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Abstract

Searches for the permanent electric dipole moments (EDMs) of molecules, atoms, nucleons and
nuclei provide powerful probes of CP violation both within and beyond the Standard Model (BSM).
The interpretation of experimental EDM limits requires careful delineation of physics at a wide
range of distance scales, from the long-range atomic and molecular scales to the short-distance
dynamics of physics at or beyond the Fermi scale. In this review, we provide a framework for
disentangling contributions from physics at these disparate scales, building out from the set of di-
mension four and six effective operators that embody CP violation at the Fermi scale. We survey
existing computations of hadronic and nuclear matrix elements associated with Fermi-scale CP
violation in systems of experimental interest, and quantify the present level of theoretical uncer-
tainty in these calculations. Using representative BSM scenarios of current interest, we illustrate
how the interplay of physics at various scales generates EDMs at a potentially observable level.
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1 Introduction

Nuclear physics tests of fundamental symmetries have played a vital role in the development of the
Standard Model (SM) and provide powerful probes of what may lie beyond it. As described elsewhere
in this issue, these tests have uncovered the left-handed nature of the charged current weak interaction,
helped single out the SM structure of the weak neutral current from various alternatives, revealed
the phenomena of quark-mixing via the slight deviation from exact lepton-quark universality in weak
decays, and provided stringent upper bounds on the neutrino mass scale. In this article, we focus on two
symmetries for which nuclear physics studies have a long and illustrious history: time reversal invariance
(T) and invariance under the combination of change conjugation (C) and parity (P). It is well-known, of
course, that CP is not conserved in flavor-changing weak interactions, a phenomena now associated with
the complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix. A consistent phenomenology
of CKM CP violation (CPV) has emerged from extensive studies of K- and B-meson properties and
interactions. As a local quantum field theory satisfying the postulates of the CPT theorem, the SM
thus also admits time-reversal violation, as the combined operation of CPT leaves the SM interactions
unchanged.

It is likely, however, that the SM picture of CP and T violation is incomplete. Numerous scenarios for
physics beyond the SM (BSM) readily admit new sources of CPV. Given that the SM is likely embedded
in a more complete theory of fundamental interactions, it is reasonable to expect novel signatures of CPV
to appear along with other manifestations of new physics. Cosmology provides an additional compelling
motivation for BSM CPV. Assuming the Universe was matter-antimatter symmetric at its birth or at
the end of the inflationary epoch, additional sources of CPV are needed to explain the presently observed
cosmic matter-antimatter asymmetry (for reviews and extensive references, see Refs. [1, 2, 3]). From a
perhaps even more speculative standpoint, the generation of the matter-antimatter asymmetry could
also entail the violation of CPT invariance, while various exotic BSM frameworks also incorporate such
a violation. While exploring the possibilities for BSM CPV and even CPT violation, one should bear in
mind that there remains within the SM itself one as yet unobserved source of CP and T violation: the
dimension-four QCD “θ” term, whose dimensionless coefficient, the vacuum angle θ̄, is now constrained
to be no larger than ∼ 10−10 by the non-observation of permanent electric dipole moments (EDMs)
of the 199Hg atom and neutron. This exceedingly small upper limit – and the associated “strong CP
problem” – has motivated the idea of an additional symmetry, the “Peccei-Quinn” (PQ) symmetry,
whose spontaneous breakdown would imply the existence of the axion that has also not yet been
observed. (For a recent review, see Ref. [4].)

In the quest to discover both BSM CPV as well as CPV generated by the SM strong interaction,
EDM searches have generally provided by far the most powerful probes. In contrast to the CPV
observed in the K- and B-meson sectors, the existence of an EDM of an elementary particle or quantum
system requires no flavor-changing interactions. The situation is more complicated in the SM, however,
since CKM CPV requires the participation of three generations of quarks and, thus, flavor-changing
interactions at the loop level. As a result, the EDMs of light quark and lepton systems generated by
CKM CPV are highly suppressed. The individual quark EDMs vanish at two-loop order [5, 6]. The
lowest-order contribution to the neutron EDM, then, arises not from the individual quark EDMs but
from a two-loop hadronic interaction involving two ∆S = 1 weak interactions between quarks. The CP-
conserving interaction appears at tree-level, while the CPV interaction is generated from the one-loop
d → s “penguin” operator that contains a sum over all three flavors of positive-charge quarks. The
electron EDM first appears at four-loop order [7], suppressing it by several orders of magnitude with
respect to the neutron EDM.

Given the present and prospective EDM search sensitivities (see Table 22), one may consider CKM
CPV to be something of a negligible “background”, making these searches primarily probes of either
SM strong or BSM CPV (together with P violation). Moreover, if the latter is flavor-diagonal as one
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encounters in many (but not all) BSM scenarios, then the sensitivity of EDMs generally exceeds that
of other possible tests, such as CP-odd observables in a high-energy collider experiment. For these
reasons, the emphasis in this article on nuclear physics tests of CP and T will fall on EDMs.

Unraveling the implications of EDM searches is a multi-faceted problem, entailing physics at a
variety of length scales. The experiments themselves are extraordinarily challenging, requiring exquisite
control over a number of possible effects that could mimic an EDM. Still, significant improvements are
expected for the traditional searches on neutral systems (Table 22) and proposals have been been made
to measure the EDMs of charged particles in storage rings at similar levels. (For discussions of the
experimental status and prospects, see, e.g. Ref. [8] as well as a forthcoming companion article to this
review [9].) In what follows, we concentrate on the theoretical problem, seeking to provide a framework
for interpreting experimental results that delineates the physics at different length scales that one must
consider: the atomic, nuclear, and hadronic scales, wherein one contends with the complications of non-
perturbative strong interactions and many-body physics; the Fermi scale, associated with the various
effective operators outlined in the introductory article [10]; the scale of BSM physics, 1/Λ, at which
one encounters explicit new degrees of freedom whose interactions give rise to the effective-operator
Wilson coefficients; the short-distance scale of high-energy collider experiments that may produce these
new degrees of freedom directly; and the scales associated with early Universe cosmology that may be
responsible for the generation of the matter-antimatter asymmetry.

The interplay of these different scales is illustrated in Fig. 1. For purposes of this article, we assume
the underlying dynamics of BSM CPV are associated with an energy scale Λ that lies well above the
electroweak or Fermi scale1. If Λ <∼ 10 TeV, high energy collider searches may discover the elementary
particles responsible for BSM CPV, determine their masses, and provide information about the nature
of their CP-conserving interactions. The new CPV interactions may also provide one of the ingredients
needed for successful electroweak baryogenesis, though additional scalar degrees of freedom would also
be expected in order to obtain a first order electroweak phase transition. In principle, collider searches
could also observe the latter and measure their relevant properties[1]. At the low-end of the energy
scale, EDM searches look for the CPV “footprints” of these new interactions. In this energy regime, the
extent to which the underlying CPV interactions become manifest depends on their interplay with the
many-body and strong interaction dynamics of the hadronic, nuclear, atomic, and molecular systems of
interest. The quantities that one extracts most directly from EDM searches, then, are not the underlying
CPV interactions, but the hadronic, nuclear, and atomic matrix elements that they induce, such as the
neutron EDM, time-reversal-violating and parity-violating (TVPV) πNN interaction, nuclear Schiff
moment, and TVPV effective electron-nucleus interaction2.

The bridge between these matrix elements and the underlying CPV dynamics is provided by a
set of effective operators, whose coefficients are governed by an appropriate power of 1/Λ and a di-
mensionless Wilson coefficient that depends on the details of the underlying dynamics. At energies
between Λ and the weak scale, these operators contain all of the Standard Model fields and respect
the SU(3)C×SU(2)L×U(1)Y gauge symmetry of the theory. Below the weak scale, the heavy SM de-
grees of freedom are “integrated out”, leaving a set of effective operators that respect the residual
SU(3)C×U(1)EM symmetry and that may have reduced mass dimension. Nevertheless, the Wilson co-
efficients of the hadronic scale operators derive from those that enter at the weak scale, wherein the full
gauge symmetry of the SM enforces certain relations between them.

As we discuss below, it is in principle possible to use a combination of experimental results and
theoretical hadronic, nuclear, and atomic computations to determine, or at least constrain, the Wilson
coefficients without making any assumptions about the details of the underlying BSM CPV other than

1It is possible that new CPV interactions are generated by new light degrees of freedom, a possibility that we do not
treat extensively in this article.

2Henceforth, we will use “CPV” when referring to the underlying elementary particle interactions and “TVPV” when
referring to the resulting effects induced at the hadronic, nuclear, atomic, and molecular levels.
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that it is associated with a high energy scale. In this sense, the theoretical effort associated with the
bottom half of Fig. 1 is model-independent. More broadly, however, the goal of the “EDM program” is
to derive as much information as possible from EDM searches, in conjunction with other precision tests
and high-energy experiments, for both BSM and strong CPV as well as for the origin of matter. Doing
so requires running operators from one scale to the next; matching the interactions at the boundaries
between neighboring scales; and identifying and quantifying where possible the attendant theoretical
uncertainties. One may then ask whether the emerging picture is consistent with any existing model
for the underlying BSM CPV, precludes others, or perhaps points to one not yet invented.

In what follows, we lay out the overall framework for this program. In doing so, we attempt to address
a question that has been somewhat underemphasized in previous work, namely, the level of theoretical
uncertainty associated with various steps in the interpretive chain of “running and matching”. While
the absence of theoretically robust hadronic, nuclear and atomic/molecular computations would not
detract from the significance of the observation of an EDM, the level of theoretical uncertainty does
affect one’s ability to utilize present and prospective experimental results to pinpoint the underlying
CPV mechanism or rule out various possibilities. In response to this issue, we provide a set of benchmark
theoretical error bars associated with various quantities of interest, recognizing that this effort remains
a work in progress and alerting the reader to the website where updated information will appear.

The focus of this framework is on the θ-term as well as Wilson coefficients Ck for the dimension-six
CPV operators indicated in the center of Fig. 1. These operators, which break P as well as T, include the
elementary fermion EDMs, the quark “chomo-electric dipole moments” (CEDMs), Weinberg three-gluon
operator, and various four-fermion CPV operators (both semileptonic and non-leptonic). We provide
a general set of expressions relating these operator coefficients to the hadronic, nuclear, atomic and
molecular quantities of interest, given in Eqs. (3.42-3.46, 4.168, 5.171-5.173) and Table 7. We take into
account the chirality-flipping nature of the elementary fermion EDMs and quark CEDMs, writing the
corresponding Wilson coefficients as the product of the fermion Yukawa couplings and a BSM scenario-
dependent factor (δf or δ̃q). Doing so allows us to place the EDM and CEDM operator coefficients on the
same footing as those for operators that do not flip chirality, such as the CPV electron-quark operators.
A summary of the dimension-four and -six operators for light flavors (electron, up- and down-quarks,
gluons) is given in Table 1. Note that one encounters thirteen quantities at this order, though some
combinations have a more significant impact that others on the systems of experimental interest. One
could, of course, expand the list to include the muon EDM as well as heavier flavors of quarks. In some
cases the manifestation of the latter may in light quark systems may be non-negligible. Nonetheless,
for purposes of this review we will concentrate largely on the already sizeable set of operators involving
only the light flavors3.

The dependence of various hadronic, atomic, and molecular quantities on θ̄, ImCk, δf , and δ̃q is
then governed by the physics at the relevant scales. We compile the existing set of corresponding
matrix-element calculations and give a set of benchmark values and theoretical ranges that can be used
when extracting limits on θ̄, ImCk, δf , and δ̃q from experimental results. For the discussion of hadronic
matrix elements, we rely heavily on considerations of chiral symmetry as an overall guide, though we also
quote results from lattice QCD, QCD sum rules, and quark models as well. An important conclusion
from this survey is the need for a concerted future effort on the hadronic and nuclear matrix elements.
While the literature on computations of the ImCk, δf , and δ̃q in various BSM scenarios is deep, the
corresponding set of results for hadronic and nuclear matrix elements is relatively thin. Given the level
of effort and resources devoted to the experimental measurements of EDMs, a commensurate attack on
the theoretical side is clearly in order.

Our discussion of this theoretical framework is organized in the remainder of the article as follows. In

3One should also bear in mind that not all possible sources of CPV naturally fit within the effective operator framework.
If a new CPV interaction is mediated by a very light weakly coupled boson, the latter must be retained as an explicit
degree of freedom
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BSM CPV
SUSY, GUTs, Extra Dim…

EW Scale Operators

Had Scale Operators

Expt

Baryon Asymmetry
Early universe CPV

Collider Searches
Particle spectrum; also
scalars for baryon asym

QCD Matrix Elements
 dn , gπNN , …

Nuclear & atomic MEs
Schiff moment, other P- &
T-odd moments, e-nucleus
CPV

Energy
Scale

Figure 1: Electric dipole moments and the interplay of various scales. For purposes of
illustration, only the impact of dimension six CPV operators is shown. Below the weak
scale, some operators, such as the fermion EDMs and quark chromo EDMs are effectively
dimension five, carrying an explicit factor of the Higgs vacuum expectation value 〈H0〉. A
summary of the operators of interest to this article appears in Table 1. See text for a full
discussion.

Section 2, we briefly review the conventions and definitions, drawing on the notation of the introductory
article. Section 3 contains a discussion of physics at the hadronic scale, including the running of the
weak-scale operators to the hadronic scale, the various hadronic interactions cast in the context of
chiral symmetry, and a summary of sensitivities of these hadronic quantities to the weak-scale operator
coefficients. In Section 4, we review the status and open questions related to computations at the nuclear
and atomic scales, including P- and T-odd nuclear moments such as the Schiff moment. We follow this
discussion with an illustrative overview of the high-scale physics that may give rise to the weak-scale
operators in Section 6. A discussion and outlook appears in Section 7. Throughout the article, we refer
to other recent reviews [11, 12, 13, 14] when appropriate, endeavoring to avoid excessively duplicating
material that is amply covered elsewhere but updating when necessary. We also do not discuss other
tests of CP and T violation, given the limitations of space for this review (for a discussion of T violation
in neutron and nuclear β-decay, see the companion article in this issue on charged current processes).
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Wilson Coefficient Operator (dimension) Number Systems

θ̄ theta term (4) 1 hadronic &

diamagnetic atoms

δe electron EDM (6) 1 paramagenetic atoms

ImC
(1,3)
`equ , ImC`eqd semi-leptonic (6) 3 & molecules

δq quark EDM (6) 2 hadronic &

δ̃q quark chromo EDM (6) 2 diamagnetic atoms

CG̃ three-gluon (6) 1

ImC
(1,8)
quqd four-quark (6) 2

ImCϕud induced four-quark (6) 1

total 13

Table 1: Dimension four and dimension six CPV operator coefficients for light flavors. First column
gives dimensionless Wilson coefficient (see Sec. 2), followed by operator name and mass dimension
(second column) and number of operators (third column). Final column indicates type of system in
which a given operator will have its most significant impact.

2 Conventions and Definitions

The starting point for our analysis is the weak scale operators defined in the introductory article [10].
We concentrate on three sources of CPV,

LCPV = LCKM + Lθ̄ + Leff
BSM . (2.1)

Here the CPV SM CKM [15] and QCD [16, 17, 18] interactions are

LCKM = − ig2√
2
V pq

CKMŪ
p
L 6W+Dq

L + h.c. , (2.2)

Lθ̄ = − g2
3

16π2
θ̄Tr

(
GµνG̃µν

)
, (2.3)

where g2 and g3 are the weak and strong coupling constants, respectively, Up
L (Dp

L) is a generation-p
left-handed up-type (down-type) quark field, V pq

CKM denotes a CKM matrix element, W±
µ are the charged

weak gauge fields, and G̃µν = εµναβG
αβ/2 (ε0123 = 1 4) is the dual to the gluon field strength Gµν . In

addition,

Leff
BSM =

1

Λ2

∑
i

α
(n)
i O

(6)
i , (2.4)

gives the set of dimension-six CPV operators at the weak scale v = 246 GeV generated by BSM physics
at a scale Λ > v. These operators [19] are listed in Tables 2 and 3. Note that the operators containing
fermions are not CPV in and of themselves. Rather CPV effects arise when the corresponding coefficients
α

(n)
i are complex, as discussed below.

4Note that our sign convention for εµναβ , which follows that of Ref. [19], is opposite to what is used in Ref. [14] and
elsewhere. Consequently, Lθ̄ carries an overall −1 compared to what frequently appears in the literature.
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Pure Gauge Gauge-Higgs Gauge-Higgs-Fermion

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ QϕG̃ ϕ†ϕ G̃A

µνG
Aµν QuG (Q̄σµνTAuR)ϕ̃ GA

µν

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ QϕW̃ ϕ†ϕ W̃ I

µνW
Iµν QdG (Q̄σµνTAdR)ϕGA

µν

QϕB̃ ϕ†ϕ B̃µνB
µν QfW (F̄ σµνfR)τ IΦW I

µν

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QfB (F̄ σµνfR)ΦBµν

Table 2: Dimension-six CPV operators involving gauge and/or Higgs degrees of freedom. Notation
largely follows that of introductory article [10] with the following modifications: qp → Q denotes a
left-handed quark doublet; F denotes a left-handed fermion doublet; fR denotes a right-handed SU(2)
singlet fermion; and Φ = ϕ̃ (ϕ) for fR being an up-type (down-type) fermion. For simplicity, generation
indices have been omitted.

(L̄R)(R̄L) and (L̄R)(L̄R)

Qledq (L̄jeR)(d̄RQ
j)

Q
(1)
quqd (Q̄juR)εjk(Q̄

kdR)

Q
(8)
quqd (Q̄jTAuR)εjk(Q̄

kTAdR)

Q
(1)
lequ (L̄jeR)εjk(Q̄

kuR)

Q
(3)
lequ (L̄jσµνeR)εjk(Q̄

kσµνuR)

Table 3: Dimension-six CPV operators involving four fermions. Notation as in Table 2, with the
additional modification lp → L with respect to the introductory article [10].

In this review we are mostly interested in the atomic/moleclar, hadronic, and nuclear aspects of
CPV. We will therefore concentrate on the two lightest quarks, up and down, but will occasionally also
point out effects of other quarks, especially strange.

2.1 CPV at Dimension Four

CPV from the θ-term in Eq. (2.3) is intimately connected with the quark masses. The “bar” notation
indicates that this dimensionless quantity is a linear combination of a bare θ-parameter and argument
of the quark Yukawa couplings:

θ̄ = θ + arg det(λuλd) , (2.5)

where the second term arises after redefining the phases of all the quark fields. Alternatively, the θ-
term can be eliminated, thanks to the axial anomaly, through a chiral rotation [20]. Enforcing vacuum
stability to first order in the quark masses, all CPV is then in the quark bilinear

Lθ̄ ↔ LQCD
CPV = −m∗θ̄ q̄iγ5q , (2.6)

where θ̄ � 1 was used. Here

m∗ =
mumd

mu +md

=
m̄

2

(
1− ε2

)
. (2.7)

in terms of the average light quark mass m̄ = (mu + md)/2 and relative splitting ε = (md −mu)/2m̄.
Below we use mu = 2.3+0.7

−0.5 MeV and md = 4.8+0.7
−0.3 MeV [21]. In the same notation the CP-even quark
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mass operator is given by
Lquark

mass = −m̄q̄q + εm̄q̄τ3q . (2.8)

Equation (2.6) will be the starting point in Section 3 for chiral considerations that impact TVPV
observables in nuclear physics.

2.2 CPV at Dimension Six

We now focus on a subset of the operators in Tables 2 and 3 that have been the the objects of most
scrutiny, because they are expected to give the largest contributions at low energies [22]: QqG (q = u, d),
QfW , QfB, QG̃, and various four-fermion operators.

After electroweak symmetry breaking (EWSB) wherein φT → (0, v/
√

2), QqG gives rise to the quark
chromo-electric dipole moment (CEDM) interaction:

LCEDM = −i
∑
q

g3d̃q
2

q̄σµνTAγ5q G
A
µν , (2.9)

where TA (A = 1, . . . , 8) are the generators of the color group. Analogously, QfW and QfB generate
the elementary fermion EDM interactions,

LEDM = −i
∑
f

df
2
f̄σµνγ5f Fµν , (2.10)

where Fµν is the electromagnetic field strength. In the non-relativistic limit, Eq. (2.10) contains the

CPV interactions with the electric field ~E,

LEDM →
∑
f

df χ
†
f~σχf · ~E , (2.11)

where χf is the Pauli spinor for fermion f and ~σ is the vector of Pauli matrices. Thus, df gives the
EDM typically quoted units of e cm or e fm. Letting

α
(6)
fVk
≡ gkCfVk , (2.12)

where Vk = B, W , and G for k = 1, 2, 3 respectively, the relationships between the d̃q and df and the
CfVk are

d̃q = −
√

2

v

( v
Λ

)2

Im CqG , (2.13)

df = −
√

2e

v

( v
Λ

)2

Im Cfγ , (2.14)

where
Im Cfγ ≡ Im CfB + 2If3 Im CfW , (2.15)

and If3 is the third component of weak isospin for fermion f . Here, we have expressed df and d̃q in terms
of the Fermi scale 1/v, a dimensionless ratio involving the BSM scale Λ and v, and the dimensionless
Wilson coefficients. Expressing these quantities in units of fm one has

d̃q = −(1.13× 10−3 fm)
( v

Λ

)2

Im CqG , (2.16)

df = −(1.13× 10−3 e fm)
( v

Λ

)2

Im Cfγ . (2.17)
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It is useful to observe that the EDM and CEDM operator coefficients are typically proportional
to the corresponding fermion masses, as the operators that generate them above the weak scale (QqG̃,
QfW̃ , QfB̃) contain explicit factors of the Higgs field dictated by electroweak gauge invariance. More
physically, the EDM and CEDM operators – like the fermion magnetic moment – induce a flip of
chirality and, thus, are naturally proportional to the fermion mass mf = Yfv/

√
2. Broadly speaking,

then, one expects the Wilson coefficients to contain a factor of the fermion Yukawa coupling Yf . In the
Minimial Supersymmetric Standard Model (MSSM), for example, a one-loop contribution to Im CqG̃
from squark-gluino loop (see Fig. 5) has the magnitude [23, 24]

Im CqG =
g2

3

16π2
Yq sin[Arg(µM3b

∗)]F (m̃j) , (2.18)

where µ is the supersymmetric Higgs-Higgsino mass parameter, M3 is the soft SUSY-breaking gluino
mass, b gives the Higgs SUSY-breaking mass parameter, and F (m̃j) is a loop function that depends on
the various superpartner masses m̃j. In this case, the scale Λ would be the largest value of m̃j entering
the loop 5. It is convenient to define two quantities δ̃q and δf that embody all of the model-specific
dynamics responsible for the EDM and CEDM apart from Yukawa insertion:

Im CqG ≡ Yq δ̃q → d̃q = −2mq

v2

( v
Λ

)2

δ̃q , (2.19)

Im Cfγ ≡ Yf δf → df = −e2mf

v2

( v
Λ

)2

δf . (2.20)

While one often finds bounds on the elementary fermion EDM and CEDMs quoted in terms of df and
d̃q, the quantities δf and δ̃q are more appropriate when comparing with the Wilson coefficients of other
dimension-six CPV operators, such as the three-gluon or semileptonic four-fermion interactions, that
do not generally carry the Yukawa suppression. In what follows, we will provide expressions in terms
of the ImCfV , (df , d̃q), and (δf , δ̃q). In doing so, we will neglect the light-quark mass splitting and
replace

Yu, Yd → Yq ≡
√

2m̄

v
(2.21)

with m̄ being the average light quark mass.
The extraction of the CPV three-gluon and low-energy, flavor-diagonal CPV four-fermion operators

from Leff
BSM is generally more straightforward. Making the identifications

α
(6)

G̃
≡ g3CG̃ α

(6)
`edq ≡ C`edq , α

(6)
`equ(1,3) ≡ C

(1,3)
`edu , α

(6)
quqd(1,8) ≡ g2

3 C
(1,8)
quqd (2.22)

gives the so-called Weinberg three-gluon operator [25]

LG̃
CPV =

g3CG̃
Λ2

fABCG̃Aν
µ GBρ

ν GCµ
ρ , (2.23)

the CPV semileptonic interaction

Leq
CPV = i

ImC`edq
2Λ2

[
ēγ5e d̄d− ēe d̄γ5d

]
− i

ImC
(1)
`equ

2Λ2
[ēγ5e ūu+ ēe ūγ5u] (2.24)

−
ImC

(3)
`equ

2Λ2
εµναβ ēσ

µνe ūσαβu ,

5Note that we have not included a similar contribution involving the relative phases of M3 and the squark triscalar
terms (see Section 6.1).
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and the CPV hadronic interaction [26]

Lqq
CPV = i

g2
3 ImC

(1)
quqd

2Λ2

[
ūγ5u d̄d+ ūu d̄γ5d− d̄γ5u ūd− d̄u ūγ5d

]
(2.25)

+i
g2

3 ImC
(8)
quqd

2Λ2

[
ūγ5T

Au d̄TAd+ ūTAu d̄γ5T
Ad− d̄γ5T

Au ūTAd− d̄TAu ūγ5T
Ad
]
.

Note that in contrast to the all other CPV d = 6 operators of interest here, the coefficient of the
three-gluon operator (2.23) does not require the imaginary part.

