps would be the optimal configuration for trim coils’ currents. The presented
results can be used as starting points for manual fine tuning.

All in all, in this work, two aspects of magnetic field control were addressed. In the
first one, several active magnetic field compensation systems are compared suggesting
optimal solutions for future use. In the second, the measurements of magnetic field maps
were analysed, leading to a set of the Cartesian harmonic expansion coefficients ready
for calculations of systematic effects and for use as input for Monte Carlo simulations.
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Appendix A

Cartesian harmonic basis functions
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Table A.1: List of used Cartesian harmonic basis functions

Nr coordinate
x y z

1 1 0 0
2 0 1 0
3 0 0 1
4 x 0 −z
5 y x 0
6 0 y −z
7 z 0 x
8 0 z y

9 x2 − z2 0 −2xz

10 2xy x2 − z2 −2yz

11 y2 − z2 2xy −2xz

12 0 y2 − z2 −2yz

13 2xz 0 x2 − z2
14 yz xz xy

15 0 2yz y2 − z2

16 x3 − 3xz2 0 z3 − 3x2z

17 3x2y − 3yz2 x3 − 3xz2 −6xyz

18 3xy2 − 3xz2 3x2y − 3yz2 −3x2z − 3y2z + 2z3

19 y3 − 3yz2 3xy2 − 3xz2 −6xyz

20 0 y3 − 3yz2 z3 − 3y2z

21 3x2z − z3 0 x3 − 3xz2

22 6xyz 3x2z − z3 3x2y − 3yz2

23 3y2z − z3 6xyz 3xy2 − 3xz2

24 0 3y2z − z3 y3 − 3yz2

25 x4 − 6x2z2 + z4 0 4xz3 − 4x3z

26 4x3y − 12xyz2 x4 − 6x2z2 + z4 4yz3 − 12x2yz

27 3x2y2 − 3x2z2 − 3y2z2 + z4 2x3y − 6xyz2 −2x3z − 6xy2z + 4xz3

28 2xy3 − 6xyz2 3x2y2 − 3x2z2 − 3y2z2 + z4 −6x2yz − 2y3z + 4yz3

29 y4 − 6y2z2 + z4 4xy3 − 12xyz2 4xz3 − 12xy2z

30 0 y4 − 6y2z2 + z4 4yz3 − 4y3z

31 4x3z − 4xz3 0 x4 − 6x2z2 + z4

32 3x2yz − yz3 x3z − xz3 x3y − 3xyz2

33 6xy2z − 2xz3 6x2yz − 2yz3 3x2y2 − 3x2z2 − 3y2z2 + z4

34 y3z − yz3 3xy2z − xz3 xy3 − 3xyz2

35 0 4y3z − 4yz3 y4 − 6y2z2 + z4

36 x5 − 10x3z2 + 5xz4 0 −5x4z + 10x2z3 − z5

37 5x4y − 30x2yz2 + 5yz4 x5 − 10x3z2 + 5xz4 −20x3yz + 20xyz3

38 10x3y2 − 10x3z2 − 30xy2z2 + 10xz4 5x4y − 30x2yz2 + 5yz4 −5x4z − 30x2y2z + 20x2z3 + 10y2z3 − 3z5

39 x2y3 − 3x2yz2 − y3z2 + yz4 x3y2 − x3z2 − 3xy2z2 + xz4 −2x3yz − 2xy3z + 6xyz3

40 5xy4 − 30xy2z2 + 5xz4 10x2y3 − 30x2yz2 − 10y3z2 + 10yz4 −30x2y2z − 10y4z + 5x2z3 + 20y2z3 − 3z5

41 y5 − 10y3z2 + 5yz4 5xy4 − 30xy2z2 + 5xz4 −20xy3z + 20xyz3

42 0 y5 − 10y3z2 + 5yz4 −5y4z + 10y2z3 − z5

43 5x4z − 10x2z3 + z5 0 x5 − 10x3z2 + 5xz4

44 20x3yz − 20xyz3 5x4z − 10x2z3 + z5 5x4y − 30x2yz2 + 5yz4

45 15x2y2z − 5x2z3 − 5y2z3 + z5 10x3yz − 10xyz3 5x3y2 − 5x3z2 − 15xy2z2 + 5xz4

46 10xy3z − 10xyz3 15x2y2z − 5x2z3 − 5y2z3 + z5 5x2y3 − 15x2yz2 − 5y3z2 + 5yz4

47 5y4z − 10y2z3 + z5 20xy3z − 20xyz3 5xy4 − 30xy2z2 + 5xz4

48 0 5y4z − 10y2z3 + z5 y5 − 10y3z2 + 5yz4
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Appendix B

Simplification of spherical coils by
approximation with truncated
icosahedron

Building spherical coils of the size big enough to enclose the neutron EDM experiment
would be a challenge. To reduce costs and simplify the assembly, various approxima-
tions of the sphere were considered. As the most promising, the truncated icosahedron
was found. It is a structure built up of 32 walls - 20 hexagonal and 12 pentagonal. This
shape resembles Buckminsterfullerene (see Ref. [76]) and the classical football, hence
the nickname for those coils: football coils.

