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Zusammenfassung

Da Neutrinooszillationen beobachtet wurden, ist es offenkundig, dass Lepton
Flavour Erhaltung im Standardmodell im Bereich neutraler Leptonen verletzt ist.
Viele neue Modelle enthalten auch Lepton Flavour Verletzung im Bereich geladener
Leptonen, eine experimentelle Beobachtung gelang bis jetzt jedoch nicht.

Das Mu3e Experiment wird nach dem Lepton Flavour verletzenden Myon Zer-
fall µ→ eee suchen, welcher im Standardmodell stark unterdrückt ist. Dazu nutzt
es ein neuartiges Design bestehend aus vier dünnen zylindrischen Lagen von Pix-
eldetektoren in einem homogenen Magnetfeld. Aufgrund von geringen Impulsen
der Elektronen ist die Vielfachstreuung in der ersten Detektorlage bedeutsam.

Im Kontext des Mu3e Experiments habe ich einen neuen linearisierten dreidi-
mensionalen Vertex Fit untersucht, der die Vielfachstreuung als einzige Fehlerquelle
berücksichtigt. Auf Basis einer Simulation wurde das Rekonstruktionsverhalten im
Hinblick auf Effizienz, Vertex Auflösung, Impuls- und Algorithmus-Konfigurations-
Abhängigkeiten, Unterdrückung von Untergrund sowie invariante Massenauflösung
ausgewertet.

Der neue Ansatz für die Vertex Rekonstruktion funktioniert und erreicht eine
Vertex Auflösung von 200µm. Desweiteren kann möglicher Untergrund durch die
Rekonstruktion von einem gemeinsamen Vertex hervorragend unterdrückt werden.
Die Ergebnisse zeigen, dass die Vertexrekonstruktion elementar ist, um die geplante
Sensitivität eines Verzweigungsverhältnisses von 1× 10−16 zu erreichen.

Abstract

Since neutrino oscillations have been observed, it is evident that lepton flavour
conservation as predicted by the original Standard Model is violated in the neutral
lepton sector. Many new physics models include lepton flavour violation in the
charged sector as well, but an experimental discovery is still missing.

The Mu3e experiment will search for the lepton flavour violating muon decay
µ→ eee, which is heavily suppressed in the SM. It uses a novel design involving four
thin cylindrical layers of pixel detectors in a solenoidal magnetic field. Due to low
momentum electrons, multiple scattering in the first detector layer is significant.

In the context of the Mu3e experiment, I investigated a new linearised three-
dimensional vertex fit, treating multiple scattering as the only source of uncertainty.
Its performance is evaluated in terms of reconstruction efficiency, vertex position
resolution, particle momentum and algorithm configuration dependencies, back-
ground suppression and invariant mass resolution on the basis of a simulation.

The new approach of vertex reconstruction works and achieves a vertex position
resolution of 200µm. Moreover, accidental background can be greatly suppressed by
the reconstruction of a common vertex. The results show that the linearised vertex
fit is essential to achieve the proposed branching ratio sensitivity of 1× 10−16.
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Chapter 1

Introduction

The recent discovery of a Higgs boson by ATLAS and CMS at the Large
Hadron Collider in 2012 can be characterized as the “final ingredient” of the
most successful theory of particle physics: the Standard Model [1].

Despite its great success in predicting and explaining many experimental
results in particle physics there are still some phenomena lacking a consistent
and satisfying explanation by the Standard Model, e.g. neutrino oscillations
or the missing unification with gravity. This motivates many new theories
in particle physics, in turn predicting several other new phenomena often
referred to as physics beyond Standard Model. However, none of these phe-
nomena has been observed so far. Thus, other experimental signs for new
physics theories are still missing.

The current experimental frontier in the search for these signs can be
separated into two different strategies. One approach is to increase ener-
gies in particle interactions and directly search for the appearance of new
particles. This is the approach of the Large Hadron Collider.

Another approach is to search for hints at low energies but with high
intensities, i.e. small deviations from known quantities as given by the Stan-
dard Model. In order to achieve high precision, high statistics and high
intensities are required.

This is the approach of the Mu3e experiment. Mu3e will search for
the rare lepton flavour violating muon decay µ→ eee, which is heavily
suppressed in the Standard Model. The goal of Mu3e is to search for
µ+ → e+e−e+ with a branching ratio sensitivity of 1 × 10−16 [2]. The cur-
rent experimental limit for the branching ratio is given by the SINDRUM
experiment with 1.0× 10−12 at 90% confidence level [3].

A high-intensity muon beam is stopped and the decay electrons are de-
tected by pixel sensors with high precision. The upper limit for each particle
momentum is given by half the muon mass, leading to low momenta and con-
sequently highly bent tracks due to Lorentz forces in a solenoidal magnetic
field.
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CHAPTER 1. INTRODUCTION

One obvious characteristic of the µ → eee decay is the fact that the
decay products originate in a common vertex. For primary vertex recon-
struction, the helical particle trajectories have to be extrapolated through
the innermost detector layer into the vertex region. However, low momenta
lead to strong deflection of the particles due to multiple Coulomb scattering
when traversing the detector material. Therefore, the reconstruction of a
common vertex is not trivial.

In this thesis a linearised three-dimensional vertex fit for low momentum
particles in a solenoidal magnetic field is described. This is a completely new
approach in vertex reconstruction because of the assumption that the par-
ticle momenta and corresponding track parameters are precisely known due
to measurements with modern pixel sensors. Moreover, multiple Coulomb
scattering in the first detector layer will be treated as the only source of un-
certainty. The performance of this vertex reconstruction algorithm will be
analysed in the context of the Mu3e experiment by performing a computer
simulation.

The first part of this thesis in chapter 2 will provide a short theoretical
introduction to the Standard Model of particle physics in general and the
lepton flavour violating muon decay µ→ eee in particular. In chapter 3 the
kinematics of µ → eee will be derived and the resulting challenges for the
Mu3e experiment will be described, concluding with the proposed detector
design. Chapter 4 contains a detailed derivation and description of the
track model and the vertex reconstruction algorithm itself. Finally, the
implementation of the computer simulation and corresponding results on
the performance of the algorithm are presented in chapters 5 and 6.

12



Chapter 2

Theoretical Background

The Standard Model of particle physics is sometimes characterized as the
theory of almost everything [4], because of its great ability to explain most
experimental results in particle physics and for having predicted many new
phenomena that were later experimentally observed.

Lepton flavour – a quantum number associated with elementary particles
called leptons – is predicted to be a conserved quantity in particle interac-
tions described by the Standard Model [5]. Nevertheless, recent experiments
showed that this conservation is violated by neutrino oscillations. A viola-
tion in charged lepton interactions on the other hand has not been observed
so far. Therefore, the search for the lepton flavour violating muon decay
µ → eee is a well motivated approach for tackling this obvious asymmetry.
Furthermore, many new physics models predict lepton flavour violation in
the charged sector [6].

Keeping this in mind, I will introduce the Standard Model of particle
physics in general and rare lepton flavour violating muon decay channels in
particular in this chapter to provide a theoretical basis for the rest of my
thesis.

2.1 The Standard Model of Particle Physics

The Standard Model of particle physics (henceforth referred to as SM) is a
quantum field theory, describing all known fundamental elementary particles
and the corresponding interactions between them (see e.g. [5]). It contains
three generations of matter particles, i.e. fermions, and the gauge bosons
mediating the different interactions.

In detail there are twelve elementary matter particles - six leptons and
quarks respectively - and four gauge bosons as seen in Figure 2.1.

The recently discovered Higgs particle is separated, being neither matter
particle, nor mediating gauge interactions.

The SM describes just three of the four known fundamental interactions,

13



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Standard Model of elementary particles and their respective
quantum numbers. The fermions are separated into quarks and leptons in
three generations of matter [7].

namely the strong, the weak and the electromagnetic one. Since it is the
weakest one on typical energy scales in particle interactions, the gravitational
force can be neglected1.

In general, every elementary particle in the SM is characterized by its
mass and several quantum numbers, e.g. electric charge (in units of elemen-
tary charge e), spin, weak hypercharge, color charge and flavour quantum
numbers [5]. Some of these characteristic numbers are shown in Figure 2.1.

Each generation of leptons2 i can be associated with a specific lepton
flavour quantum number Li, i.e. one can define the electronic, muonic and
tauonic lepton flavour Le, Lµ and Lτ respectively. In detail, matter is always
associated with the lepton flavour Li = 1, while antimatter is associated
with Li = −1, e.g. an electron has lepton flavour Le = 1 and its antimatter
partner the positron has lepton flavour Le = −1.

The sum of all lepton flavours is defined to be the lepton number

L :=
∑
i

Li .

A lepton this thesis will deal with is the muon µ. It is a second generation
particle with a mass of about mµ = 105.67 MeV/c2, a charge of qµ = −e, a
spin3 of 1/2 [8] and a lepton flavour of Lµ = 1.

1A consistent and satisfactory theory for unifying gravity with all other fundamental
interactions is still missing.

2The generations are (e, νe), (µ, νµ) and (τ , ντ ) as seen in Figure 2.1.
3The spin is always given in units of the reduced Planck constant ~.
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2.2. CHARGED LEPTON FLAVOUR VIOLATION

Each lepton flavour quantum number Li is predicted to be conserved4

in every particle interaction by the laws of the original Standard Model, i.e.

L′i = Li ∀ i ∈ {e, µ, τ} , (2.1)

where the primed quantity denotes the final state after the interaction.
An example for lepton flavour conservation is the so called Michel decay

µ+ → e+νeν̄µ, which is the common decay of a muon via weak interaction.
According to Equation 2.1 lepton flavour is conserved in this decay, because
on the one hand the initial state yields Le = 0 and Lµ = −1 and on the
other hand the final state yields L′e = 0 and L′µ = −1.