In addition to these four-fermion operators, the operator

Qϕud = i
(
ϕ̃†Dµϕ

)
ūRγ

µdR (2.26)

with ϕ̃ = iσ2φ
∗ can also give rise to a four-fermion operator through exchange of the W boson contained

in the covariant derivative. After EWSB, one has

Qϕud →
gv2

2
√

2
ūRγ

µdRW
+
µ . (2.27)

Exchange of the W+ between the right-handed current in Eq. (2.27) and the left-handed current of the
SM leads to an effective left-right (LR) Lagrangian with the CPV part given by [27, 28, 29, 30, 22]

Leff
LR,CPV = −iImCϕud

Λ2

[
d̄Lγ

µuL ūRγµdR − ūLγµdL d̄RγµuR
]
. (2.28)

After a Fierz transformation, one then obtains

Leff
LR,CPV = i

ImCϕud
3Λ2

{
ūu d̄γ5d− ūγ5u d̄d+ 3

[
ūTAu d̄γ5T

Ad− ūγ5T
Au d̄TAd

]}
. (2.29)

Although the RHS of Eq. (2.29) has the form of a product of scalar and pseudoscalar bilinears, it has a
different flavor structure from the similar spacetime structures appearing in Eq. (2.25). As we discuss
in Section 6 below, the interaction (2.29) is naturally generated in left-right symmetric theories. We
also note that the operator in Eq. (2.28) will mix [31] with an operator of the form

d̄Lγ
µTAuL ūRγµT

AdR − ūLγµTAdL d̄RγµTAuR , (2.30)

generating the corresponding scalar ⊗ pseudoscalar structures in Eq. (2.29), when running from the
weak scale to the hadronic scale.

2.3 Naturalness, Peccei-Quinn, and an Induced Vacuum Angle

It is well known that null results for the neutron and 199Hg EDMs imply that the coefficient of the
dimension four operator in Eq. (2.3) is tiny: θ̄ <∼ 10−10. In general, one would expect both terms of the
right side of Eq. (2.5) to be O(1). Obtaining a value that is ten or more orders of magnitude smaller
would require a highly unnatural degree of fine-tuning to obtain a cancellation between the two terms.
Note that in the limit of one massless quark, m∗ → 0, CPV from Eq. (2.6) disappears entirely. However,
such a possibility seems to be excluded on phenomenological grounds [32].

Alternatively, one may construct a mechanism that would generate a tiny θ̄ at a more fundamental
level, through imposition of a symmetry or “geography” (see, e.g., Ref. [33]). The most well-known
example of a symmetry argument is the Peccei-Quinn (PQ) mechanism. In brief, one starts from
the anomalous axial U(1) symmetry of the SM in the limit of massless quarks, adding one or more
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additional scalar fields to the SM whose interactions with the quarks preserves the tree-level axial U(1)
symmetry. The enlarged symmetry, denoted U(1)PQ, is spontaneously broken at a high scale, leading
to a pseudoscalar Goldstone boson a, the axion. The corresponding axion Lagrangian is

Laxion =
1

2
∂µa∂µa− V (a)− a(x)

fa

g2
3

16π2
Tr
(
GµνG̃µν

)
, (2.31)

where the axion potential

V (a) =
1

2
χ(0)

(
θ̄ +

a

fa

)2

+ · · · (2.32)

is given in terms of the topological susceptibility χ(0) as well as the axion decay decay constant fa
whose value indicates the scale of spontaneous PQ-symmetry breaking. In two-flavor QCD, one finds

χ(0) = −m∗〈q̄q〉 , (2.33)

with 〈q̄q〉 ≈ −(225 MeV)3 [14]. Physical observables depend on the combination θ̄+ 〈a〉/fa rather than
on θ̄, where 〈a〉 is the axion vacuum expectation value (vev). Minimization of V (a) then implies that
this combination vanishes, leading to a vanishing contribution to EDMs. The fluctuations about 〈a〉
correspond to the physical axion particle, whose mass is set by the ratio of

√
χ(0) and fa.

Within the SM as well as in BSM scenarios, CPV radiative corrections to the quark masses (or
Yukawa interactions) can generate a non-vanishing contribution to argdet(λuλd), re-introducing a pos-
sibly unacceptably large magnitude for θ̄. If the given CPV scenario does not suppress these contribu-
tions, the constraints on the underlying source of CPV can be quite severe. Invoking the PQ mechanism
can alleviate these constraints.

As emphasized in Ref. [14], the presence of higher dimension CPV operators OCPV = ImC QCPV/Λ
2

can lead to an induced θ-term. The operator QϕG̃ in Table 2 gives a tree-level shift in θ̄, which can
still be removed through the PQ mechanism. More importantly, there is a shift in the minimum of the
axion potential, which now reads [34]

V (a) = χ(0)OCPV

(
θ̄ − a

fa

)
+

1

2
χ(0)

(
θ̄ +

a

fa

)2

+ · · · , (2.34)

where

χ(0)OCPV
= −i lim

k→0

∫
d4x eix·k 〈0|T{GG̃(x),OCPV(0)} |0〉 . (2.35)

As a result the minimum of the potential occurs for

θ̄ +
a

fa
=
χ(0)OCPV

χ(0)
≡ θind , (2.36)

a so-called “induced” θ-term 6. Thus, use of the PQ mechanism to eliminate the contribution of θ̄ to
an EDM will introduce an additional contribution linear in the coefficient of a higher-dimensional CPV
operator, ImC/Λ2. In the case of the CEDM operator, for example, one has

θind =
m2

0

2

∑
q=u,d,s

d̃q
mq

, (2.37)

where m2
0 characterizes the strength of the quark-gluon condensate 〈q̄σµνTAGA

µνq〉. In discussing the
contributions of the dimension-six CPV operators to various P- and T-odd hadronic quantities, we will
include the contributions from θind wherever they have been explicitly computed.

6Note that our definition gives an opposite sign to θind compared to Ref. [14].
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3 CP and T at the Hadronic Scale

In order to relate the interactions defined in Section 2 to P- and T-odd (TVPV)observables at the
hadronic, nuclear, and atomic levels, we first introduce the most relevant hadronic quantities in the
context of heavy baryon chiral perturbation theory (HBχPT) [35]. From the standpoint of effective
field theory (EFT), HBχPT provides the natural and model-independent framework – consistent with
the approximate chiral symmetry of QCD – in which to parameterize one’s ignorance about presently in-
calculable non-perturbative strong-interaction matrix elements of the various CPV operators appearing
in LCPV. For both the hadronic scale analysis as well as the Fermi scale effective operator formulation
embodied in Eqs. (2.1), and (2.4), the EFT philosophy entails expressing the physical impact of un-
known physics (BSM CPV or non-perturbative QCD) in terms of an infinite tower of operators having
successively higher-mass dimension that carry appropriate inverse powers of the relevant mass scale: Λ
in the case of BSM CPV and the QCD mass scale (or chiral symmetry-breaking scale) Λχ ∼ 1 GeV
in the case of the low-energy hadronic interaction. Doing so affords a systematic expansion of CPV
observables in scale ratios, such as Λχ/Λ or P/Λχ where P denotes a soft momentum or pion mass.
After truncation at a given order in these ratios, one has a reasonable estimate of the error incurred
through omission of higher-order terms.

Below Λχ all meson fields besides the pions can be “integrated out”, their effects being captured
by short-range interactions. Pions are light because they are the pseudo-Goldstone bosons of chiral
symmetry, which plays an important role in determining the relative importance of the effective in-
teractions. The term “heavy” in HBχPT indicates that one is only interested in dynamics where the
nucleon is non-relativistic, having momentum pµ = mNv

µ+kµ with vµ being its velocity and |kµ| � mN ,
the nucleon mass. The nucleon is, then, described by a two-component field Nv(k) associated with a
given velocity rather than a four-component Dirac field ψN . The anti-nucleon degrees of freedom are
effectively also integrated out in terms of operators containing only Nv(k), its derivatives, and the pion
field. Dropping the subscript “v” for notational simplicity, we give some representative terms in the
resulting T-violating and P-violating (TVPV) Lagrangian [36, 37, 22]:

LTVPV
Nπ = −2N̄

(
d̄0 + d̄1τ3

)
SµN vνF

µν + N̄
[
ḡ(0)
π τ · π + ḡ(1)

π π0 + ḡ(2)
π

(
3τ3π

0 − τ · π
)]
N

+C̄1N̄N ∂µ
(
N̄SµN

)
+ C̄2N̄τN · ∂µ

(
N̄SµτN

)
+ · · · . (3.38)

Here, τ and π denote the isovectors of Pauli matrices and pion fields, respectively, while Sµ and vµ

denote the spin and velocity of the nucleon that take on values in the nucleon rest frame: Sµ → (0, ~σ/2)
when vµ → (1,~0).

The first term in Eq. (3.38) defines the isoscalar (d̄0) and isovector (d̄1) “short-range” contributions
to the nucleon EDM interaction:

Heff
EDM = −

(
d̄0 ± d̄1

)
χ†~σχ · ~E , (3.39)

where the upper (lower) sign correspond to the proton (neutron) EDM interaction.
The second term is the T- and P-odd pion-nucleon non-derivative interaction [38], consisting of

isoscalar (ḡ
(0)
π ), isovector (ḡ

(1)
π ) and isotensor (ḡ

(2)
π ) pieces. These interactions have formally the same

form when written in terms of a Dirac spinor ψN . Note, however, that various authors follow differing
notation for the pion interactions. From the standpoint of a non-linear realization of chiral symmetry, it
is more natural to build the Lagrangian from functions of π/Fπ, where Fπ = 185 MeV is the pion decay
constant. The resulting P- and T-odd πNN couplings would then have dimension of mass. Moreover,
in the absence of any breaking of chiral symmetry, the best choices of pion field are such that pion
interactions involve derivatives, in which case the leading P-, T-even pion-nucleon interaction is of the
pseudovector form. Yet, frequently a pseudoscalar form in terms of ψN is used. Chiral symmetry is then
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Interaction This work Herczeg Pospelov Engel Dmitriev Mereghetti

& Ritz et al. et al. et al.

[27] [14] [39, 40] . . . [41, 42] [36, 37, 22]

N̄τ · πN ḡ
(0)
π ḡ

(0) ′
πNN ḡ

(0)
πNN ḡ0 −g0 −(ḡ0 + ḡ2/3)

Fπ

π0N̄N ḡ
(1)
π ḡ

(1) ′
πNN ḡ

(1)
πNN ḡ1 g1 −ḡ1/Fπ

N̄ (3τ3π
0 − τ · π)N ḡ

(2)
π ḡ

(2) ′
πNN −ḡ(2)

πNN ḡ2 g2 −ḡ2/3Fπ

(∂µπ) · N̄τSµN −2gA/Fπ −gπNN/mN −gπNN/mN −g/mN −g/mN −2gA/Fπ

Table 4: Conventions for πNN couplings: first three rows give TVPV non-derivative interactions while
the last row gives the leading-order strong interaction. Note that N denotes a heavy nucleon field, so
the pseudovector interaction in the last row corresponds to the pseudoscalar coupling π · ψ̄N iγ5τψN
(plus an additional two-pion interaction) in terms of a relativistic field ψN . In the chiral limit gA ' 1.26
and g = gπNN ' 12.6, while accounting for the Goldberger-Treiman discrepancy g = gπNN ' 13.5
[43, 44] and gA ' 1.33. Here, Fπ = 185 MeV.

only ensured if additional π2ψ̄NψN interactions are included. Fortunately, in most of the instances we
are concerned with here, these additional interactions are irrelevant, and pseudoscalar and pseudovector
interactions give the same result, once the corresponding couplings are related. A summary of notation
used by various authors is given in Table 4.

The third and fourth terms in Eq. (3.38) contain T- and P-odd two-nucleon contact interactions,
which represent all dynamics of range ∼ 1/Λχ, such as vector meson (η, ρ, ω, etc.) exchange. As
we discuss below, these are expected to be the most significant short-range TVPV interactions among
nucleons. The “· · · ” subsume an infinite number of other TVPV interactions: terms related to the
above by chiral symmetry (see below) as well as interactions involving larger number of derivatives
and nucleon fields and/or more powers of small parameters. For purposes of the present analysis we
will not draw on these additional interactions explicitly. The reader should be warned that in general
the Lagrangian (3.38) contains pion tadpoles [36, 22], as no spacetime symmetry forbids a π0 term
(accompanied by its chiral partners with an odd number of pions) representing the disappearance of
the neutral pion into vacuum. Tadpoles can be eliminated by field redefinitions, but for the left-right
four-quark operator (2.28) a multi-pion vertex survives at leading order [22]. Although usually this is
of no consequence, it might give rise to a significant TVPV three-nucleon force.

The various hadronic interactions in Eq. (3.38) can be generated through the θ-term or any of the
dimension-six CPV operators introduced above that contains only quarks and/or gluons. The semilep-

tonic four-fermion operators Q`edq and Q
(1,3)
`edu will give rise to effective electron-hadron interactions.

Concentrating on the electron-nucleon sector, we follow roughly the convention of Ref. [13] to write

Leff
eN = −GF√

2

{
ēiγ5e ψ̄N

[
C

(0)
S + C

(1)
S τ3

]
ψN + ēe ψ̄N iγ5

[
C

(0)
P + C

(1)
P τ3

]
ψN (3.40)

−εµναβ ēσµνe ψ̄Nσαβ
[
C

(0)
T + C

(1)
T τ3

]
ψN

}
+ · · ·

in terms of a relativistic nucleon field ψN . Normalizing to the GF = 1/(
√

2v2) allows us to make
a straightforward comparison with limits quoted in the atomic EDM literature. A conversion to the
operators normalized to Λ appears in Section 3.2.3 below. This interaction simplifies for a heavy nucleon
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field,

Leff
eN = −GF√

2

{
ēiγ5e N̄

[
C

(0)
S + C

(1)
S τ3

]
N − 8 ēσµνe v

νN̄
[
C

(0)
T + C

(1)
T τ3

]
SµN

}
+ · · · . (3.41)

Here again, we neglect higher-derivative terms, operators containing more than two nucleon fields, and
terms containing explicit factors of the pion field as implied by chiral symmetry. Note that the electron
scalar ⊗ nucleon pseudoscalar operators vanish at lowest order in the heavy baryon expansion7.

3.1 Hadronic Matrix Elements

In order to determine the dependence of the hadronic couplings defined above on the underlying sources
of CPV, one must compute matrix elements of the various CPV operators introduced in Section 2. The
result will be a set of expressions of the form

dN = αN θ̄ +
( v

Λ

)2 ∑
k

β
(k)
N ImCk , (3.42)

ḡ(i)
π = λ(i) θ̄ +

( v
Λ

)2 ∑
k

γ
(k)
(i) ImCk , (3.43)

C̄i = κi θ̄ +
( v

Λ

)2 ∑
k

δ
(k)
i ImCk , (3.44)

where Ck denotes the Wilson coefficients for operator Qk, as appropriate, and the coefficients αN etc.
embody the results of the hadronic matrix-element computation. Note that for the three-gluon operator
(2.23), here and in the rest of this review ImCk stands for CG̃. The coefficients αN and β

(k)
N have the

units of electric charge times length, and we will express all results as e fm. The coefficients λ(i) and

γ
(k)
(i) are dimensionless, while κi and δ

(k)
i have dimensions of fm3. We note that presently very little is

known about C̄1,2.

For future purposes, it will be convenient to define the sensitivity of the other hadronic quantities
to either δ̃q and δq or dq and d̃q via

( v
Λ

)2 [
βqGN ImCqG + βqγN ImCqγ

]
= e ρ̃qN d̃q + ρqN dq =

( v
Λ

)2 [
e ζ̃qN δ̃q + e ζqN δq

]
, (3.45)( v

Λ

)2 [
γqG(i) ImCqG + γqγ(i) ImCqγ

]
= ω̃q(i) d̃q + ωq(i) dq =

( v
Λ

)2 [
η̃q(i) δ̃q + ηq(i) δq

]
. (3.46)

Similarly, for the semileptonic interactions, we use GF = 1/
√

2v2; define g
(i)
S,P,T as the isoscalar and

isovector form factors in the limit of isospsin symmetry

1

2
〈N |

[
ūΓu+ d̄Γd

]
|N〉 ≡ g

(0)
Γ ψ̄NΓψN , (3.47)

1

2
〈N |

[
ūΓu− d̄Γd

]
|N〉 ≡ g

(1)
Γ ψ̄NΓτ3ψN , (3.48)

7Note that we have introduced an overall minus sign on the right hand sides of Eqs. (3.40,3.41) to match the convention
in Ref. [13] and elsewhere, where the corresponding coefficients are defined for the Hamiltonian rather than the Lagrangian.
Note also that an explicit −1 appears in front of the tensor interactions in order to facilitate comparison with other work
in which an opposite sign convention is used for εµναβ .

14



where Γ = 1, γ5, σµν ; and write for C
(0,1)
S,P,T ,

C
(0)
S = −g(0)

S

( v
Λ

)2

ImC(−)
eq and C

(1)
S = g

(1)
S

( v
Λ

)2

ImC(+)
eq (3.49)

C
(0)
P = g

(0)
P

( v
Λ

)2

ImC(+)
eq and C

(1)
P = −g(1)

P

( v
Λ

)2

ImC(−)
eq (3.50)

C
(0)
T = −g(0)

T

( v
Λ

)2

ImC
(3)
`equ and C

(1)
T = −g(1)

T

( v
Λ

)2

ImC
(3)
`equ . (3.51)

where we define the combinations

C(±)
eq = C`edq ± C(1)

`equ . (3.52)

For the dimension-six operators generated by BSM CPV, performing the hadronic computation
entails two successive steps of running and matching.

(i) One must first run the operators perturbatively from the BSM scale Λ to the weak scale. After
integrating out the heavy SM degrees of freedom with appropriate matching, one then continues
the running from the weak scale to the hadronic scale. The quantities CqG, d̃q, δ̃, etc. are then
defined at the hadronic scale Λχ ∼ 1 GeV where nucleon matrix elements are then taken. They
can be related to the quantities at the BSM scale Λ through an appropriate “K-factor”, as in

Im [g3CqG] (Λχ) = KqG Im [g3CqG] (Λ) , [g3 d̃q](Λχ) = KqG[g3 d̃q](Λ) , (3.53)

[g3 δ̃q](Λχ) = KqG [g3 δ̃q](Λ) ,

where we follow the convention in the literature and bundle the strong coupling with the Wilson
coefficients ImCk etc. The K-factors then relate the product of g3 and the Wilson coefficients at
the two scales Λ and Λχ.

(ii) Second, one must compute the relevant matrix element at the hadronic scale utilizing non-
perturbative methods. For the QCD θ-term, only the second step is required.

Carrying out the perturbative running is generally straightforward. In general, one must account
for mixing among various operators. The full anomalous dimension matrix that takes into account the
EDM, CEDM, three-gluon and four quark operators has recently been obtained in Ref. [45]. Prior to this
work, efforts concentrated largely on the evolution of the EDM, CEDM, and three-gluon operators[46,
47, 48, 49]. Within this limited subset of operators, only the three-gluon operator is multiplicatively
renormalized. The resulting “K-factor”, obtained after taking into account two-loop running and
threshold corrections, is given in the first line of Table 5. The three-gluon operator, however, will mix
into the CEDM while the latter will mix into the EDM. Consequently it is not generally possible to
quote a single K-factor for the latter two operators. Since the work of Ref. [48], however, it has often
been the practice to do so in the literature. The reason is that that in the MSSM, CG̃ arises at two-loop
order, whereas the CEDM first occurs at one-loop. Thus, the mixing of QG̃ into QqG is effectively higher
loop order. In the more general case, one must consider the full effects of operator mixing. Nevertheless,
for illustrative purposes we quote a K-factor for the CEDM to illustrate the magnitude impact made by
QCD evolution from the weak to hadronic scales. Under similar assumptions, the authors of Ref. [48]
obtained the K-factor given in Table 5.

Performing non-perturbative computations is a more challenging task. Before reviewing the status
of such calculations, it is useful to delineate expectations for the hadronic matrix elements based on the
chiral symmetry properties of the operators, following the framework developed in Refs. [36, 22]. For
a parallel treatment in the context of chiral SU(3), see Refs. [50, 51]. We follow this discussion with a
review of explicit computations utilizing various approaches.
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Operator KQ Reference Remarks

QG̃ 3.30 [46, 47, 48, 49] Mult Renorm

QqG 3.30 [48] Mixing neglected

QqV , V = B,W 1.53 [48] Mixing neglected

Q
(1,8)
quqd matrix [45]

Table 5: Illustrative perturbative renormalization factors for dimension-six CPV operators, Q. As
in Eq. (3.53) the K-factors apply to the product of g3 with the ImCk, etc. In general, only QG̃ is
multiplicatively renormalized, with the renormalization K-factor given in the first row. For all other
operators, one must take into account mixing. Under the assumptions made in Ref. [48] for the MSSM,
approximate K-factor for the EDM and CEDM operators have been obtained as quoted above. No
analogous approximation has been made for the four-quark operators, so we do not list corresponding
entries. For a recent determination of the anomalous dimension matrix, see Ref. [45].

3.2 Chiral Symmetry and Näıve Dimensional Analysis

In the limit of vanishing quark masses, the QCD Lagrangian is invariant under separate rotations of
the right- and left-handed fields. Specializing to the two lightest flavors, these rotations are given by

q → exp [iτ · (θRPR + θLPL)] q (3.54)

where PR(L) denote right- (left-) handed projection operators and θR(L) are three-component vectors of
arbitrary real numbers. For future reference, it is useful to re-express Eq. (3.54) in terms of vector and
axial rotations:

q → exp [iτ · (θV + θAγ5)] q . (3.55)

The chiral SU(2)R×SU(2)L transformation embodied in Eqs. (3.54, 3.55) are isomorphic to those of
SO(4), and for present purposes it is convenient to consider objects that have definite SO(4) transfor-
mation properties. For example, four-component SO(4) vectors

V =

(
V
V4

)
(3.56)

change, under an infinitesimal transform, by

δV =

(
V × θV + V4 θA
−θA · V

)
, (3.57)

where θV,A are presumed to be tiny.
Terms in the effective Lagrangian just above the hadronic scale, and in particular the CPV inter-

actions in Eq. (2.1), break chiral symmetry in specific ways. In order to reproduce the corresponding
S matrix, the effective Lagrangian written in terms of hadronic fields has interactions that break the
symmetries in the same way. For example, instead of a component of a chiral four-vector V [q] built out
of quark fields, there will be a hadronic chiral four-vector V [π, N ] built from nucleon and pion fields.
For a particular choice of pion fields, the latter can be related to one having no pions, V [0, N ], by

V [π, N ] = V [0, N ]− 2π

DFπ

(
π

Fπ
· V [0, N ]− V4[0, N ]

)
, (3.58)

V4[π, N ] = V4[0, N ]− 2π

DFπ
·
(
π

Fπ
V4[0, N ] + V [0, N ]

)
, (3.59)
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where D = 1 + π2/F 2
π .

The proportionality constant between the hadronic interaction strength and the interaction strength
above the hadronic scale is the hadronic matrix element. Hadronic interactions obtained from different
components of the same object share the same matrix element. When the matrix element is not
known, it can be estimated using naive dimensional analysis (NDA) [52, 25]. Because the short-distance
physics incorporated in operators in the Lagrangian cannot be separated from quantum-mechanical
effects represented by loops in Feynman diagrams, one assumes that the natural size of the operator
coefficients is given by loop cutoff changes of O(1). If M denotes the scale of breakdown of the EFT, the
dimensionless “reduced” coefficient (4π)2−NMD−4g of an operator of canonical dimension D involving
N fields is assumed to be O(1) times the appropriate powers of the reduced couplings of the underlying
theory. When applied to chiral-symmetric operators, which are characterized only by the reduced
QCD coupling g3/4π, but to any power, consistency requires that we take g3 ∼ 4π in matrix-element
estimates.

Before proceeding with detailed applications, we consider two simple illustrations. First, when
matching the CEDM operators onto the nucleon EDMs, we note that both operators posses the same
canonical dimension. In this case N = 3 and D = 5 (as we are below the weak scale). Since d̃q and dN
have dimension M−1, we need only focus on the powers g3 and 4π. In this case, N = 3 implies that

ρ̃NDA
N = g3/4π ∼ 1 . (3.60)

On the other hand for the contribution of the three-gluon operator, which is D = 6 even below the
weak scale, we require one additional power of the hadronic scale Λχ as in

βG̃N = g3Λχ/4π ∼ Λχ. (3.61)

A second simple example is provided by the quark mass effects on the proton and neutron masses.
The quark mass operators in Eq. (2.8) are components of two SO(4) vectors whose fourth component
transform as a scalar or pseudoscalar under parity,

S[q] =

(
−iq̄τγ5q

q̄q

)
and P [q] =

(
q̄τ q
iq̄γ5q

)
, (3.62)

respectively. Replacing the light quark doublet in Eq. (3.62) by heavy nucleon fields and noting that the
pseudoscalar operators vanish to lowest order in the heavy nucleon limit, we obtain the corresponding
nucleon SO(4) vectors:

S[0, N ] =

(
0
N̄N

)
and P [0, N ] =

(
N̄τN

0

)
. (3.63)

Using Eqs. (3.58, 3.59) one finds that the fourth component of S[π, N ] and third component of P [π, N ]
give contributions from the average quark mass and mass splitting to the average nucleon mass, (m̄N)q,
and nucleon mass difference, (∆mN)q ≡ (mn −mp)q, respectively:

LNmass = − (m̄N)q N̄N +
(∆mN)q

2
N̄τ3N . (3.64)

The reduced coefficients are (m̄N)q/Λχ and (∆mN)q/Λχ, which should be linear in m̄/Λχ and εm̄/Λχ,
respectively, so that from NDA one expects (m̄N)q ∼ m̄ and (∆mN)q ∼ εm̄.

These terms are linked by chiral symmetry to others that contain an even number of pion fields, which
contribute to pionic processes such as pion-nucleon scattering and pion production in nucleon-nucleon
collisions. The two terms in Eq. 3.64 can be seen as the isospin-symmetric and breaking components of
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the sigma term. The corresponding coefficients have therefore been evaluated in lattice QCD and also
extracted from data. Results are, by and large, in agreement. The extrapolation of lattice results on
octet baryon masses in 2+1 flavor QCD [53, 54], for example, gives (m̄N)q = 45± 6 MeV, which agrees
with the venerable value from Ref. [55]. Other extractions from data give similar values (see, e.g., the
compilation in Ref. [56]; see also [57] ). Similarly, the lattice value (∆mN)q = 2.26± 0.57± 0.42± 0.10
MeV [58] is consistent with other lattice evaluations (see Ref. [59]), with a determination of the
electromagnetic splitting using dispersion relations [60], and with an extraction from pion production
[61].

