Progress Towards Measuring the Electron EDM with Thorium Monoxide

Cheong Chan¹, David DeMille¹, <u>John M. Doyle²</u>, Gerald Gabrielse², Paul Hess², Nicholas R. Hutzler^{2,*}, Emil Kirilov², Brendon O'Leary², Elizabeth Petrik², and Ben Spaun²

1. Yale University Physics Department, New Haven, CT, USA 2. Harvard University Physics Department, Cambridge, MA, USA * hutzler@physics.harvard.edu

Measurement of a non-zero electric dipole moment (EDM) of the electron within a few orders of magnitude of the current best limit[1] of $|d_e|<1.05*10^{-27}$ e*cm would be an indication of CP violation beyond the Standard Model. The ACME Collaboration is searching for an electron EDM by performing a precision measurement of electron spin precession signals from the metastable H ${}^{3}\Delta_{1}$ state of thorium monoxide (ThO), using a cold and slow beam. We discuss the current status of the experiment. Based on a data set acquired from 14 hours of running time over a period of two days, we have achieved a one-sigma statistical uncertainty of $\delta d_e = 1*10^{-28}$ e*cm/ \sqrt{T} , where T is the running time in days.

References:

[1] JJ Hudson et al., "Improved measurement of the shape of the electron." Nature 473, 493 (2011)