2.2 Charged Lepton Flavour Violation

Since neutrino oscillations have been observed, it is evident that lepton
flavour conservation as predicted by the original SM is violated in the neutral
lepton sector. This indicates that lepton flavour might be violated in the
charged lepton sector as well.

Table 2.1 shows possible lepton flavour violating decay channels of the
muon with an experimental upper bound for the branching ratio.

Decay channel Bexp CL Experiment

µ+ → e+γ < 5.7× 10−13 90 % MEG [9]
µ+ → e+e+e− < 1.0× 10−12 90 % SINDRUM [3]
µ−Au→ e−Au < 7× 10−13 90 % SINDRUM II [10]

Table 2.1: Possible lepton flavour violating decay channels of the muon with
an experimental upper bound for the branching ratio B given at a specific
confidence level CL.

The one channel I will concentrate on is the decay of an antimuon into
one electron and two positrons

µ+ → e+e−e+ .

Lepton flavour is violated in this decay, because in the initial state the
corresponding lepton flavours are Le = 0 and Lµ = −1 while in the final
state L′e = −1 and L′µ = 0. This is a clear violation of Equation 2.1.

The specific lepton flavour violating decay channel µ+ → e+e−e+ can
be induced by neutrino mixing as seen in Figure 2.2, but does not occur in
the description by the SM.

By reference to the processes in the loop it can be explained why this
decay channel is greatly suppressed in the SM.

4This implies conservation of the lepton number L as well.
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CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2: Feynman diagram for lepton flavour violating decay µ→ eee on
loop-level in the SM via neutrino mixing [2].

The channel’s branching ratio B is scaling with the fourth order of the

mass ratio, i.e. B ∝
(

∆mν
mW

)4
[11, 12]. The mass differences ∆mν due to

neutrino mixing are extremely small compared to the weak scale, considering
a W boson mass of mW ≈ 80.39 GeV [8]. Thus, the branching ratio will be
B < 10−50 [12], eluding any practical measurement.

Many new physics models include LFV reactions in the charged sector
and any observation of µ→ eee would be an obvious sign for physics beyond
the Standard Model (henceforth referred to as BSM).

There are basically two different approaches to introduce charged LFV
processes in BSM models.

On the one hand LFV can be introduced already on the tree-level by
adding new heavy particles, coupling to both electrons and muons. For
example these particles could be Higgs or doubly charged Higgs particles,
R-parity violating scalar neutrinos or new heavy vector bosons [2]. For these
models the high observed suppression of LFV reactions is induced by the
high masses of the new intermediate particles. A generic Feynman diagram
for this process can be seen in Figure 2.3.

Figure 2.3: Generic Feynman diagram for lepton flavour violating decay
µ→ eee on tree-level with new heavy particle X, coupling to both electrons
and muons [2].
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2.2. CHARGED LEPTON FLAVOUR VIOLATION

On the other hand LFV can be introduced on the loop-level. One exam-
ple for such a family of BSM models would be the so-called supersymmetric
(SUSY) extension of the SM, introducing new supersymmetric particles in
the loop as seen in Figure 2.4. In this model every particle has a supersym-
metric partner particle, its superpartner, with opposite spin statistics.

The LFV is induced by slepton5 mixing instead of neutrino mixing as in
the SM contribution seen in Figure 2.2.

Since the supersymmetric particles can have similar mass, reducing the
suppression due to the mass difference, the branching ratio for this decay
channel could be much higher [6]. Consequently, the process would be ex-
perimentally accessible.

Figure 2.4: Feynman diagram for lepton flavour violating decay µ→ eee on
loop-level, introducing supersymmetric particles [2].

In summary the search for the lepton flavour violating muon decay
µ→ eee is very sensitive to many new physics models and an actual obser-
vation of this decay would be a clear sign for physics beyond the Standard
Model.

5Supersymmetric partner particles of leptons.
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Chapter 3

The Mu3e Experiment

The Mu3e experiment is designed to search for the decay µ → eee with
a branching ratio sensitivity of about B = O(10−16) [2] – four orders of
magnitude more sensitive than the latest experimental result published by
the SINDRUM collaboration [3].

In this chapter the kinematics of µ→ eee, possible backgrounds and the
resulting challenges will be discussed, leading to an overview of the Mu3e
detector baseline design.

3.1 Muon Decay Kinematics

A very essential part for reaching the proposed branching ratio sensitivity is
the suppression of possible background signals. Consequently, it is necessary
to precisely know the kinematics of the muon decay channel µ → eee to
distinguish a desired signal from the background.

3.1.1 Signal Topology

The signal decay µ→ eee occurs instantaneously and the origin of the three
electron tracks is located in one single vertex.

Since it is a three body decay, the system’s invariant mass corresponds
to the muon mass, i.e. the Minkowski norm of the four-momenta Pi of each
electron i and the four-momentum conservation yields

m2
µc

4 =

(
3∑
i=1

Pi

)2

. (3.1)

Because the muon is stopped in the target before decaying, the muon’s
rest frame and the laboratory frame are approximately identical1. Conse-
quently, the three momentum conservation of this three body decay results

1They are exactly identical, if the muon’s velocity vanishes completely during the
stopping process.
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CHAPTER 3. THE MU3E EXPERIMENT

in
3∑
i=1

pi = 0 . (3.2)

These equations are leading to two important results. On the one hand
Equation 3.2 tells us that the initial momenta p0 of all tracks are located
in the same geometrical plane while on the other hand Equation 3.1 implies
that the upper bound of the kinetic energy of one single decay electron is
equivalent to half the muon mass.

Because the Mu3e experiment will use a solenoidal magnetic field B for
momentum measurements, the decay electrons will move on helical trajec-
tories in the detector due to Lorentz forces. Figure 3.1 shows a possible
topology of a signal decay projected on the plane perpendicular to B.

Figure 3.1: Topology of signal decay µ→ eee in a magnetic field B projected
on the plane perpendicular to B [13].

3.1.2 Background

Since µ → eee is a very rare decay, backgrounds from various sources have
to be taken into account. This becomes even more clear when the known
lepton flavour conserving decay channels of the muon with their specific
branching ratios shown in Table 3.1 are considered.

Decay channel B Designation

µ+ → e+νeν̄µ ≈ 100 % Michel decay
µ+ → e+νeν̄µγ (1.4± 0.4) % Radiative decay
µ+ → e+νeν̄µe

+e− (3.4± 0.4)× 10−5 Internal conversion

Table 3.1: Possible lepton flavour conserving decay channels of the muon
with the specific branching ratio B. This table is adapted from [8].

Since there is no irreducible background in this scenario, i.e. background
that can not be distinguished from signal by increasing the precision of

20



3.1. MUON DECAY KINEMATICS

measurements, any background is due to common muon decays as seen in
Table 3.1. These background signals can be divided into two separate parts.
On the one hand there is some accidental background, while on the other
hand internal conversion contributes to background, too.

Accidental Background

There are several possible coincidences in phase-space, leading to so-called
accidental background. That means three electron tracks with appropriate
charges from different independent physical processes can originate from the
same vertex region and thus fake a signal.

One possible coincidence would be the combination of two common
Michel decays µ+ → e+νeν̄µ (see chapter 2), producing two positrons, and
one (fake) electron from a recurling track, i.e. a track that makes several
turns in the magnetic field of the detector. The topology of this process can
be seen in Figure 3.2.

Figure 3.2: Topology of accidental background signal from Michel decay and
recurling track [13].

Another possible contribution to accidental background is the combi-
nation of an internal conversion decay µ+ → e+νeν̄µe

+e− and a common
Michel decay as seen in Figure 3.3.

Since accidental background does not originate from the same vertex
and does not satisfy energy and momentum conservation (see Equation 3.1
and Equation 3.2), a very high momentum, timing and vertex resolution is
needed for distinguishing it from the signal.

Internal Conversion Background

The internal conversion decay is the radiative decay channel of the muon
µ+ → e+νeν̄µe

+e− and occurs with a branching ratio of about 3.4 × 10−5

[8] as listed in Table 3.1.

In this radiative decay the emitted photon from µ+ → e+νeν̄µγ almost
instantly converts into an electron-positron pair. The Feynman diagram of
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CHAPTER 3. THE MU3E EXPERIMENT

e+

e-

e+

(e+)

Figure 3.3: Topology of accidental background signal from Michel decay and
internal conversion [13].

this process can be seen in Figure 3.4.

Figure 3.4: Feynman diagram of internal conversion decay
µ+ → e+νeν̄µe

+e− with missing energy labelled.

Measurements of a final state nearly identical to the signal can occur,
because there are three electron tracks with appropriate charges and un-
detected neutrino tracks, originating from the same vertex. Therefore, it is
necessary to take energy and momentum conservation of the process µ→ eee
into consideration, i.e. Equation 3.1 and Equation 3.2 have to be used to
reconstruct the momentum carried away by the neutrinos. This momentum
or energy respectively is denoted by Emiss in Figure 3.4.

Consequently, a high momentum resolution is needed to reduce this kind
of background signal.

3.2 Multiple Scattering

Charged particles travelling trough a medium are repeatedly interacting with
the material’s nuclei via Coulomb interaction and thus will be deflected.
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3.2. MULTIPLE SCATTERING

This effect is consequently named multiple Coulomb scattering or multiple
scattering for short.

To describe the impacts of this effect, a geometrical sketch is very useful
and can be seen in Figure 3.5. In detail one can clearly see how the particle is
changing its direction multiple times, resulting in an overall deflection angle
θplane and an offset yplane with respect to the particle’s original trajectory. In
this description momentum is always assumed to be conserved and possible
energy losses are neglected.