For future purposes, it is useful to relate m̄ to the pion mass. Since the pion is the pseudo-Goldstone
boson of spontaneously broken chiral symmetry, its mass vanishes in the limit m̄→ 0. Away from this
limit, the pion mass term arises from a scalar SO(4) vector as in Eq. (3.63), but with N̄N → 1. It is
thus proportional to m̄, and from NDA m2

π ∼ m̄Λχ. It is convenient, as we do below, to estimate the
coefficients of chiral-breaking operators steming from the quark masses in terms of m2

π/Λχ.

3.2.1 Applications: θ̄-term

We now use these classifications to identify the expected scaling of various hadronic operators as they
are generated by underlying CPV interactions. We begin with the QCD θ̄-term, Lθ̄ (2.3), in the form
of the quark bilinear (2.6).

This transformed θ-term is the fourth component of the same chiral SO(4) pseudovector as the
quark mass term, and it gives rise to the −2N̄τ · πN/Fπ term in Eq. (3.38) [36]. Thus, N̄τ3N
and −2N̄τ · πN/Fπ (plus its chiral partners with more pion fields) transform as the third and fourth
components of the same SO(4) pseudovector at the hadronic level, and the coefficient of the latter must
be given in terms of matrix elements of the former:

ChadP [π, N ] = 〈had|P |had〉 , (3.65)

where the state |had〉 contains appropriate nucleon and pion modes, viz.

〈N |P3|N〉 = ChadN̄τ3N and 〈N |P4|Nπ〉 = −2ChadN̄τ · πN/Fπ . (3.66)

On the other hand, since

εm̄〈N |P3|N〉 =
(∆mN)q

2
N̄τ3N , (3.67)

we have that
Chad = (∆mN)q /2εm̄ . (3.68)

Hence, the matrix element of the QCD θ-term operator is

− m̄

2

(
1− ε2

)
θ̄ 〈N |P4|Nπ〉 =

1− ε2
2ε

(∆mN)q
Fπ

θ̄N̄τ · πN ≡ ḡ(0)
π N̄τ · πN . (3.69)

Thus, we obtain the prediction

ḡ(0)
π =

1− ε2
2ε

(∆mN)q
Fπ

θ̄ or λ(0) =
1− ε2

2ε

(∆mN)q
Fπ

. (3.70)

If the matrix element (1− ε2)(∆mN)q/ε is calculated, ḡ
(0)
π /θ̄ comes for free. As a rough estimate, taking

(∆mN)q ∼ 2εm̄ and m̄ ∼ Fπ/20 one would expect ḡ
(0)
π ∼ 0.05 θ̄, or λ(0) ∼ 0.05. We may also express

the relationships in Eq. (3.70) as

λ(0) ∼
m2
π

ΛχFπ
. (3.71)
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This expectation is given in Table 15 along with predictions for the same quantity using other ap-
proaches. The lattice value for (∆mN)q given above implies

λ(0) = 0.017± 0.005 , (3.72)

where the error is obtained by adding the lattice uncertainties in (∆mN)q in quadrature.
The foregoing reasoning leads [36] to analogous expectations for the other λ(i) as well as the hadronic

coefficients αN , β
(k)
N , and γ

(k)
(i) . For example, the simplest way to produce the isovector TVPV πNN

interaction π0N̄N in Eq. (3.38) is from a tensor product of two pseudoscalar vectors, and as a conse-
quence

λ(1) ∼
m4
π

Λ3
χFπ

, (3.73)

where we took ε ∼ 1. The isotensor πNN interaction in Eq. (3.38) is even more suppressed.
The analogous arguments for the short-range components of the nucleon EDM are more complicated

because one needs to account for the chiral transformation properties of the interaction between quarks
and the photon field Aµ,

Lquark
charge = −e

6
Aµ q̄γ

µ (1 + 3τ3) q . (3.74)

While the first term is a chiral scalar, the second is the 3-4 component of an antisymmetric tensor.
Taking the tensor product with the pseudoscalar vector P , they give rise, respectively, to the isoscalar
and isovector nucleon EDMs. Thus, one expects

d̄0,1 ∼ eθ̄
m2
π

Λ3
χ

or αN ∼ e
m2
π

Λ3
χ

∼ 0.2
m2
π

Λ2
χ

e fm , (3.75)

where the additional factors of Λ−2
χ are simply a consequence of dimensional analysis.

3.2.2 Dimension-six operators

We now consider the dimension-six CPV operators appearing in Eq. (2.4) and arising from BSM
physics [22]. The quark CEDMs can be embedded in SO(4) vectors and pseudovectors:

SAµνGA
µν ≡

(
−iq̄σµνγ5τ T

Aq
q̄σµνTAq

)
GA
µν and PAµνGA

µν ≡
(

q̄σµντ TAq
iq̄σµνγ5T

Aq

)
GA
µν . (3.76)

Thus, the isoscalar and isovector CEDM operators transform as the P4 and S3 components of an SO(4)

pseudovector and vector, respectively. They contribute to ḡ
(0)
π and ḡ

(1)
π without any additional factors

associated with chiral symmetry breaking. Thus, we expect these two couplings to be comparable,

ḡ(0,1)
π ∼ Λ2

χ

vFπ

( v
Λ

)2

ImCqG or γqG(0,1) ∼
Λ2
χ

vFπ
. (3.77)

Again ḡ
(2)
π is a higher-order effect. However, since the EDM and CEDM Wilson coefficients carry an

explicit factor of the quark Yukawa couplings Yq ∼ mq/v ∼ m2
π/(vΛχ), it is useful to express the ḡ

(i)
π in

terms of the quantity δ̃q appearing in Eq. (2.19) as well as the pion mass and QCD mass scales:

ḡ(0,1)
π ∼ m2

πΛχ

FπΛ2
δ̃q or η̃q(0,1) ∼

m2
πΛχ

Fπv2
. (3.78)

Similarly, we obtain for the sensitivity of ḡ
(0,1)
π to the d̃q

ω̃q(0,1) ∼
Λ2
χ

Fπ
. (3.79)
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From similar considerations, the CEDM contributions to the nucleon EDM requires no additional
chiral suppression but only an electromagnetic interaction, leading to

d̄(0,1) ∼
e

v

( v
Λ

)2

Im CqG or βqGN ∼
e

v
, (3.80)

or, alternatively,

d̄(0,1) ∼
em2

π

ΛχΛ2
δ̃q or ζ̃0,1 ∼

m2
π

Λχv2
(3.81)

and
ρ̃qN = 1 . (3.82)

For the effect of the quark EDM operators, the logic is similar. The transformation properties of the
isoscalar and isovector quark EDMs are obtained by replacing the TAGA

µν in Eq. (3.76) by F µν . Purely
hadronic operators now require integrating out high-momentum photons exchanged among quarks,
which generates an additional factor of at least α/π. In particular, for the ḡ

(i)
π we expect

γqγ(i) ∼
α

π

Λ2
χ

vFπ
, ωq(i) ∼

α

π

Λ2
χ

eFπ
, and ηq(i) ∼

α

π

m2
πΛχ

Fπv2
. (3.83)

This suppression renders these operators irrelevant for most purposes. In contrast, no such α/π factor
is needed for the quark EDM contribution to the nucleon EDMs since the photon is external. In this
case, we expect

βqγN ∼ βqGN , ρqN ∼ ρ̃qN , and ζ(0,1) ∼ ζ̃(0,1) . (3.84)

The situation for the three-gluon and four-quark operators operators is more subtle. Both the Q
(1,8)
quqd

and QG̃ are chiral-invariant pseudoscalars. Using S and P from Eq. (3.62) we obtain

S · P = −q̄τ iγ5q · q̄τ q + q̄q q̄iγ5q = Q
(1)
quqd . (3.85)

A similar result applies to the analogous definitions of S and P but with the SU(3)C generators TA

included, yielding the operator Q
(8)
quqd. The CPV three-gluon operator is trivially a chiral pseudoscalar

as the gluon fields do not transform under SU(2)R×SU(2)L. Consequently, the contributions from these

operators to the ḡ
(i)
π require explicit factors of m2

π/Λχ and εm2
π/Λχ that reflect the chiral symmetry

breaking needed to generate components of an SO(4) vector. Letting Ck denote the Wilson coefficient
for any one of these three operators we then expect

ḡ(0,1)
π ∼ m2

πΛχ

FπΛ2
ImCk or γ

(k)
(0,1) ∼

(mπ

v

)2 Λχ

Fπ
, (3.86)

with ḡ
(2)
π yet again at a higher order. Note that for such chiral-invariant TVPV sources the contact

interactions in Eq. (3.38), which are chiral invariant, can be generated without any suppression from
m̄:

C̄1,2 ∼
Λχ

F 2
πΛ2

ImCk or δ
(k)
1,2 ∼

Λχ

F 2
πv

2
. (3.87)

In nuclei they can be competitive with one-pion exchange with one ḡ
(0,1)
π interaction, as the enhancement

∼ m−2
π from a pion propagator is compensated by the m2

π in Eq. (3.86).
There is no suppression also when, in combination with the quark electromagnetic interaction, these

sources produce isoscalar and isovector components of the nucleon EDM transforming as chiral scalar
and antisymmetric tensor, respectively:

d̄(0,1) ∼
eΛχ

Λ2
ImCk or βkN ∼

eΛχ

v2
. (3.88)
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Matching the four-quark operator in Eq. (2.29) onto hadronic operators, we first observe that it
is the 3-4 component of a symmetric chiral tensor. Looking at the terms without color matrices TA,
one may decompose them into two terms, each having the form of the product of the third and fourth
components of either S or P :

ūu d̄iγ5d− ūiγ5u d̄d =
1

2
[S3 ⊗ S4 + P4 ⊗ P3] . (3.89)

Similar relations hold for terms with TA.
The S3 ⊗ S4 structure leads directly to a contribution to ḡ

(1)
π . However, the presence of S3 signals

vacuum instability, as it generates also terms with an odd number of pions, including a neutral pion
tadpole. Such a tadpole can be eliminated by a chiral rotation, but it leaves behind a three-pion
interaction that has not been well studied and is neglected here. After this rotation, one finds also
contributions to both ḡ

(0)
π and ḡ

(1)
π , and

ḡ(0,1)
π ∼ Λ3

χ

FπΛ2

ImCϕud
(4π)2

or γ
(ϕud)
(0,1) ∼

Λ3
χ

(4π)2v2Fπ
. (3.90)

As for CEDM, there is no suppression in the nucleon EDM,

d̄(0,1) ∼
eΛχ

Λ2

ImCϕud
(4π)2

or β
(ϕud)
N ∼ eΛχ

(4π)2v2
. (3.91)

3.2.3 Semileptonic interactions

For the semileptonic matrix elements in Eqs. (3.49,3.50,3.51), we can follow similar considerations.

Scalar and tensor interactions are most important at low energies, Eq. (3.41). The values of g
(i)
S follow

straightforwardly from the contributions of the light quarks to the nucleon masses (3.64):

g
(0)
S =

(m̄N)q
2m̄

, g
(1)
S =

(∆mN)q
4εm̄

. (3.92)

From the empirical and lattice values for (m̄N)q and (∆mN)q given in Section 3.2, one obtains

g
(0)
S = 6.3± 0.8, g

(1)
S = 0.45± 0.15 , (3.93)

where the errors do not include the range of values for the light quark masses.
Similarly, the tensor matrix elements are related to those of the quark EDM,

g
(0)
T = 4 ρq(0) , g

(1)
T = 4 ρq(1) . (3.94)

In principle, we could adopt the chiral SO(4) approach to estimate the g
(i)
P . Instead, we find it useful

to follow a variant of the arguments discussed in Refs. [12, 62]. Taking the divergence of

〈N |ūiγµγ5u− d̄iγµγ5d|N〉 = gAψ̄Nγµγ5τ3ψN , (3.95)

employing partial conservation of the isovector axial current, using nucleon equations of motion, and
observing that the divergence of the isovector axial current is anomaly-free as well as the definitions of
the g

(k)
P in Eq. (3.47) we obtain

g
(1)
P =

gAm̄N

m̄
, (3.96)

assuming exact isospin symmetry. Analogously, we can define for matrix elements of the remaining
flavors

〈N | Q̄ΓQ |N〉 ≡ gQΓ ψ̄NΓψN , (3.97)
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with Q denoting here s, c, b, or t. We will henceforth treat the strange quark separately and refer to c,
b, and t as the heavy flavors.

The scalar form factors gsS can be obtained from analyses of the σ term. Defining

〈N |mss̄s |N〉 = σsN̄N (3.98)

and

κs =
σs

220 MeV
(3.99)

as has been conventional in the recent literature (see, e.g. [12]), one has

gsS = κs
220 MeV

ms

(3.100)

with κs = 21±6 MeV [54]. For heavier flavors a short derivation appears in Appendix A and we simply
quote the result here:

gQS =

(
66 MeV

mQ

)
(1− 0.25κs) . (3.101)

Note that the strange and heavy quark scalar form factors are isoscalar.
Again, the derivation for the pseudoscalar form factors is given in Appendix A and leads to

〈N |mQQ̄iγ5Q |N〉 = ψ̄N

[
g
Q(0)
P + g

Q(1)
P τ3

]
iγ5ψN , (3.102)

with

g
Q(0)
P =

1

4

[
g

(0)
A

(
mN

mQ

)
+ gA

(
mu +md

mu −md

) (
∆mN

2mQ

)]
(3.103)

g
Q(1)
P =

1

4
gA

(
mN

2mQ

) (
mu −md

mu +md

)
. (3.104)

With these considerations in mind, we now review explicit computations of the hadronic matrix
elements, referring to the expectations based on considerations of chiral symmetry wherever possible.
To date, first-principles computations have been undertaken for the quantity αn; the scalar coupling
g

(0,1)
S that can be obtained from σπN and the contribution from the quark mass difference to the nucleon

mass splitting as discussed above; direct computations of the isovector form factors g
(1)
Γ for Γ = S, T

using lattice methods8(for a compilation and recent results, see Ref. [63] ); and for the nucleon electric
dipole moment form factors using HBχPT. Indeed, HBχPT can provide considerable insight into the
dependence of matrix elements on light quark masses while implementing a consistent expansion of QCD
in scale ratios as discussed above. On the other hand, knowledge of the low-energy constants requires
additional input, either from a lattice computation, direct measurement, or a model estimate. The
present state of the art still relies heavily on the latter approach. As a result, there exists a considerable
degree of model-dependent uncertainty in the values of the β

(k)
N , etc.. One objective of this review is to

provide a set of benchmark values and theoretical uncertainties for these parameters. A compilation of
existing results drawn from various methods is given in Tables 15 through 20 appearing in Appendix
B. We now review explicit computations of the hadronic matrix elements, leading to the results quoted
in these tables.

8Note that the computations in Ref. [63] apply to the charged current form factors that are related to those of interest
here by an isospin rotation. Note also that the relative normalizations of the quantities here and in that work are given

by gS,T = 2g
(1)
S,T .
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3.3 Chiral Perturbation Theory

At low energies QCD reduces to HBχPT, where the symmetries of QCD, including the considerations
of Section 3.2, are naturally expressed. The isoscalar and isovector electric dipole form factors (EDFF)
of the nucleon are defined through the TVPV electric current

JµTV PV (q, k) = 2
[
F0(−q2) + F1(−q2)τ3

] [
Sµv · q − S · qvµ +

1

mN

(Sµk · q − S · qkµ) + · · ·
]
, (3.105)

where the outgoing photon momentum q = p− p′, and k = (p+ p′)/2. The EDFF

Fi(Q
2) = di − S ′iQ2 + · · · (3.106)

gives the EDM at zero momentum transfer, q2 = 0, and the term linear in q2 (the form-factor radius)
provides an electromagnetic contribution that cannot be separated from a short-range electron-nucleon
interaction.

HBχPT provides the momentum and pion mass dependence of the EDFF in terms of the pa-
rameters appearing in the TVPV Lagrangian (3.38) and in the Lagrangian encoding P-even, T-even
interactions. The full nucleon EDFF has been calculated to leading order (LO) [64, 65, 66, 67, 22] and
next-to-leading order (NLO) [68, 69, 67, 70, 22] in the P/MQCD expansion for all sources described
above: the θ-term and the dimension-six CPV operators. (For related results in three-flavor χPT, see
Refs. [71, 72, 73, 74, 69, 51].) The resulting contributions fall into two classes: i) short-range con-
tributions associated with momentum scales of order Λχ, encoded in the Lagrangian parameters and
high-momentum part of pion loops; and ii) long-range contributions associated with scales of order mπ

and below, which appear in the low-momentum part of loops and can be explicitly computed. The
arbitrary separation between Lagrangian parameters and high-momentum part of pion loops is con-
trolled by the regularization scheme, and after renormalization observables are regularization-scheme
independent.

In this context, the short-range EDMs d̄i appear at LO for all sources. Long-range contributions
resulting from pion loops introduce a dependence on ḡ

(0)
π and ḡ

(1)
π . The specific chiral order at which

a long-range contribution arises depends on the chiral properties of the underlying source, as detailed
above. For the θ-term, CEDM, and left-right four-fermion operators, there are contributions propor-
tional to ḡ

(0)
π at both LO and NLO, but at LO only to the isovector nucleon EDM. For the CEDM

and left-right four-fermion operators there are additional NLO terms proportional to ḡ
(1)
π as well. The

dependence of loops on the regulator, choice of renormalization scheme, and renormalization scale can
be absorbed into a renormalization of the d̄i. The momentum dependence, and in particular the con-
tribution to the Schiff moment, is finite and set by 2mπ. For other sources, the relative suppression
of pion-nucleon couplings means smaller loop contributions. The momentum dependence becomes a
higher-order effect and the scale of its variation is determined by MQCD rather than 2mπ.

For the nucleon EDM one obtains to NLO:

d0 = d̄0 −
egA

16πFπ

{
ḡ(0)
π

[
3mπ

mN

− 4(∆mN)q
mπ

]
+ ḡ(1)

π

mπ

mN

}
(3.107)

and

d1 = d̄1(µ) + δd̄1(µ)− egA
(2π)2Fπ

{
ḡ(0)
π

[
ln
m2
N

m2
π

+
5πmπ

4mN

− ∆m2
π

m2
π

]
− ḡ(1)

π

πmπ

4mN

}
, (3.108)

where ∆m2
π = m2

π± −m2
π0 is the (mostly electromagnetic) pion mass splitting and

δd̄1(µ) ≡ − egAḡ
(0)
π

(2π)2Fπ

(
2

4− d − γE + ln
4πµ2

m2
N

)
(3.109)
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in terms of the dimension of spacetime d, the renormalization scale µ, and the Euler-Mascheroni constant
γE ' 0.577.

The µ dependence of δd̄1(µ) can be absorbed in d̄1(µ). One cannot separate parameter and loop
contributions in a model independent way, and since the same combination of loops and parameters
appears when the nucleon is inserted in a nucleus, it is simplest to redefine d̄0 and d̄1 to represent,
respectively, the full isoscalar and isovector nucleon EDMs. However, one expects no cancellations be-
tween loop contributions that are non-analytic in the quark masses and thus m2

π, and short-range pieces,
which are analytic 9. In this case the magnitude of the non-analytic contributions at a “reasonable”
renormalization scale serves as a lower bound for the redefined d̄i. For µ = mN , we expect for θ̄ [64],
qCEDM [70] and left-right four-fermion operators [22],

|d̄0| & 0.01
[
ḡ(0)
π + 0.3 ḡ(1)

π

]
e fm , |d̄1| ∼ 0.1

[
ḡ(0)
π + 0.03 ḡ(1)

π

]
e fm . (3.110)

Relying on the arguments leading to Eq. (3.70) for ḡ
(0)
π , for the θ-term we obtain |dN |>∼ 2 · 10−3 θ̄ e fm,

from which the current bound on θ̄ arises. For the other sources one currently has to rely on NDA or
model-dependent estimates, as we discuss below.

3.4 Lattice QCD

Lattice QCD holds the promise of providing the various matrix elements for all relevant CPV mecha-
nisms. However, to our knowledge, calculations have focused on the nucleon EDM for the θ-term, the
isoscalar scalar couplings g

(0,1)
S , and the and tensor form factors. In the former case, the most recent

published computations of the αN date back nearly five years or more [75, 76, 77, 78, 79, 80]. Generally,
these computations have followed one of two approaches: (a) computing the shift in the nucleon energy
in the presence of an electric field, or (b) computing the nucleon electric dipole form factor by expanding
to leading non-trivial order in θ̄. These calculations are carried out at unphysical values of the pion
mass. The nucleon EDFF discussed in Section 3.3 provides in principle the tool to extrapolate results
to smaller momentum and pion mass. Here, we summarize the most recently reported computations
for each approach.

The most recent computation of the first method has been reported in Ref. [79]. Using a two-flavor
dynamical clover action, the authors considered the ratio of spin-up and spin-down nucleon propagators

R3(E, t; θ̄) =
〈N1N̄1〉
〈N2N̄2〉

=
[
1 +O(θ̄)

]
exp

[
−αN θ̄Et

]
, (3.111)

where the subscript σ on Nσ denotes spin, t denotes the time, and E gives the magnitude of the electric
field along the z-direction. The electric field is introduced via a replacement of the gauge link variables
Uk(x) in the Dirac-Wilson action as

Uk(x)→ eQqEktUk(x) , (3.112)

where Qq is the quark charge and k labels the direction. For this computation, the replacement (3.112)
was applied only to the valence quarks; so-called “disconnected” insertions of the electric field on the
sea quarks that enter through the quark determinant have not been included 10. A corrected ratio Rcorr

3

was used to minimize the effect of insufficient statistics associated with vanishing E and/or θ̄. One then
has

2αN θ̄E = ln

[
Rcorr

3 (E, t− 1; θ̄)

Rcorr
3 (E, t; θ̄)

]
. (3.113)

9It is often conventional to retain only the non-analytic terms from loop computations and absorb all analytic terms
into the parameters.

10In the limit of degenerate sea quarks in three-flavor QCD, the disconnected contribution is identically zero due to the
vanishing trace over the quark charges [79].
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Figure 2: Lattice computation of nucleon EDMs induced by the QCD θ-term. The pion mass
squared dependence of dn (left) and dp (right) obtained using various approaches. Square
symbols denote the results in external electric field method in Nf = 2 clover fermion [79],
and circle symbols denote one in form factor method [81] with same gauge configurations.
Red bar denotes the bound of EDM in Nf = 2 domain-wall fermion in [77], and diamond is
a result from EDM form factor of imaginary θ method quoted in [80]. Note that the error
bar of diamond symbol may be an underestimate due to large systematic error associated
chiral symmetry breaking of clover fermion. The triangle symbol is model estimate in current
algebra.

A 243×48 lattice with β = 2.1 and lattice spacing a ≈ 0.11 fm was employed, where the latter is set
by the ρ-meson mass mρ = 768.4 GeV. Results for αn obtained with a lightest quark mass corresponding
to mπ = 0.53 GeV are shown in Fig. 2, using θ̄ = 0.025 and E = 0.004/a2. The corresponding values
are quoted in Table 15.

The authors also studied the dependence of αN on the light quark mass to determine if this coefficient
vanishes in the chiral limit as required. Results were obtained at mπ = 1.13, 0.93, 0.76 and 0.53 GeV.
Results for the neutron are indicated in Fig. 2. It is apparent that the computation does not exhibit the
correct chiral behavior. The authors conclude that this situation is likely due to the explicit breaking
of chiral symmetry by the Wilson-type quark action and the relatively large value of the lightest quark
mass used. As the authors also emphasize, obtaining a significant, non-vanishing signal for the nucleon
EDM does not appear to require the presence of appropriate chiral behavior.

The most recent computation utilizing the form factor method has been reported in Ref. [80]. The
computation was performed by rotating θ̄ into the quark mass matrix and taking it to have an imaginary
value:

θ̄ = −iθ̄I , (3.114)

with θ̄I being a real number. Simulations were performed using the Iwasaki gauge action and two-flavors
of dynamical clover fermions with β = 2.1, a ≈ 0.11 fm (again set by mρ), mπ/mρ ≈ 0.8, and several
values of the imaginary vacuum angle: θ̄I = 0, 0.2, 0.4, 1.0, and 1.5. The EDM form factor F3 was
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Figure 3: Lattice computation of θ̄-dependence of dn using the
form factor method method[80] for θ̄I = 0.2. Shown is the squared
momentum transfer dependence at three mass parameters K =
0.1382–0.1367 which correspond to m2

π = 0.3–0.85 GeV2. These
are results in Nf = 2 clover fermion configurations.

obtained from the ratio of three- and two-point correlators:

R(t) =
GθΓ
NJµN

(t′, t; ~p′, ~p)

Tr
[
Gθ
NN(t′; ~p′)Γ4

] , (3.115)

where t denotes the time co-ordinate for the insertion of the vector current Jµ, t′ gives the time for the
nucleon “sink”, and ~p (~p′) gives the nucleon momentum before (after) the vector curren insertion.

Results at vanishing momentum transfer were obtained using two different extrapolation methods:
(a) employing a dipole ansatz for the q2-dependence of the form factor and (b) assuming the EDM and
Dirac form factors have the same q2-dependence and utilizing the latter (see Fig. 3 ). Both methods
give consistent values for the EDM. Taking

dθN =
∂dθN
∂θ̄I

+ c
[
θ̄I
]3

(3.116)

and using the coefficient of the linear term to define the EDM, the authors obtain the results indicated
in Table 15. The results agree with those of Ref. [79] (electric field method) within error bars.

In addition to the direct computations of dN , lattice QCD results provide input for the determination
of λ(0) via Eq. (3.70) and for the g

(0,1)
S,T . As discussed above, values of g

(0,1)
S may be inferred from lattice
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computations of σπN and (∆mN)q. Alternately, one may obtain g
(1)
S,T from direct computations of the

charge changing scalar and tensor form factors[63] via isospin rotation. Taking into account the factor
of two difference in normalization of these form factors, the preliminary lattice values quoted in Ref. [63]
imply

g
(1)
S (MS, µ = 2 GeV) = 0.4(2) (3.117)

g
(1)
T (MS, µ = 2 GeV) = 0.53(18) . (3.118)

The computation of g
(1)
S was obtained using two different gauge field ensembles with pion masses in

the ranges 390 < mπ < 780 MeV and 350 < mπ < 700 MeV, respectively. A chiral extrapolation
was performed assuming a linear dependence on mq. The value for g

(1)
T was derived by combining

RBC/UKQCD and LHPC results, with a chiral extrapolation based on HBχPT results. A comparison

of the value for g
(1)
S with a result obtained using (∆mN)q is given in Table 21 below.