The football coil wire positions are obtained by the projection of the spherical coil
on the surface of a truncated icosahedron along the radii of the sphere. The resulting
coils are presented in Figures B.1a and B.1b.

Even though they are not spherical, the magnetic field generated by them is an ap-
proximation of the one produced by exact spherical coils within 1% accuracy. An ex-
ample map of relative deviation is shown in Fig. B.2.

Several methods for exact positioning of the wires were considered. None of the
turned to be satisfactory. The most promising are:

Printed Board Circuits – Each of 32 faces of coil was considered to be manufactured
using a multi-layer printed board circuit with thick layers for driving 1 A currents.
This method is the least time consuming, but the most expensive. Estimated cost

141



of the whole set of 8 coils would be around 50, 000 CHF for a set of coils with
radius of 1 m.

Mechanical support – We have also considered planes made of PVC as a support for
the wires. On top of them, the grooves would be milled to position wires exactly.
This method has main disadvantage: manual winding requires plenty of time -
single uniform field coil, which could compensate the Earth’s magnetic field with
a current of 1 A requiring around 400 m of wire, would weigh around 28 kg.
To obtain optimal performance, 8 coils are necessary, which makes mechanical
construction very difficult.
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APPENDIX B. SIMPLIFICATION OF SPHERICAL COILS BY APPROXIMATION
WITH TRUNCATED ICOSAHEDRON

(a) Coils creating uniform magnetic fields (l = 1 case).

(b) Coils creating quadrupolar field components (l = 2 case).

Figure B.1: „Football Coils” wound on a surface of a truncated icosahedron. For clarity, the
number of turns is taken to be n = 9.
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Figure B.2: Map of relative difference between theoretical field, described by Eq. (4.37) with
αlm = δl,1δm,0 (uniform field in z direction) and real field generated by the coil in Fig. B.1a
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Appendix C

Verification of the covariance matrix
estimation with the Bootstrap method

The Bootstrap method is a commonly used method for non-parametric estimation. Both
the expectation value and its uncertainty are correctly estimated by this method (see
Ref. [77]). To verify the estimation of the covariance matrix of the Cartesian harmonic
expansion coefficient, we apply the following procedure:

1. The magnetic field is described by the harmonic spectrum as in Fig. C.1 - values
of all coefficients are equal to 1 except the 3rd one, which is equal to 1000. This
simulates a real measurement of magnetic field created by the main coil in the
nEDM experiment giving the dominant, mostly uniform, vertical field component
along the z axis. Other components are much smaller.

2. The measurement of the magnetic field component in space is simulated by pick-
ing a pseudo-random number from the Gaussian distribution with the mean value
~Bmean,simulated calculated using a harmonic spectrum from Fig. C.1 (see Eq. (C.1)
below) and standard deviation σ = 1 for all components.

~Bmean,simulated(x, y, z) =
48∑
i=1

hiHi(x, y, z) hi = 1, i 6= 3, h3 = 1000 (C.1)

3. A map of magnetic field obtained in this way can be used now to calculate back
harmonic expansion coefficients with their covariance matrix using the Bootstrap
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Figure C.1: Harmonic spectrum used as input for verification of Bootstrap method. Values for
all functions are 1 except the 3rd function, for which the value is equal 1000.

method (for more details see chapter 6.5).

4. To include information about the covariance between two coefficients in further
calculations, we need to find eigenvalues and eigenvectors of the covariance ma-
trix. This method is commonly used as a part of Principal Component Analysis
(see Ref. [78]). Eigenvectors ~vi of the covariance matrix span base describing un-
certainties of coefficients, while eigenvalues λi describe variances corresponding
to each eigenvector. This means that value of the magnetic field at point (x, y, z),
which includes uncertainty estimated by covariance matrix is described by:

~Bbootstrap,result(x, y, z) = Htot

(
E(h) +

48∑
i=1

~vi random(0,
√
λi), x, y, z

)
,

(C.2)
where:

Htot(~v, x, y, z) =
48∑
i=1

viHi(x, y, z), (C.3)

E(h) is the vector of expectation values of harmonic expansion coefficients, ~vi are
eigenvectors of covariance matrix, λi are corresponding eigenvalues, random(0,

√
λi)
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APPENDIX C. VERIFICATION OF THE COVARIANCE MATRIX ESTIMATION
WITH THE BOOTSTRAP METHOD

is a pseudo-random number generated with Gaussian distribution centred around
0 with σ =

√
λi. Repeating the procedure many more times than the size of the

matrix (we use 1000 repetitions) allows us to calculate the expectation value in
the point (x,y,z):