Figure 3.5: Geometrical sketch for description of multiple Coulomb scatter-
ing [8].

The scattering angle distribution θ is well described by a simple Gaussian
distribution with a mean of θ̄ = 0 and a standard deviation given by the
so-called Highland formula [8]:

θ0 =
13.6 MeV

βcp
z

√
x

X0

[
1 + 0.038 ln

x

X0

]
, (3.3)

where z, βc and p denote the particle’s charge number, velocity and mo-
mentum respectively. The travelled thickness x in the material is given in
units of the radiation length X0, which is a material constant. This multiple
scattering model is only valid for small scattering angles θ projected onto a
plane perpendicular to the initial track.

Since θ0 is inversely proportional to the particle’s momentum p, multiple
Coulomb scattering is dominant for low particle momenta. An example for
multiple scattering of electrons with different momenta in material with
x/X0 = 0.001 is shown in Table 3.2.

p [MeV/c] 10 25 40 50

θ0 [◦] 1.820 0.727 0.454 0.363

Table 3.2: Example for multiple scattering of electrons with different mo-
menta p with x/X0 = 0.001.
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3.3 Detector Concept

There are several challenges that have to be taken into account concerning
the detector design. The aforementioned background reduction requires
high timing, vertex and momentum resolution. The suppression of multiple
scattering requires low detector material. These issues are resolved by the
detector baseline design, described in the following section.

In order to reach the proposed branching ratio sensitivity, in excess of
1016 muon decays have to be observed. Consequently, a high intensity muon
beam is required, providing up to about 2 × 109 muons per second [2].
About 83 % of these muons will be stopped in a hollow aluminium double
cone target with a wall thickness of 30µm to 80µm [2]. Once a muon is
stopped, it will decay due to its finite lifetime and the corresponding decay
products, i.e. electrons and positrons, will be detected2.

The detector itself is an ultra thin silicon pixel tracker based on two dou-
ble layers of HV-MAPS3 [14] positioned around the target. Since the layers
in the double pairs have a distance of 1 cm, the effect of deflection by multi-
ple scattering between two layers exceeds their pixel size. The whole setup is
located in an homogeneous solenoidal magnetic field aligned in direction of
the detector’s rotational axis. The two outer pixel layers are supplemented
with scintillating tiles and a scintillating fibre tracker for precise timing mea-
surements. Furthermore, these layers are extended along the beam axis for
precise momentum measurements with the help of recurling tracks [2]. The
two inner pixel layers will be used for vertex reconstruction.

An overview of the whole detector concept in both a longitudinal and a
transverse view is illustrated in Figure 3.6.

2Neutrinos will not be detected directly. In fact, they will be reconstructed from
momentum reconstruction of the electrons.

3High-Voltage Monolithic Active Pixel Sensor.
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Target

Inner pixel layers

Scintillating f bres

Outer pixel layers

Recurl pixel layers

Scintillator tiles

μ Beam

(a) Longitudinal view

(b) Transverse view

Figure 3.6: Sketch of Mu3e detector baseline design with possible electron
trajectories in a longitudinal and transverse view.
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Chapter 4

Vertex Fitting

One obvious characteristic of the muon decay µ→ eee is the fact that it is
originated in a common vertex. Consequently, accidental background can be
greatly suppressed by requiring the three electron tracks to be compatible
with a single vertex.

Due to multiple Coulomb scattering in the first detector layer, the re-
construction of a common vertex is not trivial, because the three scattered
tracks will not intersect in a single space point, see Figure 4.1. Moreover,
the bending of the tracks in the magnetic field causes the problem to be
highly non-linear.

0.06 0.04 0.02 0.00 0.02 0.04 0.06
x [cm]

0.025

0.020

0.015
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0.010

0.015
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y
 [

cm
]

pmin =24.66 MeV

Figure 4.1: Effects of multiple scattering in the first detector layer. The track
with lowest momentum is chosen from a signal, scattered in the first detector
layer and is then reconstructed into the vertex region, by propagating it to
the point of closest approach to the original vertex. The original vertex is
at the coordinate origin. This procedure is done 1000 times.

In this chapter a linearised vertex fitting method will be described (a
more compact description is given in [15]). This method assumes that mul-
tiple scattering of particles in the first detector layer will be the only source
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of uncertainties while position and momentum determination is assumed to
be perfectly accurate. It takes the physical parameters of all three tracks as
an input. The parameters are the particle’s charge q, the hit position xh of
each particle in the first detector layer and its momentum ph at this specific
position. The resulting output is the best estimate for a possible common
three-dimensional vertex position xv of all three particle tracks.

This chapter will include some remarks on the chosen coordinate system,
a derivation of the particle track model used, an introduction to finding
an initial guess for the possible vertex position and finally the linearised
reconstruction algorithm itself.

4.1 Coordinate System

Since the Mu3e detector baseline design has a cylindrical shape as described
in chapter 3, a cylindrical coordinate system (r, φ, z) is the most appropriate
choice for describing spatial information. Moreover, the z-axis is chosen to
coincide with the direction of the homogeneous magnetic field B. Conse-
quently, the x-y-plane will be referred to as the transverse plane while the
z-axis will be referred to as the longitudinal direction.

In this coordinate system, the different track angles can be defined by
reference to Figure 4.2. For the rest of this thesis Φ, φ or ϕ will always
denote an azimuthal angle in the transverse plane while Θ, θ or ϑ will
be the corresponding polar angle in longitudinal direction. Furthermore,
θ is defined to be the corresponding1 angle to the dip angle λ as seen in
Figure 4.2, while λ again is defined to be the angle between the track’s
projected tangent vector in the x-y-plane and the track tangent T.

x

y

φ

(a) Transverse plane

z

y

λ

θ

(b) Longitudinal direction

Figure 4.2: Track angles φ and θ in both transverse plane and longitudinal
direction. The particle track is illustrated as the blue curling arrow.

1That is λ+ θ = π
2

.
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The coordinate origin is chosen to coincide with the middle of the double
cone target. This configuration is illustrated in Figure 4.3.

x

x

x

y

y

z

z

Figure 4.3: Global coordinate system with double cone target. The homo-
geneous magnetic field B is aligned in direction of the z-axis.

4.2 Track Model

Because the vertex of a possible decay signal has to be fitted, the trajectory
of each particle measured in the detector layers has to be reconstructed very
precisely. Hence, an appropriate track model is needed.

In this section, the equations of motion for electrons in a solenoidal mag-
netic field are derived and parametrized in an appropriate way for describing
each trajectory. This derivation can be found in [11] in a similar way.

In general particles with charge q moving in an electromagnetic field E
and B with velocity v are influenced by the Lorentz force:

F = q (E + v ×B) . (4.1)

Assuming there is no electric field present, i.e. E = 0, the Lorentz force
as given in Equation 4.1 simplifies to

F = q (v ×B) . (4.2)

Due to the properties of the vector product v×B the force is always per-
pendicular to the particle trajectory. Consequently, the equation of motion
dp
dt = F predicts momentum conservation for its absolute value p = γmv
[11]. The corresponding equation of motion is then given by

m
d2x

dt2
= q

(
dx

dt
×B

)
. (4.3)

However, the time variable t is not a good choice for describing the track
model and it is more useful to have Equation 4.3 parametrized in units of the
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geometrical path length s along the track curve. This proceeds as follows
and is also described in [11]. It holds that

dx

dt
=

dx

ds

ds

dt
=

dx

ds
βc (4.4)

d2x

dt2
=

d

dt

dx

dt
βc =

d2x

ds2
β2c2 , (4.5)

where ds
dt = v = βc is used.

Inserting these relations into Equation 4.3 finally yields

d2x

ds2
=

q

pc

(
dx

ds
×B

)
. (4.6)

This is the final equation of motion in purely geometrical quantities for the
idealized track model. The solution to Equation 4.6 is a helical trajectory.

Solving Equation 4.6 for x(s) will provide the particle trajectory in terms
of the geometrical path length s. A general solution for the particle position
vector x in an arbitrary magnetic field B is given in [16] and will be used
for the rest of this thesis:

x(s) = x0 +
γ

κ
(θ − sin θ)H +

sin θ

κ
T0 +

α

κ
(1− cos θ)N0 , (4.7)

where the index 0 indicates the corresponding quantity at the initial
geometrical path length s = 0 and x0 denotes the specific reference point.
Moreover, the following shorthand notation is used:

H =
B

‖B‖
T =

p

‖p‖

N =
H×T

α
α = ‖H×T‖
γ = 〈H,T〉
κ = −‖B‖ q

‖p‖
θ = κs .

Here p denotes the particle momentum, q = ±1 is the particle’s electric
charge2 and B is the magnetic field vector. The quantity κ is called the
signed three dimensional track curvature.

The tangent vector T of the track is then given in terms of the geomet-
rical path length s by the expression [16]:

T(s) =
∂x

∂s
= γ(1− cos θ)H + cos θT0 + α sin θN0 . (4.8)

2Again given in units of the elementary charge e.
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Finally, the particle helical track itself and its propagation in the solenoidal
magnetic field is fully specified in geometrical quantities by the expressions
of x(s) and T(s) given in Equation 4.7 and Equation 4.8.

For a homogeneous magnetic field aligned along the z-axis we have
B = Bêz and consequently H simplifies to H = êz.

4.3 Initial Vertex Finding

Once each positron or electron from µ → eee reaches the first detector
layer, it is scattered due to multiple Coulomb scattering while traversing
the material (see Equation 3.3). Consequently, the reconstruction of the
scattered tracks back to the vertex region shows that no spacial point in this
region exactly matches the condition for a common vertex (see Figure 4.4)
as already mentioned in the beginning of this chapter.