3.5 QCD Sum Rules

In recent times, the most widely quoted hadronic computations of dn and the ḡ
(k)
π rely on the method of

QCD Sum Rules (QCDSR). (For an extensive review in the context of EDMs, see Ref. [14]; see Ref. [82]
for a more recent discussion.) This approach entails computing hadronic correlators at large virtuality
where the operator product expansion (OPE) can be rigorously applied and matching the result onto
a phenomenological ansatz for the structure of the correlator at lower virtuality. The reliability of this
matching is improved by performing a Borel transform to the OPE and phenomenological forms for the
correlator.

In the present instance, the relevant correlator Π(Q2) involves two nucleon sources ηN ,

Π(Q2) = i

∫
d4x eiq·x 〈0|T {ηN(x)η̄N(0)} |0〉 , (3.119)

where ηN(x) contains combination(s) of quark field operators that carry the nucleon quantum numbers,
where Q2 = −q2, and where the Dirac indices on Π have been suppressed for simplicity. In general, one
uses a linear combination of two sources,

ηN = η1 + βη2 , (3.120)

where

η1 = 2εabcd
T
aCγ5ubdc and η2 = 2εabcd

T
aCubγ5uc (3.121)

with the subscripts a etc. denoting color. One computes Π(Q2) in a background that contains photon
and pion fields as well as the TVPV interactions introduced above and identifies various Lorentz struc-
tures that are invariant under chiral rotations and that exhibit the appropriate spacetime symmetries
associated with the EDM or πNN interactions:

EDM →
{
F̃ · σ, q/

}
,

πNN → q/ , (3.122)

where F̃ · σ ≡ F̃ µνσµν . The corresponding phenomenological ansatz for the correlator at low virtuality
is

Π(Q2)pheno = −1

2
fd(Q

2)
{
F̃ · σ, q/

}
+

1

2
fπ(Q2)q/ + · · · , (3.123)
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with

fd(Q
2) =

λ2dnmN

(Q2 +m2
N)2
− Ad(Q

2)

Q2 +m2
N

+Bd(Q
2) , (3.124)

fπ(Q2) =
λ2ḡ

(k)
π mN

(Q2 +m2
N)2
− Aπ(Q2)

Q2 +m2
N

+Bπ(Q2) .

The dependence of the fk(Q
2) on the quantities of interest here (dn, ḡ

(k)
π ) arises from the first (double

pole) term on the RHS of Eq. (3.124). As we discuss shortly, it carries an important universal dependence
on the parameter λ. The single pole term represents contributions associated with transitions between
the neutron and excited states. Its strength, parameterized by the quantities Ad,π is generally unknown,
leading to one source of theoretical uncertainty. The continuum terms Bd,π are generated by transitions
between excited nucleon states and are also generally unknown.

For the OPE evaluation, one performs all possible contractions of the q and q̄ fields in the sources
ηN and η̄N , leading to an expression in terms of the quark propagators evaluated in the presence of
a photon and CPV background. The OPE gives the quark propagators in terms of various Wilson
coefficients times condensates, viz.

S(x) = S(x)(0) + χ(x)χ̄(0) + S(x)1 photon + S(x)1 gluon + · · · , (3.125)

where S(x)(0) contains the free quark propagator, S(x)1 photon and S(x)1 gluon contain dependences on
the photon and gluon field strength tensors, respectively, and the χ(x)χ̄(0) carries dependences on the
condensate 〈q̄q〉 as well as tensor condensates in the presence of the photon background that can be
related to 〈q̄q〉 through various susceptibilities χ, κ, and ξ:

〈q̄σµνq〉F = Qqχ Fµν〈q̄q〉 , (3.126)

gs〈q̄Gµνq〉F = Qqκ Fµν〈q̄q〉 , (3.127)

2gs〈q̄Gµνγ5q〉F = iQqξ Fµν〈q̄q〉 . (3.128)

After including the CPV interactions in the background, one obtains the dependence of χ(x)χ̄(0) on 〈q̄q〉,
the susceptibilities χ, κ, and ξ, and the quantities θ̄, dq and d̃q. A detailed expression for the resulting
correlator Π(Q2)OPE goes beyond the scope of this review but can be found in, e.g., Refs. [83, 84, 85, 82].

Applying the Borel transformation to both Π(Q2)pheno and Π(Q2)OPE and matching the coefficients

of the relevant Lorentz structures then allows one to obtain dn and the ḡ
(k)
π in terms of the CPV

parameters, susceptibilities, 〈q̄q〉 condensate, Borel mass M , and phenomenological parameters λ, Ad,
etc. For example, for the neutron EDM one has [14, 82]

λ2dnmN − AM2 = −Θ 〈q̄q〉 M
4

8π2
em

2
n/M

2

, (3.129)

with
Θ = (4Qdmdρd −Qumuρu)χθ̂ + (4dd − du) + (κ− ξ/2)

(
4Qdd̃d −Qud̃u

)
, (3.130)

and with the ρq carrying a dependence on ratios of the quark masses. In the absence of a PQ mechanism,

one has θ̂ = θ̄. As discussed above, in the presence of the PQ mechanism the other QCD CPV
interactions, such as the CEDM, lead to a shift in the vacuum angle due to their effect on the axion
potential. In this case, one must take θ̂ = θind, with θind being the shift due to the additional axion
potential contributions.

The most recent results [14, 82] for the dependence of dn and the ḡ
(k)
π are indicated in Tables 15 -

19. We concentrate first on the dependence of dn on θ̄. Notably, the magnitude of αn obtained from
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the QCDSR computations are one to two orders of magnitude smaller than those obtained using lattice
calculations. Moreover, the most recent QCDSR determination of αn [82] is nearly a factor of six smaller
in magnitude that the earlier work of Ref. [14]. This difference results, in part, from a different value
of λ used in the two analysis. The authors of Ref. [14] utilized the smaller value for λ obtained directly
from QCDSR studies, while Ref. [82] employed a value obtained from a lattice computation of proton
decay matrix elements and isospin symmetry, which is roughly two times larger.

The foregoing technique also provides the dependence of dn on the quark EDM and chromo-EDMs.
Again, the analyses in the two most recent computations [14, 82] are similar, differing primarily in their
extraction of λ. Illustrative results are given in Tables 16 and 17 for the case when one assumes the
presence of PQ symmetry. To our knowledge, the only QCDSR computations of the dependence of the
ḡ

(i)
π on θ̄, d̃q, CG̃ and four-quark operators have been reported in Refs. [86, 14]. As discussed above, one

may extract the θ̄-dependence of ḡ
(0)
π using chiral methods, so we do not quote an additional QCDSR

result for this case. Moreover, the contribution of θ̄ to ḡ
(1)
π requires an additional power of mq (or m2

π)
as indicated in Eq. (3.73), so its impact will generally be negligible except for systems in which the

effect of ḡ
(0)
π vanishes. Consequently, we do not list any entry for λ(1).

For the contributions of other CPV operators, the situation is more subtle. In the case of CEDM
contributions to the ḡ

(i)
π , the constraints of chiral symmetry imply the presence of two canceling contri-

butions:
〈N |

(
d̃q q̄gsσµνG

µνq −m2
0q̄q
)
|N〉 (3.131)

where the first term arises from the PCAC commutator term and the second is generated by the pion
pole contribution. This cancellation renders the computation susceptible to theoretical uncertainties,
particularly associated with the choice of β in the nucleon sources. For example, taking β = 1 yields
a vanishing contribution through NLO under the assumption of pure valence quark dominance. On
the other hand, choosing β 6= 1 yields a non-vanishing result. Assuming that the double-pole term in
Eq. (3.124) dominates, one obtains

ḡ(0)
π ≈ 3

10

4π2|〈q̄q〉|m2
0

mNFπM2
F0(β)

(
d̃u + d̃d

)
, (3.132)

ḡ(1)
π ≈ 3

2

4π2|〈q̄q〉|m2
0

mNFπM2
F1(β)

(
d̃u − d̃d

)
, (3.133)

where at leading order the Fk(β = 1) = 0 and Fk(β = 0) = 1. For the latter choice, one obtains a

generically stronger CEDM sensitivity of ḡ
(1)
π compared to that of ḡ

(0)
π . Going beyond LO, including

uncertainties associated with additional condensates that consequently appear, the choice of Borel mass
M and variations with β, the analysis of Ref. [86] yields a “best value” and range for ḡ

(1)
π as well a

broad range but no best value for ḡ
(0)
π quoted in Table 17.

Providing robust computations of the three-gluon and four-quark operators to the neutron EDM
and the ḡ

(i)
π is even more challenging, as one encounters additional unknown condensates as well as the

presence of infrared divergences at lower order in the OPE than for the other sources of CPV discussed
thus far. It is possible, however, to estimate the contributions to dn by relating the EDM to the nucleon
magnetic moment through a CPV rotation of the nucleon wavefunction. One then has, for example
[87],

dn[CG̃] ∼ µn
9gsm

2
0

32π2
ln

(
M2

Λ2
IR

) ( v
Λ

)2

CG̃ , (3.134)

where µn is the neutron magnetic moment and where the other prefactors in Eq. (3.134) arise from a
QCDSR evaluation of the correlator of two nucleon currents in the presence of the CPV three-gluon
interaction. The latter evaluation is used to determine the CPV rotation needed for relating dn and µn.
Taking M/ΛIR = 2 and gs = 2.1 yields the estimate of the coefficient βG̃n given in Table 19.
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3.6 Quark Models

The constituent quark model (CQM) has proven remarkably successful in accounting for a number
of static properties of the lowest-lying baryons, most notably their magnetic moments. In the latter
instance, one assumes each constituent quark posses a distinct magnetic moment that is proportional
to its spin,

~µQ = 2µQ~SQ , (3.135)

and computes the nucleon magnetic moment using the appropriate spin-flavor-color-spatial nucleon
wavefunction, resulting in

µp =
1

3
[4µU − µD] and µn =

1

3
[4µD − µU ] . (3.136)

To the extent that the constituent up- and down-quark magnetic moments differ only by the overall
charge of the quark, one obtains for the ratio of nucleon magnetic moments µp/µn ' −3/2, in close
agreement with the experimental value.

In the case of the EDM, the dimensionless Wilson coefficients Cqγ̃ and δq (or the equivalent di-
mensionful quark EDMs dq) correspond to the EDMs of the current quarks of QCD rather than the
constituent quarks of the quark model. Nevertheless, one may make the bold ansatz that the coefficients
of the constituent quark operators are given by the corresponding coefficients for those of the current
quarks after appropriate RG running from the scale Λ to the hadronic scale Λχ that introduces the Kq

factor in Table 5:
~dQ = 2dQ~SQ with dQ = dq(Λχ) = Kqdq(Λ) + · · · , (3.137)

where the last relation may just as easily be expressed in terms of Cqγ̃ or δq and where the + · · · indicate
contributions associated with operator mixing. In this case, the computations of the nucleon EDMs
proceed as in the case of the magnetic moments, leading to

dp =
1

3
[4dU − dD] and dn =

1

3
[4dD − dU ] . (3.138)

Thus, one obtains

ρdn = ρup = −4ρun = −4ρdp =
4

3
. (3.139)

An alternate approach, first proposed in Ref. [88], is to retain the identity of the quarks as partonic
degrees of freedom and relate the nucleon matrix elements of q̄σµνqF̃

µν to those of the quark axial vector
currents q̄γµγ5q that contribute to the nucleon spin:

1

2
〈N |q̄γµγ5q|N〉 = (∆q)N Sµ , (3.140)

1

4
〈N |q̄σµνγ5q|N〉 = (∆q)N N̄σµνN , (3.141)

so that the nucleon EDM is given by

dN =
∑

q=u,d,s

dq (∆q)N , (3.142)

leading to a “parton quark model” (PQM) prediction

ρqN = (∆q)N . (3.143)

Information on the (∆q)N can be obtained from a number of sources, including the determination of
the axial vector coupling gA that enters neutron decay,

gA = (∆u)p − (∆u)n , (3.144)
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and studies of both inclusive and semi-inclusive polarized, deep inelastic leptoproduction,

(∆u)p = (∆d)n = 0.746 , (∆d)p = (∆u)n = −0.508 , (∆s)p = (∆s)n = −0.226 . (3.145)

The CQM and PQM fail to provide guidance for the quark CEDM or three-gluon operator contri-
butions to the nucleon EDMs. They similarly offer no reliable means for estimating the contributions
of these operators to the ḡ

(i)
π . In these cases, one might complement quark model estimates with the

NDA discussed in Section 3.2.

3.7 Saturation Methods

Over the years, estimates of four-quark matrix elements have often been obtained by assuming certain
intermediate states dominate or “saturate” the dynamics. Here, we illustrate the application of the
saturation approximation to estimate two classes of matrix elements: (a) contributions to ḡ

(1)
π generated

by the operator Qϕud and (b) the values of the TVPV four-nucleon operator coefficients C̄1,2.

Starting with ḡ
(1)
π , we recall that the first term in Eq. (3.89) generates a contribution to ḡ

(1)
π . When

the scale 1/Λ2 is included, one expects ḡ
(1)
π ∼ ImCϕudΛχFπ/Λ

2 as noted earlier. An explicit evalu-
ation can be made using factorization and vacuum saturation, partial conservation of the axial cur-
rent (PCAC), and the πN σ-term. Vacuum saturation in this context amounts to first relating the
〈Nπ2|S3 ⊗ S4 |N〉 to the crossed matrix element 〈π2|S3 ⊗ S4 |NN̄〉, inserting a complete set of states
between the S3 and S4 bilinears, assuming the dominant contribution arises from the vacuum, and then
uncrossing the N̄ . One then obtains

〈Nπ2|S3 ⊗ S4 |N〉 ∼ 〈N |S4 |N〉 〈π3|S3 |0〉 . (3.146)

Now, the matrix element of S4 is related to the pion-nucleon σ-term as

〈N |S4 |N〉 = 〈N | ūu+ d̄d |N〉 =
σπN
m̄

, (3.147)

while the second matrix element can be evaluated by taking the divergence of

〈π3(p)| q̄ τ3

2
γµγ5q |0〉 = −iFπpµ (3.148)

and taking the pion on-shell, leading to

〈π3|S3 |0〉 =
Fπm

2
π

m̄
. (3.149)

Using Eqs. (3.146-3.149) and including the coefficient of the four-quark operators appearing in Eq. (2.29)
leads to

ḡ(1)
π = (ImCϕud)

(mπ

Λ

)2
(
FπσπN
3m̄2

)
, (3.150)

which is of order ΛχFπ/Λ
2 as advertised. Using σπN ≈ 45± 6 MeV[53, 54], m̄ ≈ 3.85 MeV [21] gives

ḡ(1)
π = (3.3× 10−5)× (ImCϕud)

( v
Λ

)2

. (3.151)

The other approach is to assume the saturating states are the lowest available single-meson states.
For example, a meson of mass mm � mπ that can be exchanged between two nucleons gives rise to a
potential of range ∼ 1/mm, which is short compared to typical nuclear distances ∼ 1/mπ � 1/mm. In
an expansion in powers of mπ/mm, such a potential can be replaced by contact interactions with an
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increasing number of derivatives. In first order in the relevant TVPV parameter, the meson couples
through a TVPV coupling to one nucleon and a P-, T-even coupling to the other, resulting in TVPV
contact interactions such as the C̄1,2 terms in Eq. (3.38).

In this context, the mesons that have been considered are the lightest: the pseudoscalar η and the
vector mesons V = ρ, ω [89, 90, 91], with TVPV interactions given by

LTVPV
Nπ = ηN̄

(
ḡ(0)
η + ḡ(1)

η τ3

)
N +

ωµ
2mN

[
N̄
(
ḡ(0)
ω + ḡ(1)

ω τ3

)
iσµνγ5∂νN + H.c.

]
+

1

2mN

N̄
{[
ḡ(0)
ρ τ · ρµ + ḡ(1)

ρ ρ0
µ + ḡ(2)

ρ

(
3τ3ρ

0
µ − τ · ρµ

)]
iσµνγ5∂νN + H.c.

}
. (3.152)

They lead to

C̄
(η,ω)
1 =

1

mN

(
gηNN ḡ

(0)
η

m2
η

− gωNN ḡ
(0)
ω

m2
ω

)
, (3.153)

C̄
(ρ)
2 = − gρNN

mNm2
ρ

(
ḡ(0)
ρ + ḡ(2)

ρ

)
, (3.154)

where mη and mV are meson masses, and gηNN and gV NN are P-, T-even meson-nucleon couplings,
respectively the axial coupling of the eta and the vector coupling of the vector meson. This type of
meson exchange also produces other contact interactions [91], which are, however, expected to be of
higher order for CPV sources of dimension up to six.

Since mV ∼ Λχ and there is no reason for ḡ
(0)
V /ḡ

(0)
π to be particularly big or small, the size of vector-

meson contributions is comparable to the NDA expectations, with some suppression coming from the
numerical smallness of the P-, T-even rho-nucleon vector coupling gρNN ' 3.2 [92, 93] compared to the
analogous pion-nucleon coupling 2mNgA/Fπ ' 13.5. (In contrast the same ratio for the omega is close
to 1 [92, 93].) For the eta meson, the enhancement due to the relatively light mass is offset by the
relative smallness of gηNN ' 2.24 [94]. Obviously the limitation of this type of saturation is that there

are no firmer estimates of the TVPV couplings ḡ
(i)
η and ḡ

(i)
V than for the C̄1,2.

3.8 Hadronic Matrix Elements: Discussion

While there exists a solid body of work devoted to matching the θ-term and dimension six operators
onto hadronic quantities, there clearly exists considerable need for further advances. In what follows,
we attempt to provide a sense of the present range of theoretical uncertainty in sensitivity of various
hadronic quantities to the underlying operator coefficients. To that end, for each sensitivity coefficient
(αn, λ(0), ζ̃

q
n, etc.) we provide a “best value” and “reasonable range”. The importance of attempting to

quantify the theoretical uncertainty is two-fold. First, when using EDM search limits to derive bounds
on the underlying parameters such as θ̄ or δ̃q, previous studies have often included only the experimental
uncertainty while relying on a single hadronic computational framework. As a result, the quoted bounds
may be unrealistically stringent. Second, we anticipate that hadronic structure theorists involved in
the relevant computations will find our benchmarks helpful in setting goals for future refinements. In
short, it is useful to know where and to what level reductions in theoretical uncertainties are called for.

Before proceeding, we make an important caveat. In comparison with the analysis of experimental
uncertainties, the task of assigning theoretical error bars entails a greater degree of subjectivity. Con-
sequently, the benchmarks we provide below should be taken somewhat impressionistically rather than
as quantitatively robust. Nevertheless, we believe they offer reasonable guidance as to the present level
of uncertainty as well as quantitative targets for further refinements.

With these considerations in mind, we now discuss specifics. In setting the best values and ranges,
we will use the considerations based on chiral symmetry/NDA as well as the spread of current theoretical
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computations as guides. Chiral symmetry and NDA is particularly helpful in determining if the results
of specific computation are anomalously large. While one expects the chiral arguments to be realistic
up to a factor of a few, a computation that yields a result an order of magnitude larger would likely
be open to question. On the other hand, it is quite possible that specific dynamics can suppress a
given quantity by more than a factor of a few. In general, our best values will be somewhere close
to the mid-point of the range of explicit computations and close to the magnitude indicated by chiral
symmetry/NDA. When assessing the range of explicit computations in a given framework, we will be
rather inclusive, except when a given computation seems to be particularly anomalous with respect to
the chiral/NDA expectations. Hence, our reasonable ranges will be roughly consistent with the spread
of explicit computations and the factors of a few variation one might expect with respect to chiral/NDA
arguments.

Table 6, then, gives these benchmarks. Generally speaking, we see that the quantities with the most
narrow ranges are:

(a) αn, the sensitivity of dn to θ̄: QCD sum rule computations are quite in line with chiral symme-
try/NDA expectations. Moreover, a näıve scaling of the lattice results with m2

π would imply a
value close to our best value11. Note that since the θ-term does not run, there exists no uncertainty
associated with an incomplete analysis of RG evolution, in contrast to several of the dimension
six operators.

(b) λ(0), the sensitivity of ḡ
(0)
π to θ̄: the use of chiral symmetry and lattice results for (∆mN)q provide

a relatively model-independent result. Reduction in the errors on (∆mN)q and the light quark
masses from the lattice will lead to a corresponding narrowing of the theoretical range on this
quantity.

(c) g
(0)
S , isoscalar scalar form factor that governs in part the sensitivity of atomic and molecular EDMs

to the combination of coefficients Im(C`edq − C(1)
`equ): a model independent value is obtained from

σπN and the average light quark mass, m̄. To the extent that the lattice uncertainties on these
quantities are robust, one has a relatively narrow range for the isocscalar scalar form factor.

(d) (βqγn , ρqn, ζqn), the sensitivity of dn to the quark EDMs: results of explicit computations do not vary
considerably from expectations based on either chiral symmetry/NDA or the quark model. It is
worth emphasizing, however, that a complete analysis of the RG evolution of the quark EDMs
from the weak to hadronic scales, taking into account mixing with the CEDM and four-quark
operators, has generally not been carried out.

Although further reductions in the uncertainties associated with these quantities would be welcome,
we do not consider them to have the greatest urgency. Those seemingly most theoretically fraught are
the sensitivities to the CEDM, three-gluon operator, and four-quark operators.

(e) (βqGn , ρ̃qn, ζ̃qn), the sensitivity of dn to the quark CEDMs: Here we take as best values the average
of the existing QCD sum rule results, which in the case of the d-quark CEDM is equal to the
chiral/NDA expectation. The ranges here are rather broad, spanning an order of magnitude.
Moreover, as in the case of the quark EDMs, a complete implementation of the RG evolution
that includes mixing with the four quark operators remains to be performed. We also note
that recent studies of the CEDM contribution to the ρ-meson EDM using the Dyson-Schwinger
approach[95] raise further questions about the reliability of matching of CEDMs onto hadronic
quantities. Although the ρ-meson EDM is not of experimental interest, the relatively simplicity

11One should note, however, that the lattice computations to date do not necessarily manifest the expected chiral
scaling in other related observables, so the result of näıve scaling may be a coincidence.
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of the ρ-meson bound state makes it a useful “laboratory” for various hadronic matrix element
computational methods. The results obtained with the Dyson-Schwinger framework imply that
the ρ-meson EDM is an order of magnitude less sensitive to the CEDMs than one would infer from
the corresponding QCD sum rule computation[96]. In contrast, both approaches yield similar
sensitivities to the quark EDMs. Should a similar situation emerge for dn, one would need to
further inflate the theoretical uncertainty on the (βqGn , ρ̃qn, ζ̃qn).

(f) (γG(i), ω̃(i), η̃(i)), the sensitivity of the ḡ
(i)
π to the quark CEDMs: Here the situation is even more

uncertain. To our knowledge, only two computations have appeared to date. The ranges quoted
in Ref. [86] is consistent with the magnitude expected from chiral symmetry/NDA, but in the

case of the contribution to ḡ
(0)
π incompasses zero as well. In the case of the ḡ

(1)
π sensitivity, the

range in Ref. [86] is narrower, and we have no present rationale to expand it, but the dearth of

analyses and the range for the ḡ
(0)
π sensitivity should give one pause.

(g) βG̃n and γG̃(i), sensitivity of dn and the ḡ
(i)
π to the three gluon operator: For this case, we posses

a dearth of information. The central value for βG̃n given in the QCD sum rule work of Ref. [87]
that is often quoted elsewhere is an order of magnitude smaller than the chiral symmetry/NDA

expectations. Consequently, we take a broad range for this parameter. For the γG̃(i), we have only

the chiral/NDA expectations, and, thus, employ the “factor of a few” criterion for this range.
Note that the three-gluon operator is multiplicatively renormalized, so the theoretical uncertainty
is associated entirely with the hadronic matching computations.

(h) Four quark operators: hadronic matrix element computations for these operators is, if anything,
even less advanced than for the three-gluon operator. Apart from issue of RG evolution, explicit
computations are few and far between. The factorization computation used to match Qϕud onto

ḡ
(1)
π gives a smaller value for γϕud(1) than the chiral/NDA expectation. Computations for the other

operators Q
(1,8)
quqd have been carried out using a combination of the quark model, factorization, and a

relativistic meson loop approach[97]. However, the meson loop computation utilized in that work
is not consistent with the EFT power counting embodied in HBχPT and, thus, may overestimate
the magnitude of the matrix element by an order of magnitude. Consequently, we are reluctant
to use the results in that work for guidance. Instead, we start with the chiral/NDA estimates
and give an order of magnitude spread based on the present dearth of consistent computations,
implementation of RG running, and comparison with the factorization estimate.

We do not include in Table 6 the semileptonic form factors apart from g
(0,1)
S . The manifestation of

the pseudoscalar and tensor form factors in atoms and molecules is suppressed by several factors. The
pseudoscalar interactions are higher order in the HBχPT expansion, while the tensor charge does not
receive a nuclear coherent enhancement. We note, however, that the EDM of the diamagnetic atom
199Hg has roughly an order or magnitude greater sensitivity to the tensor eq interaction than it does to
the scalar interaction. The value of g

(0,1)
T in this case is, thus, considerably more significant than in the

paramagnetic systems.