Bk,bootstrap,mean(x, y, z) =
1

1000

1000∑
i=1

Bk,bootstrap,result,i(x, y, z), (C.4)

where k ∈ {x, y, z} - denotes the component, ~Bk,bootstrap,result,i(x, y, z) is the k-th
component of the result of Eq. (C.2) for i-th repetition. The uncertainty of this
value can be obtained from the standard deviation estimator:

~σ (Bk,bootstrap(x, y, z)) =

=

√√√√ 1

1000

1000∑
i=1

(Bk,bootstrap,result,i(x, y, z)−Bk,bootstrap,mean(x, y, z))2 (C.5)

5. The above procedure is repeated for 1000 times to get an adequate number of
trials and the value

Bk,normalized
Bk,bootstrap,result(x, y, z)− ~Bk,mean,simulated(x, y, z)

σ( ~Bk,bootstrap(x, y, z))
(C.6)

is included on the histogram. If all the assumptions made are correct, this variable
should follow Normal Distribution. Two resulting histograms are presented in
Figs. C.2 and C.3. These histograms show the distributions of normalized y and
z component at the point (6.840,−18.79, 80). Good description by the Normal
Distribution allow us to conclude that the assumptions are correct and the analysis
is valid.
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Figure C.2: Histogram of By,normalized for point (6.8,−18.8, 80)mm obtained from the Boot-
strap verification procedure. More details in Section C. Line marks normal distribution.

Figure C.3: Same as FigC.2, but for Bz,normalized for the same point.
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Michał Rawlik and Maciej Perkowski were also giving me a helping hand whenever I
was at a dead end.

I would also like to thank my supervisor during my 2-year stay in Switzerland, Klaus
Kirch. His knowledge and experience were very helpful during this period. The rest of
Low Energy Physics group in the Institute for Particle Physics at ETH Zürich, Aldo
Antognini, Florian Piegsa, Kim Siang Khaw, Katherina Kwuida and Jochen Krempel
gave me a warm welcome and helped me survive 2 years away from my family and
friends. They have also shared their expertise, making it easier for me to achieve my
goal. It was a great opportunity to work with nEDM experiment group. Their dedication
to details in pursuit for better measurement sensitivity is still an example for me to
follow. Discussions with Gilles Quemener were an inspiration for me in the search
for the optimal magnetic field compensation system, while talks with Beatrice Franke
helped me in works on prototype.

In the end, I would like to thank my wife, Iwona, who was very patient during
my whole work on this dissertation. She has listened to all my sorrows and gave me
additional strength when I had a bad day. I would also like to express my gratitude to
my parents, Alina and Krzysztof, who made it possible for me to study Physics and
continue doing my PhD and my sister, Aleksandra, who was always there to cheer me
up.

I would like to acknowledge support by the Foundation for Polish Science - MPD
program, co-financed by the European Union within the European Regional Develop-
ment Fund.

157


	I nEDM experiment at PSI
	Neutron electric dipole moment and ultra-cold neutrons
	Baryon-antibaryon asymmetry and CP symmetry violation
	Electric dipole moment
	Measurements of the neutron electric dipole moment
	Ultra-cold neutrons
	Principle of the neutron EDM measurement


	The nEDM experiment at the Paul Scherrer Institute
	UCN Source at Paul Scherrer Institute
	EDM Spectrometer
	Neutron detection
	Systematic effects
	Geometric phase effect

	Magnetic field nonuniformity
	Magnetic field control systems
	Magnetic field monitoring
	Main field coil and correction coils
	Shields

	n2EDM - next generation setup


	II Active magnetic shielding systems
	Introduction
	Considered variants of magnetic field compensation systems
	Surrounding Field Compensation system (SFC)
	Residual distributions of compensation
	Measurement results

	Merritt system
	Geometry optimization
	Compensation performance
	Prototype of Merritt system
	Possible improvements

	Cellular system
	Considered configurations

	Spherical coils
	Magnetic field decomposition in terms of vector spherical harmonics

	Coils - discretization of the current density distribution
	Compensation performance


	Simulation results

	III Magnetic field mapping
	Magnetic field mapping analysis
	Introduction
	The mapper
	Imperfections of the field mapper
	Offsets and non-orthogonalities
	Misalignments

	Determination of imperfection parameters
	Offsets and non-orthogonality angles
	Misalignments

	Fit of the expansion coefficients and estimation of their uncertainties
	Analysis chain
	Verification
	Simulation
	Impact of model corrections on real maps

	Results of the field map analysis
	Corrections

	Field stability
	Trim coil current optimization with data from field mapping

	Summary
	Cartesian harmonic basis functions
	Simplification of spherical coils by approximation with truncated icosahedron
	Verification of the covariance matrix estimation with the Bootstrap method
	Acknowledgements