Figure 4.4: Illustration of multiple scattering of an event with three particles
in the first detector layer. No exact common vertex is found at first.

Since we want to use an iterative linearised method for fitting the vertex
position x, an initial guess for a possible vertex position xv,0 is necessary.

There are several different methods for constructing this initial guess.
I will use the method of circle-circle intersection in the transverse plane as
described in the following. In general this method can be divided into several
steps:

1. Choose two particle tracks with highest momenta p1 and p2.

2. Search for the point of closest approach on the two tracks.

(a) Search for both track circle intersection points in the transverse
plane.

(b) Use the one from (a) with smallest longitudinal, i.e. z-distance
between both tracks.
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3. Search for the point on the remaining third track that is closest to the
just determined circle-circle intersection point.

4. Initial vertex position xv,0 is set to the mean of all determined points.

Using this method, some variations can be considered. For example, in step
2. (b) one could not only use the smallest longitudinal distance between both
tracks but also check whether the geometrical path length s between the cho-
sen circle-circle intersection is minimal, because there are some pathological
cases where 2. (b) without another crosscheck fails at finding an appropriate
initial vertex position. These details will be discussed in the description of
my simulation setup in chapter 5.

The mathematical method for calculating the circle-circle intersection
points in the transverse plane can be found in section A.1 in the appendix.

4.4 Linearised Fitting Algorithm

For the actual vertex reconstruction, the particle trajectories are extrapo-
lated from the innermost detector layer into the vertex region and a common
intersection point is to be fitted.

The curvature of low momentum particle trajectories in the magnetic
field due to the Lorentz force can not be neglected and the problem of vertex
reconstruction becomes non-linear. No analytical solution can be found. In
order to solve this problem a linearised iterative fitting method is used and
will be described in the following.

Since spatial uncertainties are neglected in this scenario, multiple scat-
tering will dominate the uncertainties in extrapolating the particle tracks
from the first detector layer inwards to the vertex region. The tracks are
now forced to intersect with a chosen vertex position. This can be accom-
plished by introducing multiple scattering angles Φ in a transverse and Θ
in a longitudinal plane for each particle. These angles are used to bend the
track in the “right” direction for intersecting with the chosen vertex posi-
tion by changing its corresponding track angles [15]. Furthermore, Φ and Θ
together with the expected scattering angle are used to define a χ2 function
which is minimal at the best estimate for a possible vertex position.

The specific scattering angles will be introduced first before the corre-
sponding χ2 function is defined in terms of Φi and Θi and finally minimized.

4.4.1 Transverse Scattering

By taking a look at the scattering of a single track in the transverse plane
illustrated in Figure 4.5, I will first define some characteristic quantities
repeatedly used in this section.
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1φ
0φ

ζ
Vφ

x
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Hx

Figure 4.5: Illustration of scattering in the transverse plane for definition of
all relevant quantities, describing the vertex fitting method.

With reference to Figure 4.5 the multiple scattering angle Φ in the trans-
verse plane, bending the track in the “right” direction, can be defined as

Φ := φ1 − φ0 , (4.9)

where and φ0 and φ1 denote the reconstructed track angle before and after
the scattering process, respectively [15]. φ1 is directly obtained by measuring
the momentum and hit position of the track in the first detector layer.
However, φ0 is not known explicitly and has to be calculated by using some
further considerations, done in the following.

Again referencing to Figure 4.5, let d be the distance vector between the
vertex position xv and the hit position in the first detector layer xH , i.e.

d := xH − xv . (4.10)

Furthermore, let Φ0V be the difference between the azimuthal angles at the
hit and the vertex position, i.e.

Φ0V := φ0 − φV . (4.11)

This angle is the so called bending angle.
If the particle’s momentum p or the corresponding 3D track radius R is

known, the bending angle Φ0V can be obtained from any two points even if
no other track angle is known3. Choosing xH and xV to be these two points,
Φ0V is implicitly given by a transcendental equation (see [15] and [17]):

sin2 Φ0V

2
=

d2

4R2
+

z2

R2Φ2
0V

sin2 Φ0V

2
, (4.12)

where d = ‖d‖12 denotes the magnitude of the distance vector in the trans-
verse plane and z = (d)3 is the third component of the distance vector.

3This applies to our case, because φ0 is unknown.
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Consequently, Φ0V will be highly dependent on the vertex position, i.e.
Φ0V = Φ0V (xv). Equation 4.12 can be solved for Φ0V numerically, e.g. us-
ing the Newton-Raphson method with appropriate starting values. Possible
starting values are given in section A.2 in the appendix.

From this calculation, the missing azimuthal angle φ0 before scattering
can be obtained as

φ0 =
Φ0V

2
+ ζ , (4.13)

where ζ := ∠d denotes the azimuthal angle of the distance vector d [15].
Using this calculation for φ0 given in Equation 4.13, Equation 4.9 can

be rewritten as

Φ = φ1 − ζ −
Φ0V

2
. (4.14)

4.4.2 Longitudinal Scattering

Analogously to the definition of Φ in Equation 4.9 the polar scattering angle
Θi can be defined as

Θ := θ1 − θ0 . (4.15)

Because the polar angle θ is invariant under motion in a solenoidal mag-
netic field and assuming that no energy is lost during scattering, it can be
expressed by using the bending angle Φ0V calculated above [15]:

cos θ0 =
z

RΦ0V
. (4.16)

Consequently, Equation 4.15 can be rewritten again as

Θ = θ1 − arccos
z

RΦ0V
. (4.17)

Given Equation 4.14 and Equation 4.17 the scattering angles, bending the
track in the “right” direction, can be calculated in geometrical terms without
knowledge of any specific track angle.

4.4.3 Definition and Minimization of χ2

Since there are three particle tracks in the final state of µ → eee, each
particle will be given the index i.

For the specific scattering angles Φ and Θ described above a χ2 function
can be defined [15]:

χ2(xv) :=

3∑
i=1

[
Φ2
i (xv)

σ2
Φ,i

+
Θ2
i (xv)

σ2
Θ,i

]
, (4.18)

which has to be minimized in terms of the fitted vertex position xv. Here
σ2

Φ,i and σ2
Θ,i are basically the variances of Φi and Θi, which are given by

the multiple scattering model in Equation 3.3.
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In order to solve the problems of non-linear equations, the track model
is linearised around the initial vertex position xv,0, i.e. xv = xv,0 + ∆xv.
Consequently, a two-dimensional Taylor series expansion of the multiple
scattering angles Φi and Θi around xv,0 up to first order yields

Φi(xv) = Φi(xv,0) + 〈∆xv,∇Φi(xv,0)〉 (4.19)

Θi(xv) = Θi(xv,0) + 〈∆xv,∇Θi(xv,0)〉 , (4.20)

where 〈·, ·〉 denotes the standard scalar product in R3 [15].
The minimization of χ2 given in Equation 4.18 then yields

∇χ2(xv) =
3∑
i=1

[
∇Φ2

i (xv)

σ2
Φ,i

+
∇Θ2

i (xv)

σ2
Θ,i

]

= 2
3∑
i=1

[
Φi,0∇Φi

σ2
Φ,i

+
Θi,0∇Θi

σ2
Θ,i

]

+ 2

3∑
i=1

[
〈∆xv,∇Φi〉∇Φi

σ2
Φ,i

+
〈∆xv,∇Θi〉∇Θi

σ2
Θ,i

]
,

(4.21)

where Φi,0 := Φi(xv,0) and Θi,0 := Θi(xv,0) is used as short notation.
To minimize Equation 4.21 with respect to the small vertex position

correction ∆xv, the system of three linear equations has to be solved:

∇χ2(xv) = 0 , (4.22)

which can be expressed more explicitly in the following way:

F∆xv + C = 0 (4.23)

with index notation

Fkj =

3∑
i=1

[
∂jΦi∂kΦi

σ2
Φ,i

+
∂jΘi∂kΘi

σ2
Θ,i

]

Ck =
3∑
i=1

[
Φi,0∂kΦi

σ2
Φ,i

+
Θi,0∂kΘi

σ2
Θ,i

]
.

Here the short notation ∂j = ∂
∂xj

is used. The specific derivatives ∂jΦi and

∂jΘi can be calculated using Equation 4.14 and Equation 4.17. This calcu-
lation and the final expressions for ∂jΦi and ∂jΘi are given in section A.3
in the appendix.

The solution of Equation 4.23 is then given by

∆xv = −F−1C . (4.24)

The method described above can be used iteratively [15]. Therefore, the
fitted vertex position xv can be improved by using the sequence

xv,n+1 = xv,n + ∆xv,n with n ∈ N .
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Chapter 5

Simulation

In order to test and evaluate the performance and functionality of the lin-
earised vertex fitting method described in chapter 4, I implemented the
corresponding algorithm in a computer simulation using Python [18] and
SciPy [19]. Moreover, much of the code that is internally used in the simula-
tion is taken from or based on the Mu3e tracking library Tracky developed
by Moritz Kiehn [11].

For the purpose of testing the vertex fitting method, a complete detector
simulation is not needed and consequently several simplifications can be
made.

In the following chapter the general configuration and the basic modules
used for the final simulation will be described in detail.

5.1 Event Generation

The first part of the simulation is to create the signal decay µ→ eee in phase
space, i.e. the physical parameters of the resulting electrons or positrons
respectively.

As described in subsection 3.1.1 the decay topology has to satisfy specific
physical constraints such as four-momentum conservation as seen in Equa-
tion 3.1, which have to be taken into account when randomly generating an
event in phase space.

To satisfy these constraints an implementation of the phase space gener-
ator RAMBO1 is used [20]. This implementation is linked in the Tracky
library.