Two implications should be drawn from our theory uncertainty estimates. First, for BSM scenarios
in which the CEDM, three-gluon, and/or four-quark operators have significant Wilson coefficients, it
will be particularly important for any global analysis to include the rather sizeable uncertainties at
the hadronic level. Second, a concerted effort to refine the hadronic computations and reduce the
uncertainties is clearly in order. We hope that our delineation of these best values and ranges will spur
future efforts in this direction.
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4 Nuclear, Atomic, and Molecular Scales

Composite systems are often the most amenable to experiments. But the EDMs of composite systems
reflect few- or many-body dynamics as well as the fundamental source of CP violation and QCD. For
some experiments, completely ionized light nuclei are useful, and for these cases we must employ few-
body methods to relate the nuclear EDMs to, e.g., θ̄. In heavier neutral systems a new phenomenon
is important: the shielding of the EDMs of constituents of one charge (e.g. protons in the nucleus) by
those of the other (electrons). The transmission of CP violation through a nucleus into an atom must
overcome this shielding and its effectiveness in doing so is expressed by a nuclear Schiff moment, which
we define shortly.

We begin by considering EDMs of light systems, potentially important for storage-ring experiments,
and then move to heavier systems, useful in experiments on immobilized atoms or molecules.

4.1 Light Nuclei

In addition to the continuous improvement in experiments on neutral systems, a new, exciting prospect
is the direct measurement of the EDMs of charged particles in storage rings [98, 99]. When a particle
moves in an electric and/or magnetic field, its spin will precess at a rate that depends not only on the
magnetic dipole moment but also on the EDM. The best bound on the muon EDM [100] comes, in fact,
as a by-product on the BNL g − 2 experiment. It can be expected that dedicated experiments in rings
with optimized parameters will allow sensitive probing of the EDMs of light nuclei. For example, it has
been proposed [98, 99] that for dp a sensitivity of 10−16e fm can be achieved. Similar sensitivity could
be attained also for the deuteron (2H nucleus) and helion (3He nucleus) EDMs, dd and dh respectively.
The triton (3H nucleus) EDM, dt, might be accessible as well.

From a theoretical perspective, the EDMs of light nuclei can be calculated with relatively small un-
certainty originating in the P-, T-even strong interactions, as essentially exact calculations are possible.
Moreover, with an effective field theory approach based on HBχPT we can treat the nucleon and nuclear
EDMs on the same footing, and explore the sensitivity of nuclear EDMs to different combinations of
TVPV hadronic interactions than that which appears in the nucleon EDM. In particular, it has been
argued that the deuteron EDM has some sensitivity to the CPV source [101, 102], and that a combined
measurement of dn, dp, dd, dh and dt could be used to disentangle the various sources [103]. The reason
for this is the different relative strengths of the various couplings at LO in HBχPT [102, 103], which
are rooted in the different chiral symmetry properties of the various sources, as discussed in Section
3.2. Likewise, experimental access to other TVPV moments, such as the deuteron magnetic quadrupole
moment, would be very useful as well for separating sources [102, 104], but it does not look feasible in
the near future.

In a nucleus with A nucleons, certain P-, T-even inter-nucleon interactions need to be resummed
in order to produce a bound state and its associated wavefunction |ΨA〉. (For a review of nuclear
EFT, see Ref. [105].) A nuclear EDM dA arises from the average with such a wavefunction of two
TVPV mechanisms: i) the TVPV electromagnetic current J0

TV PV , whose one-nucleon component is the
nucleon EDM; and ii) a combination of the TVPV potential VTV PV and the P-, T-even electromagnetic
current J0

PT . We follow here Ref. [103], which we refer the reader to for more details. Because TVPV
interactions are so tiny, we can write in first-order perturbation theory

dA =
〈

ΨA

∣∣∣ ~DTV PV

∣∣∣ΨA

〉
+
(〈

ΨA

∣∣∣ ~DPT

∣∣∣ Ψ̃A

〉
+ c.c.

)
. (4.155)

The electric operators are obtained from the corresponding time-component electromagnetic current
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through ~D = i lim~q→0
~∇~qJ

0(q). At the one-nucleon level

~D
(1)
PT =

e

2

A∑
i=1

τ
(i)
3 ~ri , ~D

(1)
TV PV =

A∑
i=1

(
d̄0 + d̄1 τ

(i)
3

)
~σ(i) , (4.156)

in intrinsic coordinates, which obey
∑A

i=1 ~ri = 0. The more complicated two- and more-nucleon currents
are expected to be generically less important, although this is not always true, as discussed below. The
first term in Eq. (4.155) represents the contribution of the individual nucleons to the nuclear EDM,
as well as the contribution from TVPV many-body currents. The second term in Eq. (4.155) is the

contribution of the parity-admixed wavefunction |Ψ̃A〉, obtained from the TVPV potential via

(E −HPT )|Ψ̃A〉 = VTV PV |ΨA〉 where (E −HPT )|ΨA〉 = 0 , (4.157)

with HPT being the P-, T-even Hamiltonian.
Because of its long range, one-pion exchange (OPE) has long been recognized as a potentially

important component of the TVPV two-nucleon (NN) potential [106, 107, 108], and expressed in terms
of the three non-derivative pion-nucleon couplings in Eq. (3.38) [38]. In the literature, this potential
is sometimes supplemented by the single exchange of heavier mesons, with the η [109], rho [110], and
ω [110] being most popular. Allowing sufficiently many couplings of these mesons to nucleons one can
produce [111] the most general short-range TVPV NN interaction with one derivative [112]. Although
a derivative expansion is justified on general grounds, the relative importance of terms with various
ranges, spin/isospin structures and number of nucleons depends on the TVPV source. The potential
obtained from HBχPT, which accommodates the most important effect of each source, is discussed in
detail in Ref. [37]. In configuration space, the NN potential corresponding to the Lagrangian (3.38)
reads

VTV PV (~rij) =
gA
Fπ

{
ḡ(0)
π τ

(i) · τ (j)
(
~σ (i) − ~σ (j)

)
+
ḡ

(1)
π

2

[(
τ

(i)
3 + τ

(j)
3

) (
~σ(i) − ~σ(j)

)
+
(
τ

(i)
3 − τ (j)

3

) (
~σ(i) + ~σ(j)

)]
+ḡ(2)

π

(
3τ

(i)
3 τ

(j)
3 − τ (i) · τ (j)

) (
~σ(i) − ~σ(j)

)}
·
(
~∇Y (rij)

)
+

1

2

[
C̄1 + C̄2τ

(i) · τ (j)
] (
~σ (i) − ~σ (j)

)
·
(
~∇δ(3)(~rij)

)
+ · · · , (4.158)

where ~rij = ~ri − ~rj is the relative position of the two interacting nucleons and Y (r) = exp(−mπr)/4πr
is the usual Yukawa function, so that

~∇Y (rij) = − ~rij
4πr3

ij

(1 +mπrij) exp(−mπrij) . (4.159)

The short-range interactions can be thought of as accounting for heavier-meson exchange, as discussed
in Section 3.7. For all sources, few-body potentials are expected to generate smaller contributions,
except for the left-right four-quark operator (2.29), for which the effects of a three-nucleon potential

originating in a LO three-pion vertex [103] proportional to ḡ
(0)
π remain to be studied.

Equation (4.155) has been evaluated in the literature for A = 2, 3, and the explosive growth in ab
initio methods affords ways to calculate the EDMs of larger nuclei if needed. Most existing work employs
TVPV one-meson-exchange potentials, with older references using simple P-, T-even wavefunctions and
single-nucleon currents, and more recent ones, highly developed phenomenological P-, T-even potentials
and even meson-exchange currents. In HBχPT the non-analytic behavior of the nucleon EDM in mπ

and the dominance of OPE in nuclear observables can be accounted for simultaneously, with chiral
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symmetry playing a central role. In principle full consistency can be achieved, but so far calculations
are limited to phenomenological P-, T-even interactions for HPT . At this stage leading contributions,
with an uncertainty of roughly ∼ mπ/MQCD ∼ 20%, are sufficient, and for the most part one can restrict
oneself to the one-body currents and two-body potential described above. For the θ-term the situation
is more complicated because in nuclei with equal numbers of protons and neutrons, N = Z, the isoscalar
component of the P-, T-odd potential (4.158) gives a vanishing contribution in combination with ~D

(1)
PT

(4.156) [106]. The latter is an isovector with a conserved third component, and can only contribute to
the EDM if there is a parity-admixed component of the wavefunction that differs from the ground-state
wavefunction by one unit of isospin. For dimension-six sources, where the leading NN potential is not
expected to be dominantly isoscalar, this is not of particular consequence. But, for the θ-term, ḡ

(0)
π

is the formally leading part of the potential, and in N = Z nuclei a non-zero result comes only from
subleading parts of the NN potential as well as two-body currents.

Not all the seven parameters shown explicitly in Eq. (3.38) are important for every CPV source.

In fact, as the discussion in Section 3.2 shows, ḡ
(2)
π is expected to be small for all sources, and as a

consequence the EDMs of light nuclei should be described at LO in terms of the six parameters d̄0,1, ḡ
(0,1)
π ,

and C̄1,2 [103]. Results for the EDMs of light nuclei in terms of these six LO parameters are reviewed
below and summarized in Table 7. The first two rows are a reminder that we have absorbed the loop
contributions to the neutron and proton EDMs in d̄0,1, as discussed in Section 3.3. The potential-model
dependence in the subsequent rows is not larger than ∼ 25%, which is comparable with the LO HBχPT
error. Exceptions are the short-range contributions from the C̄i, which can only be considered order-
of-magnitude estimates. As discussed below, for the tri-nucleon system there are disagreements in the
OPE estimates of about ±50% in the values quoted. After discussing specific results for the deuteron,
helion and triton, we cast them in terms of the θ-term and dimension-six sources.

4.1.1 Deuteron

The deuteron EDM has been investigated in the meson-exchange picture [114, 115, 116, 111, 117], with
various degrees of sophistication in the treatments of the P-, T-even interaction HPT . Refs. [111, 117]
found that differences in the EDM generated by TVPV OPE are rather small among modern high-
quality phenomenological potentials. Ref. [103] uses the calculation scheme of Ref. [111] to obtain

wavefunctions |Ψ2〉 and |Ψ̃2〉 for the potential (4.158), in conjunction with HBχPT currents, for all
CPV sources of dimension up to six. Ref. [50] also uses HBχPT and phenomenological potentials,
but with slight different dimensional estimates for the various HBχPT contributions, in the particular
case of the θ term. All these references ignore relativistic corrections, which are absent from the
phenomenological potentials they use. A fully consistent HBχPT calculation exists [102], in which
pions are treated perturbatively — a good approximation scheme in the loosely bound deuteron. In
this case the LO P-, T- even potential is just a delta function, so this is an effective field theory extension
of Ref. [116]. Results are consistent with Refs. [103, 50], suggesting that a fully consistent calculation
with non-perturbative pions will not deviate significantly from the results obtained so far.

The simplest contribution to the deuteron EDM originates in the EDMs of its constituents. Since
the deuteron has spin S = 1 and isospin I = 0, the nuclear matrix element of ~D

(1)
TV PV in Eq. (4.156)

gives simply 2d̄0. Since there is no reason to expect a cancellation with other contributions, 2d̄0 serves
as a lower-bound estimate for the deuteron EDM. For the θ-term in particular, using the long-range
NLO contributions to the isoscalar nucleon EDM, Eq. (3.110), we expect [102]

|dd|>∼ 3 · 10−4θ̄ e fm . (4.160)

In agreement with the more general argument for N = Z nuclei, the one-body operator ~D
(1)
PT cannot

bring the deuteron wavefunction back to a (mostly) 3S1 wave once the isoscalar TVPV potential takes
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it to 1P1. In order for ~D
(1)
PT to yield a non-zero contribution, the parity-admixed component of the

wavefunction has to be in the 3P1 state, to which only ḡ
(1)
π contributes. The corresponding nuclear

matrix element has been calculated several times in the literature. As summarized in Ref. [50], there
is agreement to better than 10% among modern NN potentials, and within 30% between them and a
simple delta-function potential. When OPE through the isotensor pion-nucleon coupling ḡ

(2)
π is included,

it gives small contributions [111], even when estimates about the small magnitude of ḡ
(2)
π are disregarded.

The expectation from HBχPT that two- and more-body currents give small contributions is corrob-
orated by a model calculation [111]. They can be neglected for all CPV sources except the θ-term. For
the latter, because the formally LO contribution vanishes, one has to go to NNLO. This brings in the
same dependence on ḡ

(1)
π as for other sources. Additionally, a dependence on ḡ

(0)
π emerges through the

subleading potential and two-body currents, together with two P-, T-even isospin-breaking parameters:
the quark-mass component of nucleon mass difference, (∆mN)q in Eq. (3.64), which can be estimated
from lattice QCD as we have done in Section 3.2. and the isospin-breaking pion-nucleon coupling
(β1/Fπ)(∂µπ3)N̄SµN , with β1 = O(εm2

π/M
2
QCD), for which only the bound β1 = (0± 9) · 10−3 [44, 113]

is known.
These results are summarized in the third row of Table 7.

4.1.2 Helion and triton

There have been fewer calculations of the trinucleon EDMs. A pioneering calculation [118] of the

helion EDM for the ḡ
(0)
π OPE (dominant for the θ-term) used an old phenomenological P-, T-even

potential solved in the adiabatic approximation of the hyperspherical-harmonics method, and found no
nuclear enhancement compared to the neutron EDM. The era of modern calculations began with Ref.
[119], when the nuclear wavefunction was calculated using high-quality P-, T-even potentials including
the Coulomb interaction. A solution is found with the no-core shell model (NCSM) method, which
employs a model space made from Nmax properly antisymmetrized harmonic-oscillator wavefunctions
of frequency Ω. At large enough Nmax, results for the helion EDM, which are somewhat larger than Ref.
[118] where they can be compared, become independent of Ω. Meson-exchange currents were neglected,
as suggested by their smallness in the deuteron. For mesonic couplings of equal magnitude, OPE is
found to be dominant over shorter-range interactions. Ref. [103] adapted this calculation to the TVPV
ingredients from HBχPT, and calculated the EDM of triton for the first time. The two short-range
interactions from C̄1,2, which can be thought of as originating from, respectively, omega and rho meson
exchanges considered in Ref. [119], were regulated with Yukawa functions. Ref. [120] used similar input
but solved Faddeev equations instead.

Calculations with various realistic potentials agree within ∼ 25% for the nucleon EDM contributions.
They give nuclear matrix elements of roughly equal magnitude for d̄0 and d̄1, so that, as one might have
expected, the helion (triton) EDM is mostly sensitive to the neutron (proton) EDM,

For the contribution from the TVPV potential, results for triton are very similar in magnitude to
those for helion. Both Refs. [119] and [120] find a spread of ∼ 25% between different potentials, but
they disagree by an overall factor of about two in isoscalar and isovector TVPV terms (and a factor
five in the subleading isotensor component). The reason for this discrepancy is unclear at present, and
it is a priority to resolve it. Additionally, in Ref. [103] the short-range contributions from the C̄i were
found to vary considerably with the explicit regulator mass from potential to potential (a factor ∼ 5 in
the cases studied). There is thus a much stronger potential dependence, and more solid numbers have
to wait for a fully consistent calculation.

These results are summarized in the fourth and fifth rows of Table 7, where for OPE we took values
in between those of Refs. [119, 103] and [120]. Note that there is yet no estimate of the effects of
a three-nucleon TVPV potential, which could be significant in the case of the left-right four-quark
operator [22].
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4.1.3 Light nuclear EDMs: summary

Using the results of Section 3, we can obtain the sensitivity of each EDM to the underlying CPV sources.
The orders of magnitudes expected for these EDMs are given in Table 8 for each source. Recall that the
Weinberg three-gluon operator (2.23) and the two four-quark operators (2.25) present already at the
electroweak scale are chiral invariant. As a consequence they produce the same hierarchy of hadronic
interactions and cannot be separated at low energies. For simplicity we use the shorthand notation
{CG̃, ImC

(1,8)
quqd} → ImCk in Table 8.

The texture of this table underlines the argument [101, 102, 103] that light nuclei act as a “chiral
filter” for the various CPV sources. Of course, a measurement of the neutron EDM alone could be
due to a θ-term of just the right magnitude, or to any of the dimension-six sources, although if all
dimensionless factors were equal, chiral-invariant sources or the “left-right” four-quark operator (2.28)
would be favored because they require no chirality flip. Nuclear effects are most significant for the θ-
term, CEDM and left-right four-quark operator. Just on the basis of orders of magnitude, we see that a
large tri-nucleon EDM compared to a nucleon EDM would point to them as possibly dominant sources,
while a large |dd| compared to |dN | would be suggestive of just the CEDM and left-right four-quark
operator. Bounds on light EDMs would provide tighter bounds on this physics than comparable bounds
on nucleon EDMs.

We can infer more information about CPV sources from Table 7 when we take into account that the
relative importance of various pion-nucleon and short-range interactions is not the same for all sources.
For CEDM and left-right four-quark operator, the expected dominance of nuclear effects comes from
pion exchange due to both ḡ

(0,1)
π couplings, while only ḡ

(0)
π is present at LO for the θ-term. The isoscalar

coupling ḡ
(0)
π approximately cancels in dh + dt, so while for the CEDM dh + dt ' 3dd, for the θ-term

dh + dt ' 0.8(dn + dp). Effects of the left-right four-quark operator can only be separated from CEDM
if its TVPV three-nucleon potential is significant. For the quark EDM, where nuclear effects are much
smaller, dh + dt ' 0.8(dn + dp) also holds but in addition one expects dh − dt ' 0.9(dn − dp). The
situation is most complicated for chiral-invariant sources, for which nuclear effects are significant for
both A = 2, 3, but they depend in the deuteron only on ḡ

(1)
π while in the tri-nucleon ḡ

(0)
π and C̄1,2

contribute as well. In this case dh+dt ' 3dd−2(dn+dp). By confronting these relations, measurements
of light nuclear EDMs, particularly if they include the triton, could shed light on the mechanism of
CPV [103].

4.2 Heavy nuclei, Shielding, and Schiff moments

Nuclear physics is important in determining the EDMs of neutral atoms. And the primary fact from
which all other considerations stem is expressed by the Schiff theorem[121], which states that in the limit
that in the limit of a point-like nucleus and non-relativistic electrons any nuclear EDM is completely
screened by the atomic electrons, so that the net atomic EDM is zero.

We give a brief illustration of this result, following Ref. xxx. Consider a system of structureless
components (a nucleus and electrons), the kth of which has dipole moment ~dk, interacting via the
Coulomb force V (r), so that

H =
∑
k

p2
k

2mk

+
∑
k

V (~rk)−
∑
k

~dk · ~Ek

= H0 + i
∑
k

(1/ek)
[
~dk · ~pk, H0

]
.
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The perturbing Hamiltonian (the last term above) shifts the unperturbed ground state |0〉 to

|0̃〉 = |0〉+
∑
m

|m〉 〈m|Hd |0〉
E0 − Em

= |0〉+
∑
m

|m〉 〈m| i∑k(1/ek)
~dk · ~pk |0〉 (E0 − Em)

E0 − Em

=

(
1 + i

∑
k

(1/ek)~dk · ~pk
)
|0〉 (4.161)

The induced dipole moment ~d′ is then

~d′ = 〈0̃|
∑
j

ej~rj |0̃〉

= i 〈0|
[∑

j

ej~rj,
∑
k

(1/ek)~dk · ~pk
]
|0〉 = −

∑
k

~dk

= −~d , (4.162)

so that the net dipole moment of the entire system vanishes. The assumptions underlying this result
are that the constituents are point-like, non-relativistic, and non-interacting except via the Coulomb
force. In real systems, none of these assumptions hold fully. As we shall see immediately below,
the finite nuclear size essentially leads to the replacement the nuclear dipole operator by the nuclear
“Schiff operator,” which contains two extra powers of the nucleon coordinate. Moments due to finite
nuclear size are thus generically smaller by O (R2

nucl./R
2
atom) than the unscreened nuclear EDM. In

diamagnetic atoms, the nuclear physics of which is discussed next, this suppression is mitigated by
relativistic electrons and can be further mitigated by nuclear octupole deformation. In paramagnetic
atoms, discussed in the next section, relativistic electrons can lead to a large enhancement of the atomic
EDM.

Further analysis leads to the result that the post-screening CP-violating nucleus-electron interaction
is

H = 4π~S · ~∇δ3(~r) + . . . , (4.163)

where the omitted terms come from higher multipoles, e.g. the nuclear magnetic quadrupole (M2) and
electric octupole (E3) multipoles. The operator S is the nuclear Schiff operator, defined as

~S = ~Sch + ~SN (4.164)

with

~Sch =
e

10

Z∑
p=1

(
r2
p −

5

3
〈r2〉ch

)
~rp (4.165)

~SN =
1

6

A∑
j=1

~rj (r2
j − 〈r2〉ch)

+
1

5

A∑
j=1

(
~rj(~rj · ~dj)−

r2
j

3
~dj

)
+ . . . . (4.166)

Here ~Sch is due to the charge distribution of the nucleus (usually the dominant piece), ~SN is due to
the EDM of the nucleon, e is the charge of the proton, 〈r2〉ch is the mean squared radius of the nuclear

charge distribution, and ~dj is the EDM of nucleon j. The sum in Eq. (4.166) is over all nucleons, while
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that in Eq. (4.165) is restricted to protons. Rotational symmetry lets us express the ground-state
matrix elements of the three vector Schiff operators in terms of a single quantity:

S ≡ 〈Ψ0|Sz |Ψ0〉 , (4.167)

where |Ψ0〉 is the member of the ground-state multiplet with Jz = J .
The charge-distribution part of the Schiff moment, Sch, can only be induced by an effective T− and

P -violating inter-nucleon interaction. Most studies have been dedicated to the OPE part of the TVPV
potential (4.158). The moment SN can have many sources, as we have seen, and can depend on other

quantities besides the ḡ
(i)
π .

Equation (4.165) is, as mentioned, only approximate. Corrections come from nuclear quadrupole
deformation (which introduces a term proportional to the nuclear quadrupole moment), from relativity
in electronic wave functions (which gives terms of order (Zα)2) [122, 123], and more subtle electron-
nucleus interactions [124], the complete forms of which are still not entirely settled. Equation (4.158)
is also only approximate, representing the leading-order part of the chiral effective potential. Contact
terms and higher-order pieces in effective field theory (which in heavy systems would be hard to control)
or heavier-meson exchange in older frameworks will modify VTV PV . At present, however, nuclear-
structure theorists have not incorporated any of these corrections save (occasionally) those of order
(Zα)2 into their calculations of Schiff moments.

Beyond-the-standard-model and hadronic physics, as we have seen, determine the ḡ
(i)
π and the nu-

cleon EDMs. The job of nuclear-structure theory, within the framework just defined, is to determine
the dependence of the Schiff moment on these quantities. (Atomic physics in turn determines the de-

pendence of the atomic EDM on the Schiff moment.) Here we examine only the dependence on the ḡ
(i)
π

and d(i); the dependence on the nucleon EDMs can be computed as well, but is weaker. Only a few of
the calculations cited below (e.g., Ref. [125]) considers this weak dependence. We can parameterize the

dependence on the ḡ
(i)
π as follows:

S =
2mNgA
Fπ

(
a0 ḡ

(0)
π + a1 gḡ

(1)
π + a2 ḡ

(2)
π

)
. (4.168)

All nuclear structure information is thus encoded in the coefficients ai, which have units e fm3.
In what follows we discuss attempts to calculate the ai in several important nuclei. Most take

advantage of the weakness of VTV PV compared to nuclear energies and approximate S in Eq. (4.167,
essentially perfectly, by

S =
∑
i 6=0

〈Φ0|Sz |Φi〉 〈Φi|VTV PV |Φ0〉
E0 − Ei

+ c.c. , (4.169)

where |Φ0〉 is the “unperturbed” ground state — that obtained with VTV PV turned off — and the |Φi〉
are the corresponding excited nuclear states.

4.2.1 199Hg

The atom associated with this nucleus has for years had the best limit on its EDM, and so 199Hg has
received more attention by nuclear-structure theorists than any other nucleus (though still not nearly
enough, as we argue below). Calculations range from the extremely schematic to the very sophisticated.
The table below quotes the results of four, with brief (and inadequate) phrases signifying the techniques
they employ. (A more extensive table, reporting several of the different estimates in, e.g., Ref. [125]
as well as earlier versions of the 225Ra numbers presented in a later table can be found in Ref. [126].)
The first nontrivial calculation was that of Ref. [127]; it approximated the unperturbed states in Eq.
(4.169) by the eigenstates of a simple one-body potential and then treated VTV PV approximately as
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a zero-range interaction between the valence nucleon and the 198 Hg core in first-order perturbation
theory theory. Ref. [41] improved this treatment considerably by using the full finite-range VTV PV
and adding to the perturbative treatment the collective excitation of the core in the random phase
approximation (RPA) by a simplified version of the residual strong nucleon-nucleon interaction. The
resulting “core polarization” decreased the sensitivity of S to VTV PV , as the table shows. Ref. [39] also
used RPA to treat core polarization but in a diagrammatic version of self-consistent Skyrme mean-field
theory (also known nowadays as energy-density-functional theory). The calculation, which contained
of a self-consistent mean-field calculation in 198Hg before the treatment of core polarization, employed
several state-of-the-art Skyrme energy-density functionals, giving rise to the range of numbers in the
table. Finally, Ref. [125] carried out the self-consistent mean-field theory (again with a number of
Skyrme functionals) directly in the odd nucleus 199Hg, implicitly including the effects of RPA core
polarization by the valence nucleon. It also allowed for axially-symmetric nuclear deformation and
included O ((Zα)2) corrections to the Schiff moment. Its result for the coefficient a1 is noticeably
different from those of the other calculations, a fact that is hard to understand because the methods
appear to include much of the same physics, albeit in quite different ways.

Which of the calculations is most reliable and what is the uncertainty in our knowledge of the
coefficients ai? Even if all the calculations included the same kinds of corrections to the näıve Schiff
operator in Eq. (4.165), these questions would be hard to answer. The calculations agree, more or
less, on the size of a0 and a2, but do not even agree on the sign of a1. Some possible reasons for the
discrepancy between Refs. [39] and [125], which, as mentioned, seem to include essentially the same
many-body effects:

(a) One of the calculations is in error. Ref. [125] carried out several internal consistency tests, but
did not agree with Ph.D. thesis leading to Ref. [39] when repeating one of the calculations there.
The authors suggest as a result that [39] may contain an error. On the other hand, the results of
[39] agree fairly well with those of the similar RPA calculations in Ref. [41], suggesting that it is
Ref. [125], if any, that has problems.

