EDW Searches

"It may be that the next exciting thing to come along will be the discovery of a neutron or atomic or electron electric dipole moment. These electric dipole moments... seem to me to offer one of the most exciting possibilities for progress in particle physics."

- S. Weinberg

Klaus Kirch, ETHZ - PSI CIPANP May 30, 2012

EDM Searches

- Why search for permanent electric dipole moments?
- How to measure EDM?
- Which systems are studied experimentally?
- What are the fields involved?
- What are the technologies involved?
- What is the present status?
- What will come next?

EDM Searches

- Why search for permanent electric dipole moments?
 - CP-violating and very small in the Standard Model
 - expect clean signals of New Physics: discovery potential
 - in some BSM scenarios the best or only hope
 - highly sensitive techniques available or being developed
 - multiple complementary systems can help unravelling the underlying theory
 - highly complementary to collider physics
- How to measure EDM?
- Which systems are studied experimentally?
- What are the fields involved?
- What are the technologies involved?
- What is the present status?
- What will come next?

EDM Searches

- Why search for permanent electric dipole moments?
- How to measure EDM?
 - search for an interaction of the spin with the electric field
- Which systems are studied experimentally?
 - many: particles, nucleons, nuclei, atoms, molecules, solids
- What are the fields involved?
 - many: molecular, atomic, neutron, nuclear, particle, solid state, accelerator physics, surface science, chemistry, ...
- What are the technologies involved?
 - many: particle&neutron sources, radioactive ions, exotic molecules, laser, trapping, high voltage, magnetometry, magnetic shields, unprecedented magnetic field control, new materials, ...
- What is the present status?
 - new results further squeeze BSM parameter space
 - many new projects started during the last few years
- What will come next?
 - some results in the next couple of years
 - major improvements within a decade

... ideally, I should now cover everything ©

(which doesn't work)

... let's start at the beginning:

Nature has probably violated CP when generating the Baryon asymmetry !?

Observed*: $(n_{B}-n_{\overline{B}}) / n_{\gamma} = 6 \times 10^{-10}$ SM expectation: $(n_{B}-n_{\overline{B}}) / n_{\gamma} \sim 10^{-18}$

Sakharov 1967: B-violation C & CP-violation non-equilibrium [JETP Lett. 5 (1967) 24]

* WMAP + COBE, 2003 $n_B / n_v = (6.1 \pm 0.3) \times 10^{-10}$ Nature has probably violated CP when generating the Baryon asymmetry !? New theories provide the CP-violation to describe Nature

Sakharov 1967: B-violation C & CP-violation non-equilibrium [JETP Lett. 5 (1967) 24] Nature has probably violated CP when generating the Baryon asymmetry !?
New theories provide the CP-violation to describe Nature
Experiments must access with high sensitivity CP-violating observables

Sakharov 1967: B-violation C & CP-violation non-equilibrium [JETP Lett. 5 (1967) 24]

EDM and symmetries

A nonzero particle EDM violates P, T and, assuming CPT conservation, also CP

Purcell and Ramsey, PR78(1950)807; Lee and Yang; Landau

How to measure the neutron (or other) electric dipole moment ?

Standard Model EDM-expectations?

Leptons: electroweak negligible

Neutron, proton, nuclei: electroweak negligible, strong?

Standard model lepton EDMs

Fourth order electroweak,

F. Hoogeveen:

The Standard Model Prediction for the Electric Dipole Moment of the Electron, Nucl. Phys. B 241 (1990) 322

Fig. 4. The ten diagrams which contribute to the edm of the electron. The internal wavy lines are W-propagators.

... + new physics?

Standard model lepton EDMs

Standard model lepton EDMs

Neutron: Standard Model prediction

 $d_n \sim 10^{-32} - 10^{-34} e \ cm$

[Khriplovich & Zhitnitsky '86]

Neutron: Standard Model prediction Expect from electro-weak SM, S approximately: $d_n \le 10^{-32} \text{ e-cm}$ **Completely negligible at any** n experimental sensitivity we Experimentally so far: can imagine today! $d_n < 3 \times 10^{-26} e \cdot cm$ $d_n \sim 10^{-32} - 10^{-34} e \, cm$ [Khriplovich & Zhitnitsky '86]

Adapted from:

Pospelov, Ritz, Ann. Phys. 318 (2005) 119

Klaus KirchSt. Petersburg FL, May 30, 2Adapted from:Pospelov, Ritz, Ann. Phys. 318 (2005) 119M. Raidal et al., Eur. Phys. J. C 57 (2008) 13

Klaus KirchSt. Petersburg FL, May 30, 2Adapted from:Pospelov, Ritz, Ann. Phys. 318 (2005) 119M. Raidal et al., Eur. Phys. J. C 57 (2008) 13

Adapted from:

jin of EDMs

Complex composite systems have constituents and interactions

Paramagnetic atoms

 $d_{\text{para}}(d_e) \sim 10\alpha^2 Z^3 d_e \implies d_{\text{Tl}} = -585 d_e - 43 \text{ GeV} \times e C_S^{\text{singlet}}$ enhancement

Paramagnetic molecules

additional enhancement from large internal electric fields of order 10 GV/cm or more, influenced by molecular level structure

Diamagnetic atoms

 $\begin{aligned} d_{\rm dia} &\sim 10 Z^2 (R_N/R_A)^2 \tilde{d}_q & \text{suppression of order 10}^3 \\ \implies d_{\rm Hg} &= 7 \times 10^{-3} \, e \, (\tilde{d}_u - \tilde{d}_d) + 10^{-2} \, d_e + \mathcal{O}(C_S, C_{qq}) \end{aligned}$

enhancement factors possible due to atomic state mixing and nuclear deformation.

Hg-199 EDM at Seattle

26

More than 30 efforts under way world-wide (plus many ideas ...)

Neutrons Ions+Muons Atoms Molecules

collaborations ranging from university groups of 2-3 or 10 to relatively large international collaborations

Neutrons @ILL @ILL, @PNPI @PSI @FRM-2 @RCNP, @TRIUMF @SNS @J-PARC

Neutrons ILL ILL, OPNPI OPSI OFRM-2 ORCNP, OTRIUMF OSNS OJ-PARC

Essentially all projects aim at sensitivities of a few x 10^{-28} ecm within the next decade. Some promise intermediate results of a few x 10^{-27} ecm within the next 3 years.

@BNL

@FZJ

Proposals at BNL and FZJ. JEDI at FZJ aims at $d_d \sim 10^{-24}$ ecm. Muon EDM can be improved to better than 10^{-21} e cm at the planned new g-2 experiments within the next decade. Dedicated muon EDM experiments at PSI (5x10⁻²³ecm) and J-PARC (10⁻²⁴ecm) presently not pushed further. Variants of frozen spin technique PRL93(2004)052001.

Atoms

Hg@UWash

- Xe@Princeton
- Xe@TokyoTech
- Xe@TUM
- Xe@Mainz
- Cs@Penn
- Cs@Texas
- Fr@RCNP/CYRIC
- Rn@TRIUMF
- Ra@ANL
- Ra@KVI
- Yb@Kyoto

Atoms

Hg@UWash

- Xe@Princeton
- Xe@TokyoTech
- Xe@TUM
- Xe@Mainz
- Cs@Penn
- Cs@Texas
- Fr@RCNP/CYRIC
- Rn@TRIUMF
- Ra@ANL

Ra@KVI

Yb@Kyoto

Hg-199 EDM plans to improve to few x 10^{-30} ecm by 2014. Xe-129 efforts aim at 10^{-28} ecm as a first/next step. Cs exps. aim at 10^{-29} - few x 10^{-30} ecm for d_e around 2014. Fr aims at 10^{-29} - few x 10^{-30} ecm for d_e after 2014. Ra at KVI aims at 10^{-30} ecm (and 10^{-28} ecm for d_e)

Molecules

YbF@Imperial
PbO@Yale
ThO@Harvard
HfF+@JILA
WC@UMich
PbF@Oklahoma

Molecules

- YbF@Imperial
- PbO@Yale
- ThO@Harvard
- HfF+@JILA
- WC@UMich
- PbF@Oklahoma

YbF works on improvement by factor 3 in 2012 3-4x10⁻²⁸ecm and aims at sensitivity for de of $4x10^{-29}$ ecm by 2016. ThO presently taking data, "to either soon discover the electron edm or to significantly reduce the current limit." HfF+ and WC aiming at 10^{-29} ecm in a few years.