Using this method, one has the opportunity to choose the spatial posi-
tion x0 of the decay signal, while the electric charges qi and momenta p0,i of
all three tracks are randomly generated in phase space, satisfying the prop-
erties of the signal topology. This provides a complete set of seven physical

1Short for Random Momenta Booster.
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parameters (q,p0,x0) for each decay particle, determining its further motion
in the magnetic field by Equation 4.3.

Moreover, this implementation can be used to generate actual signal
events as well as background events.

5.1.1 Signal

Since the initial position x0 can be chosen freely there are several possible
configurations, which will be briefly named and described in the following.

Origin Every event from a sample is created in the coordinate origin, i.e.
x0 = 0. The coordinate origin is chosen to be the middle of the hollow
double cone target as described in chapter 4.

Uniform The incoming muon beam profile is taken into account and is as-
sumed to be uniformly distributed in the plane perpendicular to the
beam direction.

Consequently, a uniform distribution is convoluted with the target’s
double hollow cone geometry to get the spacial distribution of the
decays on the target. Every x0 of an event is drawn from this distri-
bution.

Gauss The incoming muon beam profile is assumed to follow a rotationally
symmetric two-dimensional Gaussian distribution with µ = 0 cm and
σ = 1 cm [21] in a plane perpendicular to the beam direction. Fur-
thermore, the beam is assumed to be collimated, i.e. this distribution
is cut off at a beam radius r = 1 cm.

Again, this distribution is convoluted with the target geometry to get
the spacial distribution of muon decays on the target. Every x0 of an
event is drawn from this distribution.

This is the most realistic configuration.

The exact mathematical description and calculation of the spatial distribu-
tions for the possible configurations is given in section A.4 in the appendix.

5.1.2 Background

The simulation of accidental background is implemented in a similar way.

Because accidental background (see chapter 3) is going to be simulated,
four-momentum conservation is usually not satisfied, but this will be de-
tected by the momentum measurement. For the purpose of vertex fitting
only events with appropriate momenta are used, i.e. only the initial position
x0 of each particle track has to be perturbed, while the generated momen-
tum p remains unperturbed and satisfies the required signal selection. This

38



5.2. DETECTOR GEOMETRY

is done in the same way as described in the section before with the exten-
sion that the initial position x0,i for each track is generated individually and
independently from one another.

For this purpose I implemented two possible configurations: Uniform

and Gauss which were already described in the previous subsection.

5.2 Detector Geometry

For the purpose of my simulation the general detector geometry as described
in chapter 3 is simplified. I will concentrate on the first detector layer
only with radius set to R = 1.9 cm in a first approximation to the real
detector configuration [2]. Moreover, the detector layer is assumed to have
a perfect cylindrical shape with rotational symmetry along the z-axis and
finite extension.

5.3 Track Propagation

The three generated particles will propagate independently in the solenoidal
magnetic field on helical trajectories as given by the expressions for the po-
sition x(s) and tangent T(s) in Equation 4.7 and Equation 4.8 respectively.
The propagation will be done in purely geometrical terms for the track
model. The magnetic field strength is set to ‖B‖ = 1 T [2].

Since the detector is assumed to have a perfect cylindrical shape, an
analytical expression for the hit position in the first detector layer can be
derived by using the intersection of a helical track with a cylindrical surface.

This method is already implemented in Tracky [11].

5.4 Multiple Scattering

Once the hit position of the propagated track in the first detector layer is
calculated, multiple scattering is simulated by changing the track parame-
ters.

The detector layer is assumed to be a thin scatterer, so that momentum
and energy conservation can be assumed [11]. Consequently, only the track
angles φ and λ are influenced by multiple scattering. The deflection angles
caused by multiple scattering are drawn from Gaussian distributions with
µ = 0 and σ from Equation 3.3 and are added to the corresponding track
angles φ and λ. However, in Equation 3.3 the particle track is assumed
to be perpendicular to the scattering plane. Thus, the traversed thickness
x of the medium has to be adjusted by the inclination angle α, using the
simplified assumption that the particle travels perpendicularly through an
effective thickness xeff of the medium as seen in Figure 5.1.
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x

effx

α

Figure 5.1: Simplification of an effective thickness xeff for multiple scatter-
ing of a track with inclination angle α.

The effective thickness is obtained as

xeff =
x

cosα
. (5.1)

Moreover, the ratio of the thickness x and the material’s radiation length
X0 is set to x/X0 = 0.001. The particle momentum p can be calculated using
either the current track state vector at the hit position or the initial one,
because the absolute momentum is always assumed to be conserved.

5.5 Pixel Structure

The simulation of a finite pixel structure of the detector layer is described
in [11] and is already implemented in Tracky. It is used in a similar way
in this simulation.

The finite size of the pixel in the detector layers is simulated using Gaus-
sian perturbations along the detector layer plane. This plane is defined by
the unit vectors êφ and êz from a common cylindrical coordinate system
(r, φ, z) originated at the true hit position of a track. The hit position inside
a pixel is assumed to be uniformly distributed over its surface. The result-
ing variance in each pixel direction is σ2 = p2/12 with one-dimensional pixel
length p in the specific direction.

Finally, the pixel resolution is simulated by drawing samples from a
normal distribution with variance σ2 as defined above and adding them to
the true hit position along the specific unit vector.

5.6 Initial Vertex Finding

The way I implemented the initial vertex finding algorithms is based on
the corresponding description given in chapter 4, i.e. the intersection of two
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circles in the transverse plane is searched for. However, there are differ-
ent methods to choose the “better” one of both intersection points in the
transversal plane;

z-Dist Once both intersection points of two circles in the transverse plane
are found, the one where the tracks have the smallest distance along
the z-axis is chosen.

s-Dist Instead of choosing the intersection point with the smallest distance
in z-direction, this method chooses the intersection point where the
geometrical path length s between the intersection point and the hit
position for the track with highest momentum is minimal.

Mid-Target In contrast to the two methods mentioned before this one does
not use intersections of two circles in the transverse plane. Instead,
the initial vertex position xv,0 is chosen to be exactly in the middle of

the hollow cone target, i.e. xv,0 = (0, 0, 0)T .

This method might be sufficient because of the target’s compact ge-
ometry.

There are still some special cases to be taken into consideration for z-Dist
and s-Dist respectively. Since intersection points of two circles are calcu-
lated, it might occur that there is no solution at all because of some special
topology (see section A.1 in the appendix). If this applies to our case, the
specific point where both tracks or circles approach each other the closest is
chosen.

Furthermore, another constraint or simplification is made: If the initial
vertex position xv,0 is found to be somewhere outside of the first detector
layer, Mid-Target is applied.

5.7 Termination of Iteration Method

In general there are two different approaches to decide when to terminate
the iterative vertex fitting procedure as described in chapter 4. These two
approaches will be named and briefly described in the following:

Maxiter A fixed number of maximum iterations imax is set before running
the procedure. If the number of iterations i exceeds imax, the proce-
dure is terminated and the fitted vertex position xv,imax of the last
iteration imax is returned.

Tol An accuracy limit ε is set before running the procedure. The corre-
sponding accuracy is calculated using the change of χ2 given in Equa-
tion 4.18 in each iteration step i, i.e. the procedure is terminated if∣∣χ2(xv,i)− χ2(xv,i−1)

∣∣ ≤ ε .
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If this condition is satisfied xv,i is returned.

Furthermore, the methods Maxiter and Tol can be combined by setting
a tolerance limit but terminating the procedure early if this limit is not
reached within a fixed number of maximum iterations.

5.8 Configuration List

To discuss and evaluate results obtained by the computer simulation I want
to define a list C of fixed configurations.

This list shall contain the number of generated events n, the event and
background generation distribution G, the finite pixel size p, the method for
initial vertex finding V0 and the method for terminating the fit procedure
T , i.e.

C := (n,G, p, V0, T ) ,

where

n ∈ N
G ∈ {Origin, Uniform, Gauss}
p ∈ R+

0

V0 ∈ {z-Dist, s-Dist, Mid-Target}
T ∈ {Maxiter, Tol} .

This configuration list C will later be used to determine which configu-
ration was used for a simulation of the vertex reconstruction procedure.
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Chapter 6

Results

In this chapter the results of my computer simulation as described in chap-
ter 5 will be presented. These results will provide an overview of the per-
formance and functionality of the linearised vertex fitting method.

I will begin with some specific results for one fixed configuration set and
then compare this configuration to possible other sets. Furthermore, I will
give a description of the possibilities to suppress background signals by using
the results of the vertex fit procedure.

6.1 Performance of Single Configuration

The performance and functionality of the linearised vertex fitting proce-
dure itself can be evaluated in several different illustrations and methods,
described in the following.

Residuals The residuals ∆ of a reconstructed parameter ξfit are calcu-
lated, i.e. ∆ := ξfit − ξtrue, and the corresponding distribution is plotted.

Assuming normally distributed measurement errors and a linear error
propagation model, ∆ will follow a normal distribution as well. The mean
of this distribution should vanish, if the fitting procedure is working properly.
A non-zero mean indicates a bias in the reconstruction algorithm.

The standard deviation of the distribution can be used as an estimate of
the resolution, i.e. a small standard deviation is a sign for the reconstructed
parameter ξfit describing the true parameter ξtrue well.

Pull Distributions So called pull distributions are used for evaluating the
error description of the reconstruction algorithm. It makes use of the fact
that the linear transformation of a normally distributed random variable
X ∼ N (µ, σ2) to another random variable Z := X−µ

σ will be standard
normally distributed, i.e. Z ∼ N (0, 1).
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The pull of a reconstructed parameter ξfit is then defined to be (ξfit −
ξtrue)/σξ where σξ is the standard deviation of the reconstructed parameter.
In the case of a correct error description the pull distribution is a standard
normal distribution N (0, 1). The standard deviation σ of the pull distribu-
tion is again an estimate for the error description. A deviation σ < 1 is a
sign for an overestimation of the parameter error, while σ > 1 on the other
hand indicates underestimation with respect to the assumed error [11].