(b) Some of the mean-field solutions in Ref. [125] are metastable, though they are supposed to rep-
resent stable ground states. But even those that are completely stable use the same Skyrme
functional as [39], and — like the solutions in that reference — correspond to spherical shapes,
disagree with [39].

(c) The treatment of core polarization in the two kinds of calculations are equivalent only up to
terms linear in the strong interaction between the valence nucleon and the core, and only if that
interaction is not density dependent. (It is in fact density dependent in Skyrme functionals.) But
it is hard to imagine higher-order effects or the density dependence being very important. There
are a few diagrams in Ref. [39] that have no counterpart in the odd-nucleus mean-field calculation
of [125], but their contributions are apparently small.

(d) The state of the valence nucleon is represented only approximately in [39]. Again, though, the
approximation should be reasonably good.

In short, it is difficult to see how the calculations could disagree so seriously. The authors need to revisit
their work.

It may, however, that all the calculations just reviewed are missing something important, and that
the spread in results reflects their inadequacy. 199Hg is a soft nucleus in which a single mean field, the
dominance of which underlies all of the results obtained thus far, is probably insufficient. It is, perhaps,
unfortunate that 199Hg is such a difficult nucleus, but a better job is not beyond the means of nuclear
structure theorists; techniques to mix mean fields with different properties exist. We contrast the state
of affairs here here with that in another important and complex nuclear-structure problem: calculating
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the matrix elements that govern neutrinoless double beta decay in complicated nuclei such as 76Ge.
Theorists believe that they know those matrix elements to within a factor of two or three, mainly by
dint of the number of varied and careful calculations that have been carried out. The main theoretical
problem with the Schiff moment in 199Hg is not the challenging nature of the calculation, but rather
that only a few groups have tried.

129Xe presents many of the same problems as 199Hg. Fortunately other nuclei, including the one we
discuss next, are better behaved.

4.2.2 225Ra

This nucleus became the focus of experimental interest after it was shown [128, 129, 130] that the
Schiff moments in nuclei with asymmetric shapes could be enhanced by two to three orders of magni-
tude. 225Ra is octupole deformed, has favorable atomic physics, and has nuclear spin 1/2, making the
nuclear orientation insensitive to stray quadrupole fields. It is thus presents a terrific opportunity to
experimentalists.

Shape asymmetry implies parity doubling (see e.g. Ref. [131]), i.e. the existence in 225Ra of a very
low-energy |1/2−〉 state (55 keV [132] above the |Φ0〉 ≡ |1/2+〉 ground state, according to measurements).
That low-lying excited state dominates the sum in Eq. (4.169) because of the small energy denominator
it introduces. In the (good) approximation that the shape deformation is rigid, the ground state and
its negative-parity partner in are projections onto good parity and angular momentum of the same
parity-mixed and deformed “intrinsic state,” which represents the wave function of the nucleus in its
own body-fixed frame. Equation (4.169) reduces in these circumstances to [129]

S ≈ −2

3
〈Ŝz〉

〈V̂TV PV 〉
(55 keV)

, (4.170)

where the brackets indicate expectation values in the intrinsic state.
The results of a couple of Schiff-moment calculations appear in Tab. 10. Ref [129], much like Ref.

[127] in 199Hg, obtained the intrinsic state by filling single-particle levels in a phenomenological octupole-
deformed potential and using a zero-range approximation to VTV PV , but using Eq. (4.170) instead of
summing over many unperturbed states as in Eq. (4.169). Ref. [40], like Ref. [125] in 199Hg, treated
the (octupole-deformed) potential in completely self-consistent Skyrme mean-field theory with several
Skyrme functionals, leading to a range of values for the ai. It also included (and perhaps exaggerated)
the damping effects of short-range nucleon-nucleon repulsion. Even so, the octupole deformation makes
the resulting coefficients much larger than in Hg.

As we have already mentioned, these calculations in Ra are almost certainly more reliable than
those in Hg. The low 1/2− energy implies that the octupole deformation is strong and rigid, so that
a single mean-field shape accurately represents the intrinsic density. There is thus little need to go
far beyond mean-field theory here. Furthermore, experiments promise to increase the calculations’
reliability. Theoretical work in progress [133] shows that intrinsic Schiff moments are strongly correlated
with E3 transitions, which have been measured in 224Ra [134] at ISOLDE and may be measured in 225Ra
itself. The resulting data will tightly constrain the factor 〈Ŝz〉 in Eq. (4.170), leaving 〈V̂TV PV 〉 as the
only real unknown. Although a reliable calculation of that quantity is not trivial, it is far easier than
calculating the transition matrix elements of both V̂TV PV and Ŝz to all the excited states of 199Hg.

4.2.3 Other Nuclei

Theorists have calculated the Schiff moments of other nuclei as well, though not with as much care as
they have in the nuclei already discussed. 129Xe has and will be the subject of experiments, and so has
received some attention; like 199Hg, however, it is unfortunately soft. Researchers have also examined
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actinides other than 225Ra, including some which have no static octupole deformation; the idea there is
that dynamic deformation, i.e. octupole vibrations, may enhance the Schiff moments [135]. They have
also considered the spherical nucleus 211Rn, which is to be examined experimentally as the first step in
a project to work with heavier octupole-deformed Rn isotopes. Table 11 lists some of these results. We
have omitted nuclei that show little prospect of being studied experimentally.

4.2.4 Ranges and Best Values for Schiff Moment

Table 12 lists best values and ranges for three important nuclei. We determined these in a somewhat
subjective manner, assessing the strengths and weaknesses of each calculation. The entries should be
considered tentative, and we cannot assign a quantitative meaning to our ranges; we simply consider
it likely that the true values lie in them. For the case of a1 in 198Hg, as already discussed, our range
includes zero.

5 CP and T at the Atomic and Molecular Scale

As with the physics at the hadronic and nuclear scales, it is convenient to express the atomic and
molecular EDMs in terms of the operators that characterize physics at shorter distance scales. To
that end, we first write down an expression for a general atomic or molecular EDM dA in terms of the
electron and nucleon EDMs, the nuclear Schiff moment, and the Wilson coefficients for the dimension
six T- and P-odd electron-quark interactions. We subsequently express the electron EDM in terms of
either the Wilson coefficient Ceγ or the quantity δe. Doing so allows us to express dA in such a way
as to place all of the fundamental dimension six operators on the same footing, and in the case of the
electron EDM, take into account the additional Yukawa suppression that accompanies this operator.
Thus, we have

dA = ρeA de +
∑
N=p,n

ρNZ dN + κS S +
( v

Λ

)2
{[

k
(0)
S g

(0)
S + k

(1)
P g

(1)
P

]
ImC(−)

eq (5.171)

+
[
k

(1)
S g

(1)
S + k

(0)
P g

(0)
P

]
ImC(+)

eq +
[
k

(0)
T g

(0)
T + k

(1)
T g

(1)
T

]
ImC

(3)
`equ

}
, (5.172)

where we may alternately express the electron EDM contribution as

ρeA de = e ζeA

( v
Λ

)2

δe = βeγA

( v
Λ

)2

ImCeγ . (5.173)

Note that the dN and Schiff moment S may then be expressed in terms of θ̄ and the dimension six quark
and gluon operator coefficients using Eqs. (3.42-3.46) and (4.168), allowing one to explicitly identify
a common factor of (v/Λ)2 for all dimension six operators and, thereby, to place them on a similar
footing.

To illustrate the relative sensitivities of various atomic and molecular EDMs to the quantities appear-
ing in Eqs. (5.171-5.173) we consider one paramagnetic atom (205Tl), one diamagnetic atom (199Hg),
and one molecule (YbF) for which the most stringent experimental limits have, thus far, been obtained.
A summary for other cases is given in Table. As a prelude, we first summarize a few features of the
atomic and molecular computations, referring the reader to the extensive reviews in Refs. [11, 13] and
the recent study in Ref. [136] for details.

The sensitivity of an atom of molecule to the electron EDM is governed by corrections to the Schiff
screening as describe above . In contrast to the corrections due to finite nuclear size or higher T- and
P-odd nuclear moments, the relevant corrections are relativistic and entail both a first and a second
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order energy shift proportional to de: ∆E
(ẽ)
(j) for j = 1, 2. For our purposes, the explicit expressions are

not particularly enlightening, and we again refer to Refs. [13, 124] for details. The correction ∆E
(ẽ)
(1)

can be expressed alternately in terms of an electronic operator proportional to γ5 or γ0 − 1, indicating
the dependence on lower components of the electronic wavefunction that vanish in the non-relativistic
limit. The second order term ∆E

(ẽ)
(2) entails polarization of the atomic cloud by the presence of de (again

vanishing in the non-relativistic limit) that is then probed by the external field. For heavy paramagnetic
atoms, the polarization correction dominates, growing as Z3.

The four-fermion, semileptonic interactions in Eq. (3.40) lead to an effective atomic Hamiltonian
that takes on the following form in the limit of an infinitely heavy nucleus:

Ĥatom
TVPV = ĤS + ĤP + ĤT (5.174)

where

ĤS =
iGF√

2
δ(~r)

[
(Z +N)C

(0)
S + (Z −N)C

(1)
S

]
γ0γ5 (5.175)

ĤT =
2iGF√

2
δ(~r)

∑
N

[
C

(0)
T + C

(1)
T τ3

]
· ~σN · ~γ (5.176)

ĤP =
iGF

4
√

2mN

[
~∇, δ(~r)

]∑
N

[
C

(0)
P + C

(1)
P τ3

]
~σN γ0 (5.177)

and where the Dirac matrices, δ(~r) and ~∇ act on the electronic wavefunctions.
Note that in arriving at the expression for ĤS we have performed the sum over all nucleons, using

the fact that in the non-relativistic limit the operator N̄N just counts the number of nucleons. For
ĤT,P , in contrast, the nuclear matrix elements of the spin operators is more complicated. The results
quoted below for heavy nuclei, which have N > Z, were obtained assuming a single unpaired neutron
contributes and using a single particle shell model result for the nuclear matrix element of ~σn. Thus,
the values for the k

(j)
T,P quoted below correspond only to the neutron contribution (or the difference

k
(0)
T,P − k

(1)
T,P ). For all paramagnetic atoms, all three interactions ĤS,P,T contribute. For diamagnetic

atoms wherein all electrons are paired, ĤS cannot induce an EDM except in tandem with the hyperfine
interaction.

5.1 Paramagnetic atoms: Thallium

According to the computations of Refs. [11, 13] (see also Ref. [136] for a recent summary), the EDM
of 205Tl has by far the strongest dependence on the electron EDM and the ēiγ5eN̄N interaction of all
paramagnetic atoms studied experimentally to date. Compared to the latter, the dependence on tensor
and nucleon pseudoscalar operators are suppressed by three and five orders of magnitude, respectively.
Numerically, one has[137]

ρeA = −573± 20 , βeγA = 0.65± 0.02 e fm , eζeA = (1.9± 0.07)× 10−6 e fm , (5.178)

while
k

(0)
S = −(7± 0.3)× 10−5 e fm and k

(1)
S = 0.2k

(0)
S , (5.179)

and [13]

k
(0)
P = −k(1)

P = 1.5× 10−10 e fm and k
(0)
T = −k(1)

T = 0.5× 10−7 e fm . (5.180)

The numerical dominance of k
(0)
S implies that dA(205Tl) has the greatest sensitivity to ImC

(−)
eq , a some-

what reduced sensitivity to ImC
(+)
eq and relatively little sensitivity to ImC

(3)
`equ.
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It is interesting to compare the relative sensitivity of dA(205Tl) to δe and ImC
(−)
eq :

k
(0)
S

eζeA
≈ −37 . (5.181)

To the extent that these two quantities have the same order of magnitude, the four-fermion semileptonic
operator would yield a far larger contribution to the thallium EDM than would the electron EDM.

The corresponding sensitivities for 133Cs[138, 139, 140], 85Rb [139], and 210Fr[141, 142, 143, 136] are
also listed in Table 13. We have largely followed Ref. [136] in averaging the results for Cesium and in
assigning error bars to the results for Francium, for which only the analytic expressions in Ref. [142]

have been used to obtain k
(0)
S .

5.2 Mercury

The diamagnetic nature of 199Hg makes it far more sensitive to T- and P-odd interactions at the purely
hadronic level than those involving electrons as compared to the paramagnetic thallium atom. From
Ref. Refs. [11, 13] we first obtain the sensitivity to the nuclear Schiff moment:

κS = 2.8× 10−4 fm−2 (5.182)

where the scale for the Schiff moment is e-fm3. While it is possible to include the nucleon EDM contri-
butions in the nuclear Schiff moment, we find it helpful to separate these contributions out explicitly
as in Eq. (5.171). From Ref. [11, 13] we obtain

ρpA = −5.6× 10−5 ρnA = −5.32× 10−4 , (5.183)

while the sensitivity to the electron EDM is given by

ρeA = 0.01 , βeγA = −1.13× 10−5 e fm , eζeA = −3.3× 10−11 e fm , (5.184)

essentially five orders of magnitude less sensitive that 205Tl. The sensitivity to the four-fermion semilep-
tonic interactions N̄Nēiγ5e are similarly suppressed with respect to thallium:

k
(0)
S [199Hg] ≈ 1.16× 10−4 × k

(0)
S [205Tl] , (5.185)

while the sensitivity to the tensor and nucleon pseudoscalar interactions are somewhat enhanced:

k
(j)
P [199Hg] ≈ 4× k

(j)
P [205Tl] , j = 0, 1 (5.186)

k
(j)
T [199Hg] ≈ 4× k

(j)
T [205Tl] , j = 0, 1 . (5.187)

The relatively weak dependence of dA(199Hg) on the scalar interactions reflects the suppression due to
the presence of the atomic hyperfine interaction that must be present to yield a non-vanishing result.
Consequently, dA(199Hg) provides a relatively more effective probe of ImC

(3)
`equ than does dA(205Tl). In a

scenario where the only T- and P-odd effects arise via semileptonic interactions, a comparison of results
from mercury and thallium could allow one to disentangle between various sources.

Before proceeding with the molecular EDMs, we observe that if a given BSM scenario generated
only the dimension six quark EDM operators and not the four-quark, CEDM, or three gluon operators,
then the corresponding effect on dA(199Hg) would be dominated by the induced neutron and proton
EDMs. In this case, the present limit on dA(199Hg) could be interpreted as a limit on dn at the 10−12

e fm level, roughly one order of magnitude weaker than the present direct neutron EDM limit. On the
other hand, using the latter, one could then infer a bound of roughly 10−10 − 10−11e fm on dp.
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Figure 4: Dependence of η(Eext) for YbF [145]. Vertical axis gives Eeff as a function of the
applied field Eext. Scaling Eeff by twice its asymptotic value gives η(Eext) . Figure reprinted
with permission from Phys. Rev. Lett. 89 023003 (2002).

5.3 Ytterbium Fluoride

In order to assess the sensitivity of the polar molecules to the underlying CPV operators, we first
convert to the conventions used in the theoretical literature. Following Ref. [144] we write the molecular
Hamiltonian as

Hmol
TV PV =

(
Wdde +WSC̄S

)
~S · n̂ (5.188)

where ~S is the electronic spin, n̂ is a unit vector along the axis of the YbF molecule, and C̄S =
(Z+N)C

(0)
S + (Z−N)C

(1)
S . We do not at present include the dependence on the pseudoscalar or tensor

interactions as, to our knowledge, the corresponding evaluations of molecular sensitivities have not been
performed.

Contrary to what one might näıvely expect, the interaction in Eq. (5.188) contains no dependence

on the external electric field, ~Eext. The experimental observable – a frequency shift – depends on the
ground state (g.s.) expectation value in the presence of the external field:

〈g.s.|Hmol
TV PV |g.s.〉Eext

=
(
Wdde +WSC̄S

)
η(Eext) , (5.189)

where
η(Eext) = 〈g.s.| ~S · n̂ |g.s.〉Eext

(5.190)

is an effective polarization that increases monotonically with Eext = | ~Eext| and has a maximum value
of 1/2. From the first term in Eq. (5.188), then, one may interpret η(Eext)Wd as the effective internal
electric field Eeff acting on an unpaired electron that is induced by a non-vanishing Eext. For YbF,
η(Eext) has been reported in Ref. [145] and is shown in Fig. 4 . The vertical axis gives Eeff as a function
of Eext. The value of η(Eext) may be obtained by scaling Eeff by twice its maximum, asymptotic value12.

For purposes of this review, it is useful to express Hmol
TV PV in terms of δe and the ImC

(±)
eq :

Hmol
TV PV =

( v
Λ

)2 [
eζeAδe + g

(0)
S k

(0)
S ImC(−)

eq + g
(1)
S k

(1)
S ImC(+)

eq

]
~S · n̂ , (5.191)

where the quantities ζeA and k
(0,1)
S are determined by molecular structure. The results for Wd and WS

are typically quoted in units of Hz/(e cm) and cm, respectively . For the sensitivity to the electron
EDM, the latest results in the compilation of Ref. [136] yields

Wd = −(1.1± 0.1)× 1012 Hz/(e fm) , βqγA = (1.2± 0.1)× 109 Hz , eζeA = 3.6± 0.3 kHz (5.192)

12We thank T. Chupp for a helpful discussion of this point.
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where we identify ρeA ≡ Wd. For the scalar interactions one has

k
(0)
S = 5k

(1)
S = −(92± 9) kHz , (5.193)

where we have adopted the ten percent theoretical error suggested in Ref. [136]. To compare with

the thallium atom, one has k
(0)
S /eζeA ≈ −26, indicating a somewhat stronger relative sensitivity to

the electron EDM. However, the sensitivities are sufficiently similar that a combination of the present
experimental limits in the two systems does not allow for a significant individual limits on δe and
ImC

(−)
eq .

Looking to the future, an effort to probe the EDM of ThO is underway. A value for Wd has been
computed in Ref. [146]. The corresponding value for WS has been inferred from the ratio of Wd/WS

computed analytically in Ref. [142]. A conversion to eζeA and k
(0)
S appears in Tables 13 and 23. In both

cases, we have arbitrarily assigned a ten percent theoretical uncertainty. We note that the ratio k
(0)
S /eζeA

for ThO lies approximately midway between that of Th and YbF.

6 Beyond the Standard Model: Examples

The space of BSM scenarios that contain additional sources of CPV is vast, and it is not feasible
to provide an exhaustive review here. Instead, we will focus on several representative examples to
illustrate the interplay of scales: supersymmetry, models with extended gauge symmetry, and scenarios
with extra spacetime dimensions. Before doing so, we first make a few general remarks. Perhaps most
importantly, any new source of CPV will generally induce a contribution to the QCD vacuum angle,
which we denote as θ̄BSM. In the minimal supersymmetric Standard Model (MSSM) for example, such
contributions arise at one-loop order via corrections to the quark propagators. Given the already severe
bounds on θ̄, such contributions to θ̄BSM by themselves imply stringent limits on the CPV phases in the
absence of a mechanism to alleviate them. Possibilities include invoking a new symmetry, such as the
PQ symmetry or a flavor symmetry that yields a vanishing one-loop result.

Second, non-observation of atomic, molecular, and neutron EDMs generically imply that any new
CPV phases φCPV must be quite small if the BSM mass scale Λ is sub-TeV. Conversely, allowing
sinφCPV ∼ 1 implies that Λ >∼ few TeV. To illustrate, dimensional analysis gives for the elementary
fermion EDM

df ∼ e
(mf

Λ2

) αk
4π

sinφCPV (6.194)

where αk is either the fine structure constant or strong coupling (evaluated at the scale Λ). For αk = αem

Eq.(6.194) gives

df ∼ sinφCPV

( mf

MeV

) (1 TeV

M

)2

× 10−13 e fm . (6.195)

The present limit on the EDM of the electron, |de| < 10.5×10−15 e fm [147] obtained from an experiment
on the Yb-F molecule, then implies that

| sinφCPV| . (Λ/2 TeV)2 . (6.196)

Thus, for | sinφCPV| ∼ 1 one requires Λ >∼ 2 TeV. In order to allow for sub-TeV scale masses and O(1)
CPV phases while respecting present constraints, one must either invoke cancellations between different
contributions [24] or a mechanism that suppresses the one-loop EDMs. In the case of the MSSM,
for example, taking the sfermions to have mutli-TeV masses can result in the leading contributions
arising at two-loop order and involving the electroweak gaugino-Higgs/Higgsino sector with sub-TeV
masses[148, 149]. Given the suppression of an additional loop factor, the resulting dependence on the
CPV phases is weakened and the present constraints are generally less severe. Alternate strategies can
be employed in other scenarios.
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6.1 Supersymmetry

Supersymmetry (SUSY) remains one of the most strongly motivated BSM scenarios, providing an
elegant solution to the hierarchy problem, candidates for cold dark matter (the lightest neutralino or
gravitino), and copious sources of CPV that may drive the generation of the baryon asymmetry during
the EWSB era. At the same time, SUSY CPV generically leads to one-loop EDMs that exceed present
experimental bounds, assuming that superpartner masses lie below one TeV [see Eq. (6.196)], leading to
the so-called “SUSY CP problem”. The SUSY mechanism for solving the hierarchy problem leads one
to expect sub-TeV scale superpartner masses, implying | sinφCPV| <∼ 0.01− 0.1. On the other hand, one
might naturally expect sinφCPV ∼ O(1). Moreover, successful supersymmetric electroweak baryogenesis
typically requires O(1) phases unless the relevant portion of the superpartner spectrum is finely-tuned
to contain near degeneracies.

Several solutions to the SUSY CP problem have been proposed:

(i) Heavy sfermions. It is possible, for example, that the fermion superpartners (sfermions) are
considerably heavier than one TeV, leading to a suppression of one-loop EDMs and allowing for
O(1) phases[150, 148, 149]. Null results for superpartner searches at the LHC may be pointing to
this “split SUSY” scenario, as the generic mass bounds on gluinos and first and second generation
squarks are now at the TeV scale13. The electroweak gauge boson and Higgs boson superpartners
may still be relatively light, thereby allowing for a viable baryogenesis mechanism (see Ref. [1]
and references therein).

(ii) CP-conserving SUSY breaking. It is equally possible that the mechanism of SUSY-breaking that is
responsible for both the splitting of SM masses fro those of their superpartners (the “soft terms”)
and the CPV phases suppresses the latter. This possibility has been emphasized in the work
of[151] that considered an M-theory scenario on the G2 manifold in which the only source of CPV
at the SUSY-breaking scale is the CKM phase. The resulting effects on low-scale parameters then
enters through the RG evolution.

(iii) Cancellations. It was proposed some time ago[24] that contributions to EDMs from different CPV
phases or those from different dimension-six CPV operators may cancel leading to a suppression
that again allows for O(1) phases and light superpartners.

An extensive discussion of (i) and (iii) are given in the reviews of Refs. [14, 26] and the more recent
analysis of EDMs in SUSY given in Ref. [88]. Given the comprehensive nature of these articles, we do
not attempt to provide an exhaustive review of EDMs in SUSY here. Instead, we summarize several
generic features as well as developments that have appeared since publication of these studies. For
this purpose, we focus on the minimal supersymmetric Standard Model (MSSM) for which one has the
superpotential from which one derives the supersymmetric Lagrangian,

WMSSM = ˆ̄uyuQ̂Ĥu − ˆ̄dydQ̂Ĥd − ˆ̄eyeL̂Ĥd + µĤu · Ĥd. (6.197)

Here, the hatted quantities ˆ̄f and F̂ are the SU(2)L-singlet and doublet chiral superfields for fermion
F while Ĥu,d are the two Higgs doublet superfields. The yf are 3× 3 Yukawa matrices. For purposes of
this discussion, we omit possible R-parity violating terms in the superpotential, which is tantamount to
promoting the accidental global B −L conservation of the SM to a symmetry of the MSSM. Note that
superpotential introduces only one new parameter beyond that of the SM, namely, the coefficient of
the last term in Eq. )(6.197). In addition, EWSB allows the two neutral Higgs scalars to have vacuum
expectation values, whose ratio defines the angle β: tan β = vu/vd.

13It is still possible, however, that these strongly interacting superpartners are lighter than one TeV but have a
compressed spectrum leading to presently undetectable experimental signatures.

49



The soft SUSY-breaking Lagrangian responsible for splitting the SM and superpartner masses is

Lsoft = −1

2
(M3g̃g̃ +M2W̃W̃ +M1B̃B̃) + c.c.

−(˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeL̃Hd) + c.c.

−Q̃†m2
QQ̃− L̃†m2

LL̃− ˜̄um2
ū

˜̄u† − ˜̄dm2
d̄

˜̄d† − ˜̄em2
ē
˜̄e† −m2

HuH
∗
uHu −m2

Hd
H∗dHd

−(bHuHd + c.c.) (6.198)

Here, the first line gives the gaugino mass Mi, i = 1, 2, 3 for the U(1)Y , SU(2)L and SU(3)C gauginos,
respectively. The second line gives the trilinear “A-term” that couples Higgs scalars with left- and
right- squarks and sleptons. The third line gives the scalar mass m2

q̃L,R
, m2

l̃L,R
, and m2

Hu,d
for squarks,

sleptons and Higgs scalars, respectively. As with the Yukawa matrices, the boldfaced quantities indicate
matrices in flavor space. Finally, the last line is the bilinear b-term, which couples up- and down-type
Higgs scalar doublets. It is also important to emphasize that in nearly all SUSY analyses, one takes
the af to be proportional to the corresponding Yukawa couplings, thereby naturally suppressing flavor
changing neutral currents:

af = Afyf (6.199)

where Af becomes the effective trilinear soft parameter for each fermion species.
The various interactions in Lsoft introduce copious sources of both flavor violation and CPV. Here,

we focus on the latter. After performing an appropriate set of field redefinitions, Lsoft – together
with the µ-term in the superpotential – includes 40 CP-violating phases beyond those of the SM (for
a useful discussion, see, e.g., Ref. [152]). Unlike the CPV phase in the CKM matrix, the effects of
these new phases are not suppressed by the Jarlskog invariant[153] and light quark Yukawa couplings.
Consequently, the CPV effects need not be suppressed as in the SM, leading to the SUSY CP problem.
The new phases can be classified in terms of those that solely enter the gauge-Higgs sector:

φi ≡ Arg (µMib
∗) φij ≡ Arg

(
MiM

∗
j

)
(6.200)

where i, j run over the three gauge groups of the MSSM (leading to a total of three independent phases
in this sector which we take to be the φi ), and those involving the sfermions:

φf ≡ Arg (AfM
∗
i ) φff ′ ≡ Arg

(
AfA

∗
f ′

)
. (6.201)

Given the large number of phases, one often invokes a phase universality assumption:

φ1 = φ2 = φ3 ≡ φµ (6.202)

φf = φf ′ ≡ φA . (6.203)

As we discuss below, this assumption is unlikely to allow for consistency between supersymmetric
electroweak baryogenesis and EDM constraints.