Rough estimate of numbers of researchers, in total ~500 (with some overlap)

- Hg@UWash Xe@Princeton
- Xe@TokyoTech
- Xe@TUM
- Xe@Mainz
- Cs@Penn
- Cs@Texas
- Fr@RCNP/CYRIC
- Rn@TRIUMF
- Ra@ANL
- Ra@KVI
- Yb@Kyoto

Technology

- particle and neutron sources
- atom and molecular beam sources
- radioactive ion beams
- exotic molecules
- laser, trapping
- high voltage
- magnetometry & shields
- magnetic field control
- new materials
- ..

Fields

- Experiment&Theory of:
- particle physics
- neutron physics
- atomic physics
- nuclear physics
- molecular physics
- accelerator and beam physics
- solid state physics
- surface science
- chemistry

...

&

Technology

- particle and neutron sources
- atom and molecular beam sources
- radioactive ion beams
- exotic molecules
- laser, trapping
- high voltage
- magnetometry & shields
- magnetic field control
- new materials
- ...

Fields

- Experiment&Theory of:
- particle physics
- neutron physics
- atomic physics
- nuclear physics
- molecular physics
- accelerator and beam physics
- solid state physics
- surface science
- chemistry

...

Major common issues (for different subsets):

- statistics and (cold) sources
- magnetic field homogeneity, gradients and stability
- state preparation and spin coherence times
- control of HV, noise, reversal, leakage currents
- stability of lasers, trapping, pumping
- motional fields, geometric phases, ...

&

Setup for the spin oscillator experiment

42

Trapped HfF⁺ for a JILA eEDM search^[1] To reach current limit of 10.5*10⁻²⁸ e-cm in 1 hour: $\epsilon_{eff} \sim 24$ GV/cm; $\tau_{coherence} = 0.25$ s; N = 2/shot

Current status:

- Mapped out HfF⁺ energy levels up to 15000 cm⁻¹
- Identified promising transitions for population transfer to $^3\!\Delta_1$

- Prepared 300 ions in a single Zeeman, rovibronic level
- Trapped HfF⁺ in RF Paul trap designed for fluorescence photon collection + field uniformity

^[1] JILA eEDM team, J Mol Spectrosc, <u>270</u>, 1 (2011) and references therein

courtesy: Huanqian Loh, Eric Cornell

ETH

--------4

Search for the electron-EDM with cold Cs and Rb atoms in optical lattices

NSF

Kunyan Zhu, Neal Solmeyer, Cheng Tang and David Weiss

- Simultaneously measure with two opposite E-fields and minimal bias B-field.
 Use in situ measurements of 5 to 10 cm long linear arrays of atoms to cancel magnetic field gradients and monitor potential systematic errors.
- The atomic physics can be unraveled
- from a measurement with ~1% accuracy.
- Rb atoms provide an ultimate check on any Cs result.

We expect >200x improved sensitivity.

courtesy: David Weiss

FE 45

Labs to host S.R. EDM experiments

BNL, USA: proton "magic" ring

COSY, Jülich/Germany deuteron ring: JEDI

Two storage ring projects being pursued

10 m

Japan-Canada nEDM experiment

- Spherical coil for DC field
- Xe-129 nuclear-spin buffer-gas comagnetometer
- Room-temp experiment, keeping EDM cell size small, anticipating gains in UCN density
- Modern magnetic shielding, cost reduced with cell size
- Superfluid He-4 UCN source
- Basic prototype in operation

courtesy: Yasuhiro Masuda, Jeff Martin

CryoEDM overview

courtesy: Philipp Harris

Neutron EDM @ SNS

- ¹ Arizona State University
- ² Brown University
- ³ Boston University
- ⁴ University of California, Berkeley
- ⁵ California Institute of Technology
- ⁶ Duke University
- 7 Harvard University
- ⁸ Indiana University
- ⁹ University of Illinois, Urbana-Champaign
 ¹⁰ University of Kentucky

- ¹¹ Los Alamos National Laboratory
- ¹² Massachusetts Institute of Technology
- 13 Mississippi State University
- 14 North Carolina State University
- ¹⁵ Oak Ridge National Laboratory
- ¹⁶ Simon Fraser University
- ¹⁷ University of Tennessee
 ¹⁸ Valparaiso University
- ¹⁹ University of Virginia

Aiming at sensitivity of 3×10^{-28} e cm, construction ends 2018

Installing nEDM at PSI in 2009

.

12

Coming from ILL Sussex-RAL-ILL collaboration PRL 97 (2006) 131801