χ2 Distribution Since the minimized χ2(xv) function defined in Equa-
tion 4.18 is given in terms of independent standard normally distributed
random variables, it will follow a χ2 distribution:

Let Zi with i ∈ {1, ..., k} be independent, standard normally distributed
random variables. Then the random variable Q :=

∑k
i=1 Z

2
i is defined to

be χ2
k distributed with k ∈ N degrees of freedom, shortly noted by Q ∼ χ2

k

[22, 23].
The only free parameter of the χ2

k distribution is the number of degrees
of freedom k. In the context of a fitting procedure, k can be obtained by

k = nm + nc − np , (6.1)

where nm denotes the number of independent measurements, nc is the num-
ber of additional constraints and np is the number of independent adjustable
parameters [24].

This definition of Q ∼ χ2
k applies to our case, because the definition of

the random variable χ2(xv) given in Equation 4.18 satisfies1 the definition
mentioned above and consequently setting Q ≡ χ2(xv) yields χ2(xv) ∼ χ2

k.
The only missing parameter to fully describe the distribution is k. How-

ever, k can be obtained by using Equation 6.1: This scenario yields three
particle tracks with two quantities (the specific angles Φ and Θ) each to be
fitted, thus nm = 6. Furthermore, to accomplish the fit we have three ad-
justable parameters, the coordinates of the vertex position xv, thus np = 3.
Consequently, the number of degrees of freedom k of the expected χ2

k dis-
tribution is k = 3.

Finally, the χ2(xv) random variable defined in Equation 4.18 for the
fitted vertex position theoretically will follow a χ2

3 distribution:

χ2(xv) ∼ χ2
3 . (6.2)

To describe the performance and functionality of the fit in detail I will
use a fixed configuration to generate a sample with signal decays only:

C =
(
105, Gauss, 0, s-Dist, Tol = 10−8

)
.

1This holds, because a normally distributed random variable X with a mean of µ and
variance of σ2, i.e. X ∼ N (µ, σ2), can be linearly transformed into a standard normally
distributed random variable Z by Z = X−µ

σ
, i.e. Z ∼ N (0, 1). In this case: Z1,i = Φi

σΦ,i
∼

N (0, 1) and Z2,i = Θi
σΘ,i

∼ N (0, 1), respectively.
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For a detailed description of this quantity see section 5.8.

6.1.1 Reconstruction Efficiency

The first method to judge the performance of the vertex reconstruction
algorithm is the reconstruction efficiency, i.e. the amount of data for which
the vertex reconstruction did not work properly. This can be separated in
two possible scenarios:

Fit not converged When a certain number of iterations2 is exceeded, the
fitting procedure is terminated and the fit is declared to be not con-
verged, i.e. no values for the fitted vertex position xv and the corre-
sponding χ2(xv) are returned.

Fit outside detector Sometimes the fit might diverge in a way that the
fitted vertex position will be outside the first detector layer. In this
case the fitting procedure looses its functionality.

Whenever one of these cases applies, the data is discarded and not taken
into account in the following analysis. The amount data for which the
reconstruction did not work in this configuration is illustrated in Figure 6.1.

Fit not converged Fit outside detector
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Figure 6.1: Reconstruction efficiency of a signal sample with 105 events.

In general the reconstruction procedure seems to work and only about
1.4 % of vertices of the generated events are not reconstructed properly.
In many of these events, for which the vertex fitting procedure fails, the
particle with the lowest momentum does not reach the second detector layer,
so that its track would not be reconstructed in the experiment anyway. In
this context and considering realistic conditions for track reconstruction,
the reconstruction efficiency would be even better than in this simulation
scenario.

2Here this number is arbitrarily set to imax = 50.
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The discarded data is not taken into consideration in the following anal-
ysis except for the efficiency and rejection studies.

6.1.2 Vertex Position Residuals

The residuals of the reconstructed vertex position xv for each spatial dimen-
sion are shown in Figure 6.2.
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Figure 6.2: Residuals of the reconstructed vertex position xv in each spatial
dimension x, y and z. The dotted green lines are fitted normal distributions.
The red vertical lines are the fitted means of the distributions.

To each distribution of the residuals ∆ = xv,fit−xv,true a normal distri-
bution is fitted, yielding parameters for the mean µ and variance σ2 of the
distribution which can also be seen in Figure 6.2.

Each dimension of ∆ shows small deviations from a fitted normal dis-
tribution and especially the distributions’ tails are clearly non-Gaussian.
Nevertheless, the core seems to be well modelled by a Gaussian distribu-
tion. Each mean µ nearly vanishes and confirms that there is no bias in the
reconstruction algorithm. The fitted width of the distributions are almost
identical, but it is the smallest in the z-direction. Moreover, the widths yield
an estimate for a vertex resolution δxv, i.e. with what spatial resolution a
possible vertex can be reconstructed. These resolutions are δxv = 200µm,
δyv = 200µm and δzv = 170µm.

The non-Gaussian tails of the distributions shown in Figure 6.2 can be
understood when taking the single event topology into account. Since all
events are generated in a flat phase space, topologies ill suited for vertex
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fitting might occur. An example for the topology of an event producing the
corresponding data in one of the tails is shown in Figure 6.3.
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Figure 6.3: Topology of an event producing data in the tails of the vertex
position residuals ∆. The particle tracks are almost back-to-back.

In this scenario the particle tracks are almost back-to-back, leading to
a loss of one constraint in reconstructing xv. The idea of fitting multiple
scattering angles Φ and Θ to bend the tracks in the direction intersecting
with xv does not work in this case, because bending the tracks by using Φ
and Θ does not affect a possible estimate for xv along the track direction
as seen in Figure 6.4. Thus, another degree of freedom is gained and the
reconstruction does not work very precisely.
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Figure 6.4: Topology of an event producing data in the tails of the vertex
position residuals ∆ in a transverse view. The estimate for xv gains another
degree of freedom along the track direction.

This observation can be studied by transforming the vertex position
residuals ∆ into new coordinates (a, b, c). The orthonormal basis of this
coordinate set is defined as follows:

Let pmax be the initial momentum vector of the track with highest
momentum in an event and define êa := pmax/ ‖pmax‖. This is the axis
for which the vertex reconstruction seems to fail. Furthermore, let êb :=
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(pi × pj) / ‖pi × pj‖ with arbitrary i 6= j be the normal vector of the decay
plane and êc := êa × êb lie in the decay plane.

The vertex position residuals ∆ can now be projected on the new set
of basis vectors. The corresponding distributions are shown in Figure 6.5.
The vertex resolution in the a-direction is the worst, i.e. the corresponding
distribution width is three times bigger than the width of the distributions
in the orthogonal directions and has the biggest non-Gaussian tails.

The vertex reconstruction indeed does not work very precisely along a
track direction with high momentum.
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Figure 6.5: Residuals of the reconstructed vertex position xv in new coor-
dinates a, b and c. The dotted green lines are fitted normal distributions.
The red vertical lines are the respective fitted means of the distributions.

6.1.3 Pull Distributions

Since the multiple scattering angles Φ and Θ are fitted by minimizing the
χ2(xv) function for reconstructing the vertex position (see Equation 4.18),
the error description can be analysed by plotting the pull distributions for
these angles.

Because the multiple scattering model described in chapter 3 is used,
the mean of Φ and Θ should vanish. The standard deviations σΦ and σΘ

of the reconstructed angles are estimated by using the Highland formula in
Equation 3.3 for the track momenta and directions measured in the first
detector layer.

The distribution of the reconstructed multiple scattering angles Φ and
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Θ can be seen in Figure 6.6. The mean of each distribution vanishes as
expected and its core is well described by a normal distribution.

0.06 0.04 0.02 0.00 0.02 0.04 0.06

fit [rad]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
=0.0001
=0.0061

0.06 0.04 0.02 0.00 0.02 0.04 0.06

fit [rad]

0

5000

10000

15000

20000
=0.0000
=0.0058

Figure 6.6: Distribution of reconstructed multiple scattering angles Φ and
Θ. The dotted green lines are fitted normal distributions. The red vertical
lines are the respective fitted means of the distributions.
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Figure 6.7: Residuals and pull distributions for reconstructed multiple scat-
tering angles Φ and Θ. Φgen and Θgen denote the true multiple scattering
angles generated by the simulation. The dotted green lines are fitted normal
distributions. The red vertical lines are the respective fitted means of the
distributions.

Similar properties are expected for the residuals and pull distributions
of Φ and Θ, which are shown in Figure 6.7. For the residuals the respective
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angles Φgen and Θgen generated by the simulation are taken as the true
values for the multiple scattering angles.

All distribution cores are well described by a normal distribution with
vanishing mean, which is expected. However, the fitted standard deviation
σfit of the pull distributions is smaller than the expected width of σ = 1,
indicating an overestimation of the reconstructed parameter error or recon-
structed angles, which are too small. This conjecture can be checked by
taking the residuals of the absolute values of Φ and Θ into consideration,
i.e. the distributions of |Φfit| − |Φgen| and |Θfit| − |Θgen|. These can be
seen in Figure 6.8. The figure shows that the mean of both distributions
does not vanish but is shifted to negative values. Thus, the reconstructed
multiple scattering angles are systematically too small in comparison to the
corresponding generated values.