The CPV interactions in the MSSM give rise to three of the dimension six operators of interest in
this article: the EDM and CEDM operators arise at the one-loop level, while the three-gluon operator
first enters at two-loop order. The four-fermion operators are technically dimension eight, but can be
enhanced for large tan β. Illustrative contributions to the one loop EDM and CEDM arise from the
diagrams in Fig. 5.

Although not shown explicitly, the insertion of the Higgs fields as needed for electroweak gauge
invariance enters in one of two ways: (a) the mixing of left- and right-handed sfermions and (b) mixing
of electroweak gauginos and Higgsinos. The former is characterized by the sfermion mass-squared
matrix:

M2
f =

(
M2

LL M2
LR

M2
LR M2

RR

)
(6.204)

50



γ, (g)

fL fR

χ, (g̃)

f̃ ′

fL fR

fR

γ, (g)Hi

f̃ ′

γ, (g)

Figure 5: Illustrative one-loop (left) and two-loop (right) contributions to the fermion EDM
and quark CEDM in the MSSM .

with

M2
LL = m2

Q + m2
q + ∆f (6.205)

M2
RR = m2

f̄ + m2
q + ∆̄f (6.206)

with

∆f =
(
If3 −Qf sin2 θW

)
cos 2βM2

Z (6.207)

∆̄f = Qf sin2 θW cos 2βM2
Z (6.208)

and

M2
LR = M2

RL =

{
v [af sin β − µyf cos β] , ũ− type sfermion

v [af cos β − µyf sin β] , d̃− type sfermion
. (6.209)

Here m2
q is the mass matrix for the corresponding fermion; If3 and Qf are the third component of isospin

and fermion charge, respectively; and v =
√
v2
u + v2

d. The explicit factor of v in the M2
LR = M2

RL

corresponds to the Higgs insertion above the scale of EWSB and leads to mixing between superpartners
of the left- and right-handed fermions after EWSB. As a result the incoming and outgoing fermions in
Fig. 5 can have opposite handedness as needed for the EDM and CEDM operators. Note that with
the assumption of Eq. (6.199) the left-right mixing is proportional to the fermion Yukawa coupling,
implying that the contributions to the EDM and CEDM are as well.
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A similar Higgs insertion is implicit in the mixing of the Higgsinos and electroweak gauginos. To
illustrate we give the chargino mass matrix for the charged fields ψ± = (W̃+, H̃+

u , W̃
−, H̃−d ):

MC̃ =

(
0 XT

X 0

)
; X =

(
M2

√
2sβMW√

2cβMW µ

)
. (6.210)

whose mass eigenstates are the charginos χ±i , i = 1, 2. Note that since MW = gv/2, the off-diagonal
terms responsible for gaugino-Higgsino mixing contain an implicit Higgs insertion. Thus, an incoming
left-handed fermion in Fig 5 that interacts with the charged SU(2)L gaugino (the “wino”) component of
the χ±i can lead to an outgoing right-handed fermion that interacts with the Higgsino component due
to this mixing. Since the latter interaction is given by the Yukawa interaction in the superpotential, the
corresponding effect on the EDM and CEDM is again proportional to the fermion Yukawa coupling.

A comprehensive set of expressions for the one-loop contributions to the fermion EDMs and quark
CEDMs are given in Ref. [88], so we do not reproduce them here. Instead, we give an illustrative set of
expressions for δf and δ̃q under the universality assumption of Eq. (6.202):

δe =
Qe

32π2

[
g2

1

12
sinφA −

(
5g2

2

24
+
g2

1

24

)
sinφµ tan β

]
(6.211)

δq = − Qq

32π2

[
2g2

3

9

(
sinφµ[tan β]±1 − sinφA

)
+O(g2

2, g
2
1)

]
(6.212)

δ̃q = − 1

32π2

[
5g3

3

18

(
sinφµ[tan β]±1 − sinφA

)
+O(g2

2, g
2
1)

]
(6.213)

where Qf is the fermion charge, where for simplicity we take SUSY mass parameters to be identical
(Λ = |Mj| = |µ| = |Af |), and where the upper (lower) sign corresponds to negatively (positively)
charged quarks.

The expressions in Eqs. (6.211) contain a linear combination of the two universal phases, allowing
for the possibility of some cancellation between various contributions. However, as noted in Ref. [14],
it is unlikely that such a cancellation could allow one to evade all EDM limits since the coefficients of
sinφµ and sinφA differ for the various species of fermions as well as between the EDM and CEDMs.
Nonetheless, it is in principle possible to obtain a consistent fit to present EDM limits withO(1) sinφCPV

if one relaxes the universality assumption, a feature we discuss below.
Going beyond one-loop order, one encounters the first contributions to the three-gluon operator

as indicated in Fig. 6 as well as the two-loop Barr-Zee graph contributions to the EDM and CEDM
operators as indicated by the diagrams in Fig. 5(right). In the limit of heavy sfermions, the Barr-Zee
graphs containing electroweak gauginos in the upper loop will give the dominant contribution. Explicit
expressions for the contributions generated by the graphs of Fig. 6 are given in Ref. [88], along with
those for a subset of the Barr-Zee graphs that contain exchanges of only the lightest CP-even Higgs
scalar. In Ref. [149], the remaining set of graphs containing electroweak gauginos and exchanges of the
charged and CP-odd Higgs as well as other gauge bosons were computed and found in some cases to
give the dominant contributions to the fermion EDMs in the heavy-fermion regime. We note that in
this regime, even the two-loop CEDM operators are suppressed, since the upper loops in Fig. 5(right)
contain only squarks.

Based on that work, the authors subsequently performed a global analysis of EDM constraints on
CPV phases in the MSSM[154], up-dating the SuperCPH2.0 code described in Ref. [88] to include the
full set of two-loop graphs. Illustrative results (obtained before publication of the YbF molecular EDM
result) are indicated in Fig. 7 and Table 14, based on the use of QCD SR to compute the hadronic
matrix elements. In this context, the impact of the three-gluon operators is typically suppressed, as is
the effect of the four-fermion operators in the low-to-moderate tan β regime. The results in Table 14
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Figure 6: Illustrative MSSM contributions to the CPV three-gluon operator QG̃ .

were obtained assuming three independent phases contribute: φ1, φ3, and a common triscalar phase for
the first generation squarks: φu = φd. The impacts of φe and φ1 are sufficiently weak that one may
omit them from the global analysis, though the sensitivities of on-going and future EDM searches could
allow one to probe these phases as well. Fig. 7 shows the relative correlations between pairs of phases,
obtained from a fit in each case including only those two phases.

It is particularly notable that the dA(199Hg) limit places severe constraints on φ3 while generating
a strong correlation between this phase and φu,d, both of which enter the CEDM operators at one-loop
order. In contrast, the neutron and Thallium EDM limits have a relatively stronger impact on φ2,
though at present the latter constraint is not strongly correlated with any of the other phases. Future
measurements with ∼ 100 times better sensitivity, however, would give rise to such correlations.

6.2 Extended Gauge Symmetry

As with SUSY, the embedding of the SM gauge symmetry in a larger gauge group can allow for additional
CPV phases in both flavor diagonal and flavor non-diagonal processes at low energies. For purposes
of illustration, we consider the well-studied left-right symmetry model (LRSM) with the gauge group
SU(2)L×SU(2)R×U(1)B−L. Symmetry breaking proceeds in two steps, with the first step breaking the
left-right symmetry and generating a mass for the right-handed gauge bosons, followed by a second step
that breaks the SM gauge symmetry. Implementing this scenario requires augmenting the SM Higgs
sector with additional scalar fields: two complex triplets ∆L,R that transform separately under the
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Figure 7: Constraints on MSSM CPV phases implied by null results for the neutron, Thal-
lium, and Mercury EDMs[154]. Red, blue, and black contours correspond to first generation
sfermion masses (MLL,RR)1 = 200, 500, and 1000 GeV, respectively. With kind permission
from Springer Science+Business Media: J. High Energy Physics, “A comprehensive analysis
of electric dipole moment constraints on CP-violating phases in the MSSM”, 08, 2010, p.
062, Y. Li, S. Profumo, M.J. Ramsey-Musolf , Fig. 10 (partial).

SU(2)L,R symmetries and an eight-component bidoublet φ. New CPV phases arise from two sources.
The extended gauge symmetry allows for a complex phase α associated with the VEV of φ, corresponding
to spontaneous CPV (SCPV):

〈φ〉 =

(
κ 0
0 κ′eiα

)
. (6.214)

In addition, new phases can arise in the fermion mixing sector owing to differences between separate
rotations of the left- and right-handed fermion fields, Im(V L

ij V
R ∗
ij ). Significantly, one requires only two

generations of fermions rather than three as in the case of the SM in order to obtain a CPV phase
associated with mixing that cannot be removed through field redefinitions.

The manifestation of these new phases then enters through the mixing of the WL,R gauge bosons
into the mass eigenstates W1,2:

W+
1 = cos ξ W+

L + sin ξ e−iαW+
R (6.215)

W+
2 = − sin ξ eiαW+

L + cos ξ W+
R (6.216)

where the mixing angle is given by

tan ξ = −κκ′/v2
R ≈ −2

κ′

κ

(
M1

M2

)2

(6.217)

with vR being the vev of the neutral component of the ∆R and Mk being the mass of the W±
k boson.

Interactions of the latter with quarks and leptons can yield a variety of the dimension six effective
operators introduced earlier. The resulting contributions to the dq were first computed in Ref. [155] for
the two-flavor case. In contrast to the SM, non-vanishing contributions first arise at one-loop order,
with the result

δq =
(gLgR

96π2

)
sin ξ Aq [rq cos θL cos θR sinα + rQ sin θL sin θRBq] (6.218)
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where cos θL,R is the “Cabibbo angle” for the left- and right-handed sectors, gL,R are the corresponding
gauge couplings for the two sectors,

ru = Yd/Yu rQ = Ys/Yu Au = 4 Bq = sin(α + δR − δL) (6.219)

rd = Yu/Yd rQ = Yc/Yd Ad = 5 Bq = sin(α− δR + δL) (6.220)

and where we replace ( v
Λ

)2

→
(
v

M1

)2(
1− M2

1

M2
2

)
(6.221)

in the definition of δq. Since M1 is the mass of the lightest W -boson, one encounters no explicit
suppression due to the heavy scale. Note also that the EDM for a given quark flavor is proportional to
the Yukawa coupling for the quarks having opposite sign third component of IL,R.

The corresponding CEDM operator has been computed in Ref. [156] One also encounters the four-
quark operator of Eq. (2.29) due to the exchange of the W1,2 between quarks [157, 156, 27, 28]. Following
the notation of Ref. ([28]) one obtains

ImCϕud
Λ2

=
2
√

2

3
GFK

(−) sin ξ Im
(
e−iαV L

uqV
R ∗
uq

)
(6.222)

where we have included the contribution from only the exchange of the W1 and have extended the
operator Qϕud to include all down-type quarks q = d, s, b. The constant K(−) ≈ 3.5 is a QCD renormal-
ization group factor associated with running from the weak scale to the hadronic scale. Again specifying
to the two generation case, we observe that the effect of the phase in the quark mixing matrix will not
enter the operators containing only u and d quarks, leaving only a dependence on the SCPV phase. In
this case, the contribution to ḡ

(1)
π will depend solely on this phase and not on δL − δR. Including the

second generation quarks would then require extending the arguments leading to Eq. (3.151) to account
for the nucleon matrix element of the s̄s and a coupling of the nucleon to the η meson. We leave this
extension, as well as a consideration of the CEDM and three-gluon operators, to future work.

Contributions to the neutron EDM in the LRSM have been carried out using a variety of approaches.
Ref. [155] relied on the quark model result to determine the dependence of dn on the dq. The authors
of Ref. [157] also performed a quark model evaluation of the contribution from the four quark operator
(2.29). Pseudoscalar loops were included in Refs. [156, 28], where one of the pseudoscalar meson-baryon
vertices are induced by the underlying CP-violating quark and gluon operators, while Ref. [28] also
computed contributions to the nucleon wavefunction due to the CEDM. We note that the pseudoscalar
loop results in Refs. [156, 28] were not performed using a consistent chiral power counting and are likely

to overestimate the corresponding contribution that is proportional to ḡ
(1)
π .

To illustrate the manifestation of LRSM CPV in EDMs, we consider (a) contributions from the dq
to dn using the quark model relation 3.138; (b) chiral loop contributions to dn induced by Qϕuq; (c)
contributions to dA(199Hg) generated by Qϕuq via the nuclear Schiff moment. Starting with the dq, we
neglect the heavy quark contributions for simplicity and take gL = gR = e/ sin θW, leading to

dn ∼ (1.13× 10−7e fm)

(
1− M2

1

M2
2

)
sin ξ (5Yu + 4Yd) cos θL cos θR sinα . (6.223)

Noting that 5Yu + 4Ud ∼ 2.5× 10−4 and that | sin ξ| <∼ 10−3 from tests of first row CKM unitarity[158],
we see that

|dn|dq <∼ (3× 10−14e fm)

(
1− M2

1

M2
2

)
cos θL cos θR sinα . (6.224)

The present dn constraint is, thus, not sufficiently stringent to probe this contribution.
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A potentially larger contribution may arise from chiral loops involving the isovector TVPV πNN
interaction. Making the same simplifying assumptions used above and using Eqs. (3.151,6.222) one has

ḡ(1)
π ≈ −10−4

(
1− M2

1

M2
2

)
sin ξ cos θL cos θR sinα . (6.225)

The corresponding one-loop contribution to dn is given by

dchiral
n =

egAḡ
(1)
π

16π2

µn
Fπ

F (m2
π/Λ

2
χ) (6.226)

where µn = −1.91 is the neutron anomalous magnetic moment and F (x) is a loop function. An early
calculation reported in Ref. [156] gave F (x) = 3/2 − x + · · · , where the “+ · · · denote contributions
non-analytic in x. This computation, however, did not utilize the consistent power counting obtained
with HBχPT and, thus, should be considered unreliable. A consistent HBχPT computation gives
F (x) = −x lnx ≈ −0.1, implying an order of magnitude smaller neutron EDM contribution than one
would infer from the computation of Ref. [156]. Taking | sin ξ| <∼ 10−3 we then obtain

|dn|chiral = (3× 10−10e fm)

(
1− M2

1

M2
2

)
cos θL cos θR sinα , (6.227)

indicating roughly four orders of magnitude greater sensitivity to sinα than implied by the quark
EDM contribution. One may trace this difference to the combination of the quark Yukawa couplings
5Yu + 4Ud ∼ 2.5 × 10−4 that enters the quark EDM contribution and that does not appear in the
chiral loop contribution induced by Qϕuq. For cos θL ≈ cos θR ≈ 1 and M1 << M2 we then obtain
| sinα| <∼ 10−3 from this contribution.

Turning to dA(199Hg), we use the value of κS given in Eq. (5.185) and a representative value for a1

of 0.03 (midpoint of the corresponding range in Table 12) to obtain

|dA(199Hg)| <∼ (1.1× 10−11e fm)

(
1− M2

1

M2
2

)
cos θL cos θR sinα , (6.228)

giving an even stronger sensitivity to the SCPV phase than dn, though subject to considerable nuclear
theory uncertainties associated with the computation of a1 as discussed above. However, given that the
current bound on dA(199Hg) is three orders of magnitude smaller than the limit on dn, the former is
likely to provide the most stringent constraint on the LRSM contribution even allowing for a possibly
smaller magnitude for a1 than assumed here. For the benchmark value of a1 used in this example, we
would obtain | sinα| <∼ 10−5 for cos θL ≈ cos θR ≈ 1 and M1 << M2.

In the foregoing discussion, we have used the phenomenological constraint on the mixing angle ξ
obtained from tests of first row CKM unitarity[158]. An alternate approach has been followed by the
authors of Ref. [28], who observed that one may determine the elements of the right-handed CKM
matrix V R

uq in terms of V L
uq, the ratio κ′/κ, sinα and the quark masses by exploiting properties of the

LRSM Yukawa matrices, the hierarchy of quark masses, and the Wolfenstein parameterization of V L
uq.

One then finds that
sin ξ Im

(
e−iαV L

uqV
R ∗
uq

)
(6.229)

can be expressed in terms of M2
1/M

2
2 and r sinα, where r = (mt/mb)(κ

′/κ) characterizes the ratio of
the two bi-doublet vevs. Illustrative constraints on M2 ≈ MWR

and r sinα are indicated by the yellow
points in Fig. 8. We note that the yellow points were obtained using the value of F (x) given in Ref. [156]
that is an order of magnitude larger than the HBχPT result. Taking into account the latter reduction
and utilizing the bounds on dA(199Hg) we conclude that the region allowed by the 199Hg limit is likely
to be considerably narrower than indicated by the yellow points in Fig. 8.

A future improvement in the sensitivity of neutron EDM searches by two orders of magnitude could
make dn a comparably powerful probe of LRSM CPV as dA(199Hg).
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Figure 8: Constraints on right-handed W -boson mass and CPV parameter r sinα obtained
from present constraints on the neutron EDM (yellow dots) and neutral kaon mixing param-
eter ε for different representative values of the Higgs mass (MH =∞, red triangle; MH = 75
TeV, blue square; MH = 20 TeV, large green dots). Reprinted from Nucl. Phys. B., 802, Y.
Zhang, H. An, X. Ji, R. N. Mohapatra, “General CP violation in minimal leftright symmetric
model and constraints on the right-handed scale”, p.247., Copyright (2008), with permission
from Elsevier .

6.3 Additional Spacetime Dimensions

The study of EDMs in BSM scenarios involving extra spacetime dimensions, such as the Randall-
Sundrum (RS) paradigm for warped extra dimensions or flat but orbifolded extra dimensions, is con-
siderably less advanced than in the case of SUSY or extended gauge symmetries. To our knowledge,
EDM estimates have been largely confined to the use of NDA, coupled with an analysis of the flavor
and CP structure associated with a given implementation of the RS paradigm.

For concreteness, we focus on the scenario RS1, wherein SM fields may propagate in the “bulk”
of the fifth dimension between two branes: the TeV brane and the Planck brane. The Higgs field is
localized at the former while gravity lives at the latter, ensuring that the natural scales for the EW and
gravitational interactions are the weak and Planck scales, respectively. The dependence on all mass
scales in the fifth dimension follows from the “warping” associated with the dependence of the metric
on the fifth dimensional co-ordinate z as

(ds)2 =
1

(kz)2

[
ηµνxµxν − (dz)2

]
(6.230)
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where xµ denotes the usual four dimensional co-ordinate vector and k is a warping factor.
Flavor structure arises from the z-dependence of the fermion wavefunctions rather than from the

values of the Yukawa couplings for the 5-dimensional theory. Assuming the latter to be “anarchical”,
the observed fermion mass hierarchy arises when the light fermions are localized near the Planck brane
and the top quark near the TeV brane. Since the Higgs is localized near the TeV brane, its vev gives a
significantly larger mass to the top quarks than to the light fermions. The Kaluza-Klein (KK) modes
for the light fermions are also localized near the TeV brane, generating a leading order suppression of
flavor changing neutral currents (FCNCs).

An early concrete application of this scenario to the flavor and CP problems was carried out in
Ref. [159]. The corresponding five-dimensional Lagrangian contains two components of interest:
(a) the bulk Lagrangian

Lfermion =
√
G
{
iψ̄ΓMDMψ + kCQud(Q̄ūd̄)(Qud)

}
(6.231)

where all of the SM fields ψ propagate in the warped extra dimension (denoted by a co-ordinate z),
where DM is the five dimensional covariant derivative, and where CQud are 3 × 3 Hermitian matrices
that determine the 5-D masses.
(b) the 5-D Yukawa interaction:

Lbrane = hδ(z − z0)λ5D
u,dQ̄(u, d) (6.232)

where λ5D
u,d are the Yukawa matrices, h is the Higgs field, and z0 indicates the location of the TeV-brane.

Carrying out the Kaluza-Klein (KK) reduction of the 5D theory to an effective 4D theory on the
TeV brane yields the SM fields (zero modes) and their KK partners. The quark zero mode masses
are then given by mq ∼ vFQλ

5D
u,dFu,d, where FQ,u,d are the values of the quark wavefunctions on the

TeV brane . For purposes of the present discussion, the specific values of the FQ,u,d are not essential.
However, due to the different profiles for the light fermion zero mode and KK modes, couplings between
the two go as λ5D

u,dFq. Since these couplings are not aligned with the quark masses, non-trivial flavor
and CPV contributions may be generated at one-loop order. Representative diagrams that generate the
quark EDMs are shown in Fig. 9. In each case, an odd number of zero mode - KK Yukawa interactions
is needed to obtain the chiral structure associated with the EDM. The gauge loops contain only one
insertion while the Higgs loops contain three. In the former case for a down quark-gluon loop, one has

dd[gluon, KK] ∼ kv
(
D†LFQλ

5D
d FdDR

)
11
∼ [diag(md,ms,mb)]23 = 0 , (6.233)

where DL,R rotate the left- and right-handed down quarks between the flavor and mass bases. In
contrast, the Higgs loop results are not aligned with the light quark mass matrix and, as shown in
Ref. [159], lead to a non-vanishing EDM contribution:

dd[Higgs, KK] ∼ 2k3v
[
FQ

(
λ5D
u λ5D †

u + λ5D
d λ5D †

d

)
λ5D
d Fd

]
11

. (6.234)

Taking the phases that enter this expression to be maximal, the authors of Ref. [159] arrive at the NDA
estimate

dn[Higgs, KK] ∼ e

6

( md

16π2

) (2kλ5D

m2
KK

)
∼ (10−11 e fm)×

(
2kλ5D

4

)2 (
3 TeV

mKK

)2

(6.235)

An earlier analysis by the authors of Ref. [160] that included the contribution from the CEDM found
a considerably smaller sensitivity to the CPV parameters. In that study, the additional suppression
results from a tiny coupling between the first and third generation as well as constraints from the CPV
parameter εK that enters the neutral kaon system.
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In addition to the loop contribution, one expects contributions from operators that live on the
TeV brane. This term is UV-sensitive and, thus, depends on the cutoff of the effective theory on the
TeV brane, obtained from the cutoff at the Planck scale by warping: Λ ∼ Λ5D exp(−πkrc), where
πkrc ∼MPlanck/TeV to solve the hierarchy problem. From NDA one anticipates

dn[brane] ∼ eCΛ

(md

Λ2

)
∼ (10−11 e fm)× CΛ

(
2kλ5D

4

)2 (
10 TeV

Λ

)2

(6.236)

The value of Λ depends on the specific realization, depending on whether the Higgs is placed on the
TeV brane, in the bulk, or in the bulk but localized near the TeV brane. For sinφCPV ∼ O(1), the
resulting contribution to dn can be comparable to the present experimental limit or comparable to the
considerably larger loop contribution in Eq. (6.235).

One should bear in mind that the foregoing results are obtained using NDA and that loop com-
putations in extra-dimensional scenarios are subject to theoretical ambiguities. Nonetheless, one thus
finds a situation similar to that in SUSY: current EDM limits imply that either the CPV phases are
suppressed or that the KK mass scale lies well above the TeV scale. A variety of solutions to the RS
CP problem have been proposed. In Ref. [161] a variant of RS1 was analyzed under the assumption of
5D minimal flavor violation, leading to the vanishing of EDMs at one-loop order. Ref. [33] considered
an RS1 scenario with spontaneous CPV, where the source of CPV was geometrically sequestered from
the TeV brane by placing it in the bulk. The model provides a natural suppression of θ̄, while the
dimension-six EDM operators first appear at two-loop order.

These studies notwithstanding, it is evident that there exists considerable room for further work on
EDMs in extra dimensional models. To our knowledge, no computations of the CEDM, three-gluon,
or dimension-six four-fermion operators has appeared in the literature. In particular, the limits on
dA(199Hg) may imply more severe constraints on RS CPV than have been obtained in these earlier
studies, given the long-range π-exchange contributions to the nuclear Schiff moments sourced by the
CEDM operators. Even with the ambiguities associated with loop computations in d > 4 dimensions
and with cutoff-dependent TeV brane operators, a study of these additional CPV effects would be both
interesting and potentially significant.

7 Outlook

In the context of fundamental symmetry tests during the LHC era, searches for the permanent electric
dipole moments of atoms, molecules, nucleons and nuclei will provide one of the most powerful probes
of both BSM physics as well as the remaining, as-yet unseen source of SM CPV – the QCD θ-term.
Improvements in experimental sensitivity are poised to improve by as much as two orders of magnitude
in the near term and possibly further on a longer time scale. The observation of a non-zero EDM
would constitute a major discovery, pointing to a non-vanishing θ̄ parameter and/or a new source
of CPV associated with new fundamental interactions. Conversely, the non-observation of EDMs at
the anticipated sensitivity levels would tighten the already stringent those on θ̄ as well as those on a
variety of BSM scenarios. Either way, the implications for the fundamental laws of nature and their
consequences for the cosmic baryon asymmetry cannot be overstated.