This effect can be explained with the vertex reconstruction algorithm
itself. Two multiple scattering angles per track have to be fitted, i.e. six
angles in total. However, only three angles can be constrained by three
tracks [25]. The remaining angles are not constrained at all. Therefore, the
χ2 minimization shifts the reconstructed angles to smaller values and the
pull width is smaller than expected. This issue could be fixed by adding
additional constraints, i.e. requiring the tracks to be in one plane. However,
the influences of an additional constraint can not be estimated, yet.
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Figure 6.8: Residuals of the absolute values of the reconstructed multiple
scattering angles Φ and Θ. The calculation of mean illustrated by the red
vertical line and RMS is based on the data between the 0th and 99th per-
centile.

The reconstruction of the multiple scattering angles Φ and Θ in the first
detector layer influences the estimate for the track angles φ and λ as well.
This can be illustrated by taking their residuals with respect to the true track
angles φtrue and λtrue into account. The reference point for the true track
angles is chosen to be the true vertex position, i.e. the initial track angles
of a signal are considered. One the one hand, φ and λ can be calculated
at the track position extrapolated to the point of closest approach to an
arbitrary estimate for a vertex position. This arbitrary estimate is chosen
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to be the coordinate origin. On the other hand, φ and λ at the reconstructed
vertex position xv for a track forced to intersect with xv can be evaluated.
The corresponding distributions are shown in Figure 6.9. As expected, the
distributions for the tracks after reconstruction of xv are much more narrow,
especially for the azimuthal track angle φ. The RMS shown in Figure 6.9 is
always calculated for data between the 5th and 95th percentile. Therefore,
the reconstruction of the vertex position significantly improves the estimate
of the track angles φ and λ.
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Figure 6.9: Residuals of the reconstructed track angles φ and λ with re-
spect to the track angles angles φtrue and λtrue at the true vertex position.
The distributions are shown for tracks propagated to the point of closest
approach to the coordinate origin and for tracks bent and extrapolated to
the reconstructed vertex position xv. The RMS is always calculated for data
between the 5th and 95th percentile.

6.1.4 χ2 Distribution

The distribution of χ2(xv) given in Equation 4.18 for the reconstructed
vertex positions xv is shown in Figure 6.10.

From considerations in the beginning of this chapter it is known that the
distribution of χ2(xv) given in Equation 4.18 will be a χ2 distribution with
k = 3 degrees of freedom:

χ2(xv) ∼ χ2
3 .

Consequently, the distribution’s mean will be expected at µtheo = 3. The
calculated mean of the simulated data yields µ ≈ 2.89 and thus fits well to
the expected value. This mean is based on the acquired data between its
0th and 99th percentile, i.e. it is based on 99 % of the data sample.

Figure 6.10 shows that χ2(xv) follows indeed a χ2
3 distribution. Thus,

the reconstruction algorithm is working and χ2(xv) is well-defined in terms
of the minimization.
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Figure 6.10: Distribution of χ2(xv) for reconstructed vertex positions xv.
The red vertical line shows the calculated mean µ of the distribution. The
green dashed line is a fit of a scaled probability density function of a χ2

3

distribution.

6.1.5 Momentum Dependence

The effects of multiple scattering for particles with different momenta p are
already shown in chapter 3. According to Equation 3.3 the dependence of the
variance of the multiple scattering distribution on the particle momentum
is:

θ2
0 ∝ p−2 .

This dependence might affect the vertex reconstruction, too.

After an event went through the fitting procedure the lowest particle
momentum pmin of this event is calculated and the corresponding results
are classified on the basis of pmin into specific momentum bins. Due to the
kinematics the largest possible value for the smallest momentum corresponds
to mµ/3, i.e. pmin ≈ 35 MeV/c.

First the distribution of the vertex position residuals ∆ in every spatial
dimension as a function of the respective momentum bin pmin is shown. For
each momentum bin, the mean of the distribution vanishes as expected. The
width of the distribution can again be understood as a vertex resolution δxv
(see subsection 6.1.2).

The relation between the momentum bin pmin and the vertex resolution
δxv is shown in Figure 6.11. Obviously, low momenta cause a large width
in the distribution. This matches the expectation, because low momentum
particle tracks are highly bent and strongly deflected due to multiple scat-
tering.

The distribution of χ2(xv) for reconstructed vertex positions xv seems
not to be affected as shown in Figure 6.12. All distributions still follow the
expected χ2

3 distribution.
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Figure 6.11: Dependence of the vertex resolution δxv in every spatial di-
mension on the momentum bin pmin.
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Figure 6.12: Distribution of χ2(xv) classified into lowest momentum bins.
No big differences occur.
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6.2 Configuration Dependencies

Since the performance of the vertex reconstruction algorithm was discussed
in terms of a fixed configuration set in the previous section, it might behave
different under configuration changes.

These changes in the configuration set can be classified into two groups.
On the one hand there are internal changes, i.e. choices that can be arbi-
trarily made on the software side, e.g. which initial vertex finding procedure
to use. On the other hand there are external changes, i.e. constraints that
are given by the setup of the experiment, e.g. the pixel structure or the
thickness of the detector layers.

Several changes in the configuration set and the resulting behaviour will
be discussed in the following section. The configuration from section 6.1
will be used, but this time with 104 generated events in total and only
one element of the configuration set will be changed at a time. The other
elements remain unchanged, if it is not mentioned explicitly.

Effects of changes in the configuration set will only be discussed in detail
if they are significant. The plots in the following section are shown without
error bars, because they are mainly used to show correlations qualitatively.

6.2.1 Internal

Initial Vertex Finding

Since the multiple scattering angles Φ and Θ are linearised around an initial
vertex position xv,0, it is necessary to choose appropriate values for xv,0.

In section 6.1 the method s-Dist was used for establishing an initial
guess for the possible vertex position.

Mid-Target Effects can only be observed in the reconstruction efficiency
shown in Figure 6.13.

The reconstruction efficiency is significantly worse. The vertices of al-
most 10 % of the generated signals can not be reconstructed properly, be-
cause the fit does not converge at all or starts to diverge towards the outside
of the first detector layer. This means that almost 10 % of the acquired data
is lost in the context of vertex reconstruction.

The remaining data for which the fit did converge yield the same results
as in the previous section. There are no significant changes in the vertex
resolution, the pull distributions or the χ2 distribution of the reconstructed
vertices.

The effects on the reconstruction efficiency can be explained due to the
geometry of the target. The distance between the initial vertex position and
the true vertex position will always be in a range between the target’s radius
R and half of its length L. If the muon beam is assumed to be Gaussian as
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Figure 6.13: Reconstruction efficiency of a signal sample with 104 events
with initial vertex finding method Mid-Target.

it is done in this configuration, the true vertex position will be more likely
at the tips of target so the distance will be strongly shifted to values close
to L/2. This is a bad choice for an initial vertex position in some parts of
the generated phase-space.

z-Dist This method yield the same results like s-Dist. No significant
effects on the reconstruction efficiency, vertex position residuals, pull distri-
butions or χ2 distribution can be observed.

Termination of Fitting Procedure

Because an essential part of the Mu3e experiment is the fast online data
analysis, it might be interesting to know what results are returned by the
reconstruction algorithm, if it only has a limited number of iterations.

Maxiter After imax iterations χ2(xv) is calculated and compared to the one
from the iteration before as a crosscheck, i.e. χ2

imax
−χ2

imax−1 is calculated. Its
dependence on imax is shown in Figure 6.14. Since signal samples with 104

events each are analysed, the shown value of χ2
imax
− χ2

imax−1 in Figure 6.14
is the calculated mean of the values in the sample, based on data between
the 0th and 90th percentile. For really small imax the difference is of the
order of magnitude of O(102), but then almost two orders of magnitude are
achieved per maximum iteration step.

This can also be seen in an example χ2 distribution for imax = 5 shown
in Figure 6.15. The mean is again calculated on a basis of 99 % data and
yields a high deviation from the expected mean at µtheo = 3. The χ2(xv)
values causing the high mean are consequently not minimal.
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Figure 6.14: Mean of the difference between the values of χ2(xv) in the
last two iterations of a signal sample with 104 events as a function of the
maximum iterations imax.
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Figure 6.15: Distribution of χ2(xv) for reconstructed vertex positions xv
with imax = 5. The red vertical line shows the calculated mean µ of the
distribution. The green dashed line is a fit of a scaled probability density
function of a χ2

3 distribution.

Another effect of using Maxiter can be seen in the vertex resolution
δxv (see subsection 6.1.2). Since the observable effect on δxv is similar in
every spatial dimension it is sufficient to only look at the three-dimensional
resolution given by its norm:

δr := ‖δxv‖ =
√
δx2

v + δy2
v + δz2

v . (6.3)

δr as a function of imax is illustrated in Figure 6.16. For small imax
the three-dimensional width of the vertex position residuals is three times
bigger than for high values of imax. An almost constant plateau for the
vertex resolution seems to start at the fourth iteration.
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For the purpose of online data analysis and with reference to Figure 6.14
and Figure 6.16, maximum iterations i ≥ 4 should be chosen.
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Figure 6.16: Dependence of the three-dimensional vertex resolution δr on
the maximum iterations imax.

6.2.2 External

Muon Beam Profile

In section 6.1 the muon beam was assumed to follow a two-dimensional
normal distribution in order to describe the vertex reconstruction in detail
in an almost realistic way.

This assumption will be substituted by a uniformly distributed muon
beam and a signal generation in the coordinate origin in the following.

Uniform Distributing the true vertex positions uniformly on the target
yield the same results as a Gaussian muon beam profile does.

No significant effects on the reconstruction efficiency, vertex position
residuals, pull distributions or χ2 distribution can be observed.

Origin Effects can only be observed on the reconstruction efficiency.

When every signal is generated in the coordinate origin, the reconstruc-
tion efficiency is slightly better than the one of the Gaussian beam profile
shown in Figure 6.1, because less vertices are reconstructed outside the first
detector layer. The reconstruction efficiency of a sample created in the co-
ordinate origin is shown in Figure 6.17.