Theoretically, the challenge is to provide the most robust framework for interpreting the results of
EDM searches and delineating their implications. Doing so entails analyzing physics associated with a
variety of energy scales, ranging from the short-distance physics of CPV at the elementary particle level
to the longer-distance physics at the hadronic, nuclear, and atomic/molecular scales. In this review, we
have relied on effective CPV operators at mass dimensions four and six as a bridge between the physics
of these various scales. While the use of effective operators is not applicable in all circumstances, such
as those in which BSM CPV involves new light degrees of freedom, it nevertheless provides a broadly
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Figure 9: Representative contributions to the d-quark EDM and CEDM in the Randall-
Sundrum scenario.

applicable and model-independent context for the interpretation of EDM experiments. Limiting our
consideration photons, gluons, and first generation fermions, we encounter thirteen presently undeter-
mined CPV parameters at d = 4 and d = 6: θ̄, the fermion EDMs, quark CEDMs, three-gluon operator,
and several four-fermion operators. The task for theory, then, is to delineate how these operators may
be generated by BSM physics above the weak scale, how they evolve to the hadronic scale, and how
they generate the appropriate hadronic, nuclear, atomic and molecular matrix elements that ultimately
give rise to EDMs in these systems.

From our review of this theoretical effort, several features emerge:

(i) The EDMs of paramagnetic atoms and molecules are dominated by two quantities: the electron
EDM and one combination of semileptonic, CPV four-fermion operators characterized by the
Wilson coefficient Im C

(−)
eq . Moreover, when characterizing the former in terms of the appropriate

dimensionless parameter δe, one finds that the EDMs of these systems are an order of magnitude
more sensitive to Im C

(−)
eq than to δe. The level of theoretical atomic/molecular theory uncertainty

in either sensitivity is roughly 10% or better. For Im C
(−)
eq , the associated hadronic matrix element

of the isoscalar scalar density is under reasonable control, given that it can be obtained from the
pion-nucleon σ-term and the average light quark mass.

(ii) Diamagnetic atom EDMs are most sensitive to the nuclear Schiff moment, individual nucleon

EDMs, and the semileptonic four-fermion tensor operator with Wilson coefficient Im C
(3)
`equ.
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(iii) Neither system provides a particularly sensitive handle on Im C
(+)
eq , given the relative suppression

of the associated isovector scalar or isoscalar pseudoscalar nuclear matrix elements.

(iv) There exists considerable room for refinement in computing the nucleon matrix of underlying CPV

operators as well as nuclear Schiff moments. While the sensitivity of ḡ
(0)
π to θ̄ and the dependence

of dN on the quark EDMs is now known fairly reliably, the uncertainties associated with matrix
elements of the quark CEDMs, three-gluon operator, and four-quark operators are large. Similar
statements apply to the dependence of dN on θ̄ as well as to the sensitivity of the nuclear Schiff
moments to the ḡ

(i)
π . Perhaps, one of the primary challenges facing is now to achieve a more

reliable set of hadronic sensitivities.

(v) Searches for the EDMs of diamagnetic atoms and nucleons alone is unlikely to disentangle the
effects of the quark CEDMs, three-gluon operator, and four-quark operators. However, the pos-
sibility of searching for EDMs of the proton, deuteron, triton and helion in storage rings would
offer additional handles on these underlying sources of hadronic CPV based on their chiral trans-
formation properties.

(vi) Any global analysis of EDM search results, whether performed at the model-independent level
of the effective operators within a given BSM scenario such as supersymmetry, should take into
account the rather sizeable theoretical hadronic and nuclear uncertainties associated with the
sources of hadronic CPV.

Setting aside the aforementioned uncertainties, current EDM null results imply that any new CPV
lies at the TeV scale or that CPV phases are O(10−2) in magnitude or smaller. The next generation of
searches will push these sensitivities to Λ >∼ 10 TeV or equivalently | sinφCPV| <∼ O(10−4), putting their
reach well beyond that of the LHC. Should the LHC have observed only the SM Higgs boson (a major
discovery in its own right) by the end of this decade, then EDM searches will provide one of the most
effective tools for probing the next piece of terrain in the high energy desert. Given these prospects,
addressing the open theoretical challenges summarized above becomes all the more important. We hope
that our discussion of the rich array of physics associated with EDMs will spur new efforts to take on
these challenges.
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A Scalar and pseudoscalar form factors: heavy quark contri-

butions

The gQS for the heavy flavors can be obtained by using the trace anomaly for the energy momentum
tensor θµν and nucleon mass and by integrating out the heavy quarks [162, 163]. We first have

mN ψ̄NψN = 〈N | θµµ |N〉 =
∑

q=u,d,s

〈N |mq q̄q |N〉+
β̃(αs)

2αs
〈N |Tr (GµνG

µν) |N〉 , (A.237)

where

β̃(αs) = −9α2
s/2π (A.238)

and where we have used the result that integrating out each heavy quark leads to the replacement

〈N |mQQ̄Q |N〉 = −2

3

αs
4π
〈N |Tr (GµνG

µν) |N〉 . (A.239)

Using Eqs. (3.92,3.100) we may solve for 〈N | Q̄Q |N〉 and, thus, gQS :

− 9αs
4π
〈N |Tr (GµνG

µν) |N〉 = [mN − (m̄N)q − 220κs] ψ̄NψN , (A.240)

so that from Eq. (A.239) we obtain Eq. (3.100).

For the gQP of heavy flavors, we follow [162, 12, 62] and exploit the U(1)A anomaly. Letting

Jµ5 =
∑
q=u,d

q̄γµγ5q +
∑

Q=s,c,b,t

Q̄γµγ5Q (A.241)

and

〈N | Jµ5 |N〉 = g
(0)
A 〈N | N̄γµγ5N |N〉 , (A.242)

we have

〈N | ∂µJµ5 |N〉 = 2mNg
(0)
A 〈N | N̄iγ5N |N〉 = 2

∑
q=u,d

〈N |mq q̄iγ5q |N〉 (A.243)

+2
∑

Q=s,c,b,t

〈N |mQQ̄iγ5Q |N〉+ 6 〈N | αs
4π

Tr
(
GµνG̃

µν
)
|N〉 .

Using

〈N |mQQ̄iγ5Q |N〉 = −αs
8π
〈N |Tr

(
GµνG̃

µν
)
|N〉 (A.244)

and the expressions for matrix elements of ūiγ5u± d̄iγ5d in terms of g
(0,1)
S we obtain

〈N |mQQ̄iγ5Q |N〉 = N̄

{
1

4

[
g

(0)
A

mN

mQ

+ g
(0)
P

2m̄

mQ

]
+

1

4
g

(1)
P

∆mq

mQ

τ3

}
iγ5N (A.245)

≡ 〈N |
[
g
Q(0)
P + g

Q(1)
P τ3

]
iγ5N , (A.246)

with the result in Eq. (3.104).
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Param Coeff Best Valuea Range Coeff Best Valueb,c Rangeb,c

θ̄ αn 0.002 (0.0005-0.004) λ(0) 0.02 (0.005-0.04)

αp λ(1) 2× 10−4 (0.5− 4)× 10−4

ImCqG βuGn 4× 10−4 (1− 10)× 10−4 γ+G
(0) -0.01 (-0.03) − 0.03

βdGn 8× 10−4 (2− 18)× 10−4 γ−G(1) -0.02 (-0.07) − (-0.01)

d̃q eρ̃un −0.35 −(0.09− 0.9) ω̃(0) 8.8 (-25)− 25

eρ̃dn −0.7 −(0.2− 1.8) ω̃(1) 17.7 9− 62

δ̃q eζ̃un 8.2× 10−9 (2− 20)× 10−9 η̃(0) −2× 10−7 (-6− 6)× 10−7

eζ̃dn 16.3× 10−9 (4− 40)× 10−9 η̃(1) −4× 10−7 −(2− 14)× 10−7

ImCqγ βuγn 0.4× 10−3 (0.2− 0.6)× 10−3 γ+γ
(0) − −

βdγn −1.6× 10−3 −(0.8− 2.4)× 10−3 γ−γ(1) − −
dq ρun −0.35 (−0.17)− 0.52 ω(0) − −

ρdn 1.4 0.7-2.1 ω(1) − −
δq ζun 8.2× 10−9 (4− 12)× 10−9 η(0) − −

ζdn −33× 10−9 −(16− 50)× 10−9 η(1) − −

CG̃ βG̃n 2× 10−7 (0.2− 40)× 10−7 γG̃(i) 2× 10−6 (1− 10)× 10−6

ImCϕud βϕudn 3× 10−8 (1− 10)× 10−8 γϕud(1) 1× 10−6 (5− 150)× 10−7

ImC
(1,8)
quqd βquqdn 40× 10−7 (10− 80)× 10−7 γquqd(i) 2× 10−6 (1− 10)× 10−6

ImC
(−)
eq g

(0)
S 12.7 11-14.5

ImC
(+)
eq g

(1)
S 0.9 0.6-1.2

Table 6: Best values and reasonable ranges for hadronic matrix elements of CPV operators. First
column indicates the coefficient of the operator in the CPV Lagrangian, while second column indicates
the hadronic matrix element (sensitivity coefficient) governing its manifestation to the neutron EDM.
Third and fourth columns give the best values and reasonable ranges for these hadronic coefficients.
Firth to seventh columns give corresponding result for contributions to TVPV πNN couplings. a Units
are e fm for all but the ρ̃qn and ρqn. b We do not list entries for (γ±γ(i) , ω(i), η(i)) as they are suppressed by

α/π with respect to (γ̃±γ(i) , ω̃(i), η̃(i)) . c The ω̃(0,1) are in units of fm−1.
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LEC d̄0 d̄1 ḡ
(0)
π e fm ḡ

(1)
π e fm (F 3

π C̄1) e fm (F 3
π C̄2) e fm

dn 1 −1 - - - -

dp 1 1 - - - -

dd 2 0 −0.0002 + 0.07β1 0.2 - -

dh 0.83 −0.93 0.1 0.2 −0.01 0.02

dt 0.85 0.95 −0.1 0.2 0.01 −0.02

Table 7: Dependence of the EDMs of the neutron, proton, deuteron, helion, and triton on the six
relevant TVPV low-energy constants at leading order. A “-” denotes that the low-energy constant
does not contribute in a model-independent way to the EDM at this order. For the potential-model
dependence and other uncertainties in the results, see text. The P-, T-even isospin-breaking pion-
nucleon coupling β1 is not well known, β1 = (0± 9) · 10−3 [44, 113]. (Adapted from Ref. [103].)

Source θ-term CEDM quark EDM chiral-invariant left-right

Λχdn/e O
(
m2
π

Λ2
χ
θ̄
)

O
(
m2
π

Λ2 δ̃q

)
O
(
m2
π

Λ2 δq

)
O
(

Λ2
χ

Λ2 ImCk

)
O
(

Λ2
χ

(4π)2Λ2 ImC
(1,8)
quqd

)
dp/dn O (1) O (1) O (1) O (1) O (1)

dd/dn O (1) O
(
Λ2
χ/Q

2
)

O(1) O(1) O
(
Λ2
χ/Q

2
)

dh/dn O
(
Λ2
χ/Q

2
)
O
(
Λ2
χ/Q

2
)

O(1) O(1) O
(
Λ2
χ/Q

2
)

dt/dh O (1) O (1) O (1) O (1) O (1)

Table 8: Expected orders of magnitude for the neutron EDM (in units of e/Λχ), and for the EDM
ratios proton to neutron, deuteron to neutron, helion to neutron and triton to helion, for the θ-term
and dimension-six sources. For chiral-invariant sources, ImCk stands for CG̃ and ImC

(1,8)
quqd . Q represents

the low-energy scales Fπ, mπ, and
√
mNB, with B the binding energy. (Adapted from Ref. [103].)

Ref. Method a0 a1 a2

[127] Schematic 0.087 0.087 0.174
[41], [42] Phenomenological RPA 0.00004 0.055 0.009
[39] Skyrme QRPA 0.002 – 0.010 0.057 – 0.090 0.011 – 0.025
[125] Odd-A Skyrme mean-field theory 0.009 – 0.041 -0.027 – +0.005 0.009 – 0.024

Table 9: The coefficients ai in 199Hg from a variety of nuclear-structure calculations.

Ref. Method a0 a1 a2

[129] Octupole-deformed Wood-Saxon -18.6 18.6 -37.2
[40] Odd-A Skyrme mean-field theory -1.0 – -4.7 6.0 – 21.5 -3.9 – -11.0

Table 10: The coefficients ai in 225Ra from two nuclear-structure calculations.
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Ref. Nucl. Method a0 a1 a2

[127] 129Xe Schematic -0.11 -0.11 -0.22
[42] 129Xe Phenomenological RPA -0.008 -0.006 -0.009
[42] 211Rn Phenomenological RPA 0.019 -0.061 0.053
[125] 211Rn Odd-A Skyrme mean-field th. 0.034 – 0.042 -0.0004 – -0.018 0.064 – .071
[42] 213Rn Phenomenological RPA 0.012 0.021 0.016
[129] 223Ra Octupole-def. Wood-Saxon -25 25 - 50
[129] 223Rn Octupole-def. Wood-Saxon -62 62 - 100
[129] 223Fr Octupole-def. Wood-Saxon -31 31 - 62
[135] 219Fr octupole-quadrupole vibr. -0.02 -0.02 -0.04

Table 11: The coefficients ai in some other nuclei of interest, from several nuclear-structure calculations.

Nucl. Best value Range
a0 a1 a2 a0 a1 a2

199Hg 0.01 ± 0.02 0.02 0.005 – 0.05 -0.03 – +0.09 0.01 – 0.06
129Xe -0.008 -0.006 -0.009 -0.005 – -0.05 -0.003 – -0.05 -0.005 – -0.1
225Ra -1.5 6.0 -4.0 -1 – -6 4 — 24 -3 – -15

Table 12: Best values and ranges for the coefficients ai in three nuclei used in experiments.

Atom ρeA βeγA eζeA ρp ρn κS

e fm 10−8 e fm 10−4 10−4 10−4 fm−2

205Tl −573(20) 0.65(0.02) 189(7)

133Cs 123(4) -0.14(0.005) −41(1.3)

85Rb 25.7(0.8) -0.03(0.0009) −8.5(0.3)

210Fr 903(45) -1.02(0.05) −298(15)

199Hg 0.01 −1.13× 10−5 −3.3× 10−3 -0.56 -5.3 2.8

Molecule Hz/(e fm) Hz kHz

YbF −(1.1± 0.1)× 1012 (1.2± 0.1)× 109 (3.6± 0.3)

ThO −(4.6± 0.4)× 1012 (5.2± 0.5)× 109 (15.2± 1.4)

Table 13: Dependence of atomic and molecular EDMs on EDMs of the electron, proton and neutron
and on the Schiff moment.
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Table 14: Summary of the combined bounds at 95% c.l. on three phases (φ2, φ3, φu,d) for tanβ = 3,
60 and first generation sfermion masses (MLL,RR)1 = 200, 500, and 1000 GeV, obtained using current
experimental limits on the neutron, Thallium, and Mercury EDMs[154].With kind permission from
Springer Science+Business Media: J. High Energy Physics, “A comprehensive analysis of electric dipole
moment constraints on CP-violating phases in the MSSM”, 08, 2010, p. 062, Y. Li, S. Profumo, M.J.
Ramsey-Musolf , Table 4.

tanβ 3 60
(MLL,RR)1 200 GeV 500 GeV 1000 GeV 200 GeV 500 GeV 1000 GeV
|φ2| < 2.1× 10−3 < 5.0× 10−3 < 1.5× 10−2 < 9.3× 10−5 < 2.5× 10−4 < 6.9× 10−4

|φ3| < 2.8× 10−3 < 9.7× 10−3 < 2.8× 10−2 < 3.1× 10−4 < 4.2× 10−4 < 1.5× 10−3

|φu,d| < 1.8× 10−2 < 6.0× 10−2 < 0.17 < 1.7× 10−2 < 5.6× 10−2 < 0.21

CPV Parameter Coefficient Method Value Remarks

θ̄ αn ChPT ∼ 0.002 e fm See Eq. (3.75)

θ̄ αn Lattice QCD[79] -0.040(28) e-fm mπ = 0.53 GeV

θ̄ αp Lattice QCD[79] 0.072(49) e-fm mπ = 0.53 GeV

θ̄ αn Lattice QCD[80] -0.049(5) e-fm mπ ≈ 0.61 GeV

θ̄ αp Lattice QCD[80] 0.080(10) e-fm mπ ≈ 0.61 GeV

θ̄ αn QCD Sum Rules[84, 83] (0.0025± 0.0013) e-fm λ from QCD SR

θ̄ αn QCD Sum Rules[82] (0.0004+0.0003
−0.0002) e-fm λ from lattice

θ̄ λ(0) ChPT ∼ m2
π/ΛχFπ ∼ 0.08 See Eq. (3.71)

0.017± 0.005 See Eq. (3.70)

θ̄ λ(1) ChPT ∼ m4
π/Λ

3
χFπ See Eq. (3.73)

Table 15: Dependence of hadronic quantities on θ̄.
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CPV Parameter Coefficient Method Value Remarks

ImCqG βuGn ChPT ∼ e/v ≈ 8× 10−4 e fm

ImCuG βuGn QCD SR[85] -(0.6± 0.3)× 10−3 e fm PQ assumed

ImCdG βdGn QCD SR[85] -(1.2± 0.6)× 10−3 e-fm PQ assumed

ImCuG βuGn QCD SR[82] -(0.20+0.15
−0.08)× 10−3 e-fm PQ assumed

ImCdG βdGn QCD SR[82] -(0.40+0.31
−0.17)× 10−3 e-fm PQ assumed

ImCqG βuGn QM/NDA ∼ 1× 10−4 e fm includes KqG

ImCqG βdGn QM/NDA ∼ −4× 10−4 e fm includes KqG

d̃q ρ̃N ChPT ∼ −0.7

d̃q ρ̃uN QCD SR[85] 0.55± 2.8 PQ assumed

d̃q ρ̃dN QCD SR[85] 1.1± 0.55 PQ assumed

d̃u ρ̃N QM/NDA ∼ −0.09 includes KqG

d̃d ρ̃N QM/NDA ∼ 0.36 includes KqG

δ̃q eζ̃N ChPT ∼ 5× 10−8 e fm

δ̃u eζ̃uN QCD SR[85] −(0.9± 0.5)× 10−8 e fm PQ assumed

δ̃d eζ̃dN QCD SR[85] (−3.6± 1.8)× 10−8 e fm PQ assumed

δ̃u eζ̃uN QM/NDA ∼ 0.2× 10−8 e fm includes KqG

δ̃d eζ̃dN QM/NDA ∼ −0.8× 10−8 e fm includes KqG

Table 16: Dependence of nucleon EDM on quark CEDMs expressed in terms of the quantities ImCqG,
d̃q, or δ̃q.

CPV Parameter Coefficient Method Value Remarks

Im (CuG ± CdG) γG(0,1) Chiral/NDA ∼ 0.03

Im (CuG + CdG) γG(0) QCD SR[86] (−1.7↔ 0.6)× 10−2 PQ assumed

Im (CuG − CdG) γG(1) QCD SR[86] −(2.3+1.2
−4.5)× 10−2 PQ assumed

d̃q ω̃(0,1) Chiral/NDA ∼ −26

d̃u + d̃d ω̃(0) QCD SR[86] (−5↔ 15) fm−1 PQ assumed

d̃u − d̃d ω̃(1) QCD SR[86] 20+40
−10 fm−1 PQ assumed

δ̃q η̃(0,1) Chiral/NDA ∼ 1.9× 10−6

δ̃u + δ̃d η̃(0) QCD SR[86] (−3.5↔ 1.2)× 10−7 PQ assumed

δ̃u − δ̃d η̃(1) QCD SR[86] (−4.6+2.3
−9.2)× 10−7 PQ assumed

Table 17: Dependence of TVPV πNN coupling on quark CEDMs expressed in terms of the quantities
CqG, d̃q, or δ̃.
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CPV Parameter Coefficient Method Value Remarks

Cqγ βqγn Chiral/NDA ∼ e/v ≈ 8× 10−4 e fm

Cuγ βuγn QCD Sum Rules[14] (0.4± 0.2)× 10−3 e fm

Cdγ βdγn QCD Sum Rules[14] -(1.6± 0.8)× 10−3 e fm

Cuγ βuγn QCD Sum Rules[82] (0.13+0.10
−0.06)× 10−3 e fm

Cdγ βdγn QCD Sum Rules[82] -(0.53+0.41
−0.23)× 10−3 e fm

Cuγ βuγn Quark Model 0.4× 10−3 e fm

Cdγ βdγn Quark Model −1.5× 10−3 e fm

Cuγ βuγn PQM[12, 88] 0.6× 10−3 e fm

Cdγ βdγn PQM[12, 88] −0.8× 10−3 e fm

dq ρqN Chiral/NDA ∼ −0.7

du ρun QCD Sum Rules[14] (−0.35± 0.17)

dd ρdn QCD Sum Rules[14] (1.4± 0.7)

du ρun QCD Sum Rules[82] (−0.11+0.09
−0.05)

dd ρdn QCD Sum Rules[82] (0.47+0.36
−0.2 )

du ρun Quark Model −1/3

dd ρdn Quark Model 4/3

du ρun PQM[12, 88] (∆u)n = −0.508

dd ρdn PQM[12, 88] (∆d)n = 0.746

ds ρdn PQM[12, 88] (∆s)n = −0.226

δq eζqN Chiral/NDA ∼ 5× 10−8 e fm

δu eζun QCD Sum Rules[14] (0.8± 0.3)× 10−8 e fm

δd eζdn QCD Sum Rules[14] (−3.2± 2.3)× 10−8 e fm

δu eζun QCD Sum Rules[82] (0.27+0.2
−0.1)× 10−8 e fm

δd eζdn QCD Sum Rules[82] (−1.1+0.8
−0.5)× 10−8 e fm

δu eζun Quark Model 0.8× 10−8 e fm

δs eζsn Quark Model −3.2× 10−8 e fm

δu eζun PQM[12, 88] 1.2× 10−8 e fm

δs eζsn PQM[12, 88] −1.7× 10−8 e fm

Table 18: Dependence nucleon EDM on quark EDM expressed in terms of the Wilson coefficients
Cqγ(Λχ), individual quark EDMs dq(Λχ), or dimensionless quantities δq(Λχ).
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CPV Parameter Coefficient Method Value

ImCG̃ βG̃n Chiral/NDA ∼ 40× 10−7 e fm

ImCG̃ βG̃n QCD SR[87] 2.0× 10−7 e fm

ImCG̃ γG̃(i) Chiral/NDA ∼ 2× 10−6

Table 19: Dependence of hadronic quantities on Weinberg three-gluon operator Wilson coefficient.

CPV Parameter Coefficient Method Value Remarks

ImC
(1,8)
quqd β

(1,8)
n Chiral/NDA ∼ 40× 10−7 e fm

ImCϕud βϕudn Chiral/NDA ∼ 3× 10−8 e fm

ImCϕud βϕudn Saturation/ChPT 1.3× 10−10 e fm NLO

ImC
(1,8)
quqd γ

(1,8)
(0,1) Chiral/NDA ∼ 2× 10−6

ImCϕud γϕud(1) Chiral/NDA ∼ 10−6

ImCϕud γϕud(1) Saturation 3.3× 10−5

Table 20: Dependence of hadronic quantities on CPV four-quark operators. The Saturation result for
βudn has been obtained by first computing ḡ

(1)
π and then employing the NLO result from ChPT given in

Eqs. (3.107,3.108).

Form Factor Method Value Remarks

g
(0)
S Lattice QCD 6.3± 0.8 Eq. (3.92) and [53, 54]

g
(1)
S Lattice QCD 0.45± 0.15 Eq. (3.92) and [58]

g
(1)
S Lattice QCD 0.4 (2) Isospin and [63]

g
(0)
P Chiral

g
(1)
P Chiral

g
(0)
T Lattice QCD

g
(1)
T Lattice QCD 0.53(18) Isospin and [63]

Table 21: Form factors entering semileptonic CPV interactions.
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System Present 90 % C.L. Sensitivity Goalb Group SM CKM (e fm)c

Limit (e fm)a

Cs 1.2× 10−10 [164] ∼ 10−23

Tl 9.5× 10−12 [165] ∼ 10−22

YbFd 10.5× 10−15 [147] ∼ 10−19

ThOd - 10−15 → 10−17

n 2.7× 10−13 [166] 1.6× 10−18 → 1.4× 10−20

n (1− 3)× 10−14 CryoEDM

n 4× 10−15 nEDM/SNS

n 5× 10−14 nEDM/PSI

n 5× 10−15 n2EDM/PSI

n 2× 10−15 nedm/FRM-II Munich

n 10−14 − 10−15 TRIUMF

p 10−16 srEDM

199Hg 2.6× 10−16 (2.6− 5)× 10−17 [167] -

225Ra (10− 100)× 10−15 Argonne -

225Rn 1.3× 10−14 TRIUMF -

225Rn 2× 10−15 FRIB -

223Xe 5.5× 10−14 [168] -

Table 22: Present EDM limits and sensitivity goals for the paramagnetic atoms and molecules (first
group); nucleons (n,p) (second group); and diamagnetic atoms (third group). A limit on the electron
EDM of 10.5 × 10−15 e fm (90% C.L.) has been derived from the most recent YbF experiment [147]
assuming it is the only source of the molecular EDM (see Section 5 ). Also listed are the expected
magnitudes of the SM “background” due to the phase in the CKM matrix. a We thank T. Chupp
for providing the 90% C.L. limits from existing searches. b All sensitivity goals are self-reported by
members of the given collaboration. c We do not quote SM CKM predictions for diamagnetic atoms,
due to the incorrect chiral implementation of chiral symmetry in Ref. [114] as pointed out in Ref. [169].
d Molecular sensitivity expressed in terms of limit on de rather than on dA.
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Atom k
(0)
S k

(0)
P k

(0)
T

10−5 e fm 10−10e fm 10−7 e fm

205Tl −7.0± 0.3 -1.5 -0.5

133Cs −0.78± 0.2 -2.2 -0.92

85Rb −0.110± 0.003

210Fr −10.9± 1.7

199Hg −8.1× 10−4 6 4

Molecule kHz kHz kHz

YbF −92± 9

ThO −564± 56

Table 23: Dependence of atomic and molecular EDMs on T- and P-odd semileptonic interactions.
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