Less vertices are reconstructed outside the first detector layer, because
the true vertex positions have the maximum distance to the detector mate-
rial compared to a vertex somewhere on the target’s surface. This also holds
for the initial vertex in a small region around the true vertex position.
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Figure 6.17: Reconstruction efficiency of a signal sample with 104 events
created in the coordinate origin.

The vertex resolution, pull distributions and χ2 distribution of recon-
structed vertices remain unchanged.

Pixel Size

Since multiple scattering is assumed to be the dominant source of spatial
uncertainties, the finite pixel resolution of the first detector layer has been
neglected so far. Nevertheless, the fitting procedure might behave different
when this assumption is loosened and a finite pixel structure is introduced
according to the description in chapter 5.

Therefore, the distribution of the vertex position residuals ∆ in every
spatial dimension as a function of the pixel size p can be investigated. The
standard deviation σ of the distribution can be understood as a vertex res-
olution δxv (see subsection 6.1.2). The following configuration was used for
each dataset:

Cp =
(
104, Origin, p, s-Dist, Tol = 10−8

)
.

Again the observable effect on the vertex position resolution δxv is sim-
ilar in every spatial dimension it is sufficient to only look at the three-
dimensional resolution δr defined in Equation 6.3.

The observed dependence of the resolution δr on the pixel size p is shown
in Figure 6.18.

This figure shows clearly that in the range of a realistic pixel size of
p = 80µm used in the Mu3e experiment [2] δr is nearly constant. The
reconstruction algorithm seems not to be affected by the pixel size in this
range. Moreover, an effect from the pixel structure is only visible for pixel
sizes above p > 200µm.
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Figure 6.18: Dependence of the three-dimensional vertex resolution δr on
the pixel size p in the first detector layer. The vertical red line shows the
realistic pixel size of p = 80µm to be used in the experiment [2].

Material Thickness

The dominant effects of multiple scattering are not only affected by the
momentum of the particle traversing the material. Equation 3.3 claims for
the standard deviation of the multiple scattering distribution:

θ0 ∝
√

x

X0

[
1 + 0.038 ln

x

X0

]
.

It depends on the ratio of the traversed material thickness x and its
radiation length X0. Since multiple scattering angles Φ and Θ are fitted,
this dependence affects the vertex reconstruction algorithm, too.

The following configuration is used for each dataset.

C =
(
104, Gauss, 0, s-Dist, Tol = 10−8

)
.

The effects of the material thickness can already be seen in the recon-
struction efficiency, i.e. how much data is lost due to divergence or non-
convergence of the fit. This dependency is illustrated in Figure 6.19 and
shows that there is a constant plateau of about 1 % data loss in a thickness
range between 10−7 and 10−3. Thicknesses exceeding this range strongly
influence the data loss, so that a thickness x/X0 ≤ 10−3 is preferable.

The vertex position residuals yield that three-dimensional vertex reso-
lution δr = ‖δxv‖ (see subsection 6.1.2) is affected by the material as well.
The dependence of δr on the material thickness in units of the radiation
length x/X0 is shown in Figure 6.20.

When going to lower x/X0 the resolution δr gets constantly better up to
very low δr as expected, because the generated tracks are less deflected by
multiple scattering and thus can be reconstructed more precisely. However,
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Figure 6.19: Reconstruction efficiency as a function of the material thickness
x in units of its radiation length X0. The vertical red line shows a realistic
value for the purpose of the Mu3e experiment.

the more significant changes can be seen when going to higher x/X0, strongly
influencing the vertex resolution to worse values. In conclusion, the influence
below a material thickness of x/X0 = 10−3 is not as strong as in the opposite
direction, so that x/X0 = 10−3 is not an optimal but appropriate value for
the material in terms of vertex reconstruction.

10-7 10-6 10-5 10-4 10-3 10-2 10-1

x/X0

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

r 
[c

m
]

Figure 6.20: Dependence of the three-dimensional vertex resolution δr on the
material thickness x in units of its radiation length X0 of the first detector
layer. The vertical red line shows a realistic value for the purpose of the
experiment.
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6.3 Background Suppression

For studying the suppression of possible backgrounds a signal sample S and
a background sample B are generated according to chapter 5 and given to
the vertex reconstruction routine both having the following configuration:

C =
(
104, Gauss, 0, s-Dist, Tol = 10−8

)
.

The suppression can be judged by taking the reconstruction efficiency
and the χ2 distribution of B into account as well as by setting up so called
ROC3 curves.

6.3.1 Reconstruction Efficiency

For both the signal sample S and the background sample B, the reconstruc-
tion efficiency of the algorithm can be studied in a similar fashion to the
signal sample in subsection 6.1.1.

An illustration of the reconstruction efficiency is shown in Figure 6.21.
The amount of events where the fit did not converge or converged outside
the detector are clearly different for both samples. Almost 30 % of the
events from the background sample cause the algorithm to diverge or to not
converge. In contrast to the background sample, about 1.5 % of the signal
sample can not be taken into account in the analysis.

The reconstruction algorithm does not seem to work very well on acci-
dental background. This is desired in terms of background suppression.
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Figure 6.21: Reconstruction efficiencies of a signal and background sample
with 104 events each.

6.3.2 χ2 Distribution

Another approach in distinguishing background from a possible signal is
to take the χ2 distribution into account. As seen in subsection 6.1.4, the

3Short for receiver operating characteristic, indicating their origin in the study of data
transmission.
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distribution of χ2(xv) for a pure signal sample follows a χ2 distribution with
three degrees of freedom, i.e. χ2(xv) ∼ χ2

3.

Figure 6.22 shows the corresponding distribution of χ2(xv) for a pure
background sample.
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Figure 6.22: χ2 distribution of an accidental background sample. The red
vertical line shows the calculated mean of the distribution.

It is evident that χ2(xv) does not follow a χ2 distribution at all. The
scale of values χ2(xv) is much larger than the ones from a pure signal sample
as shown in Figure 6.10.

Consequently, the value of χ2(xv) is a helpful criterion for distinguishing
a possible signal from accidental background via vertex reconstruction.

6.3.3 ROC Curves

ROC curves are graphical plots originally used in signal detection theory.
They show the performance of a binary classifier system4 as its discrimina-
tion threshold is varied [26].

For the purpose of vertex reconstruction, this threshold could for exam-
ple be a certain χ2-cut which corresponds to the value of χ2(xv), calculated
for a reconstructed vertex position xv using Equation 4.18. If the value
χ2(xv) for an event does not exceed the value of the χ2-cut, the event is
classified as selected, denoted with the index sel, i.e. the event would be
taken into consideration for possibly being a signal. This acts as a binary
classifier system. Ssel ⊆ S and Bsel ⊆ B are the sets of events from a sample
classified as selected.

With these sets different quantities can be defined as function of a certain
cut c.

4A system that classifies a given set of objects into two groups on the basis of whether
the object has a certain property or not.
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Efficiency The efficiency can be defined on the basis of the signal sample
S via

ε(c) :=
|Ssel(c)|
|S| , (6.4)

where |·| denotes the cardinality of the set. It is a measure for how
many signals from a sample will be classified as an actual signal ac-
cording to a specific cut criterion, i.e. ε = 1 ideally.

Rejection The rejection r can be defined as the opposite of the efficiency
ε on the basis of a background sample B:

r(c) := 1− |Bsel(c)||B| . (6.5)

It is a measure for how many background will be suppressed and classi-
fied as actual background according to a certain cut criterion, i.e. r = 1
ideally.

The ROC curves for the configuration C defined above with the χ2(xv)
value as a threshold are shown in Figure 6.23.
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(d) Rejection vs efficiency

Figure 6.23: ROC curves for configuration C with χ2(xv) value as threshold.

The efficiency has a fast rising edge with looser χ2 cut and a flat plateau
at about 96 % efficiency. The missing 4 % can be explained due to non-
converging fitting procedures, fitted vertex positions outside the first detec-
tor layer (see subsection 6.1.1) or really high values of χ2(xv). The rejection
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shows an inverse behaviour on a much larger χ2 scale. Combining effi-
ciency and rejection shows that a high efficiency and a high rejection can
be achieved at the same time by finding an appropriate sweet-spot on the
corresponding curve. Thus, the vertex reconstruction algorithm seems to be
a helpful constraint in distinguishing signal from accidental background.

Since the muon decays are distributed on the target’s surface, another
choice for a threshold would be the distance d from the reconstructed ver-
tex position to the target. The distribution of d for the signal and the
background sample is shown in Figure 6.24.
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Figure 6.24: Distribution of the distance d of the reconstructed vertex posi-
tion to the target’s surface for a signal and a background sample. Note the
different scale of the abscissa.

Because the scale of d for the signal sample is one order of magnitude
smaller than for the background sample, it is also an appropriate choice for
a threshold in ROC curves. These can be seen in Figure 6.25.

In general the ROC curves with χ2(xv) and d as threshold show the
same behaviour. However, choosing d as a threshold yields a much faster
rejection drop in the range of a still rising efficiency, which might be difficult
for finding an appropriate sweet-spot for high rejection at high efficiency.

Since the methods with χ2(xv) and d as a threshold are very similar,
the ROC curves could be optimized by combining both, e.g. vary the χ2(xv)
and d threshold at the same time.
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(d) Rejection vs efficiency

Figure 6.25: ROC curves for configuration C with distance d from the re-
constructed vertex position to the target’s surface as threshold.

0 2 4 6 8 10
2

0.00

0.02

0.04

0.06

0.08

0.10

d
 [

cm
]

0

5

10

15

20

25

30

35

40

(a) Signal sample

0 2 4 6 8 10
2

0.00

0.02

0.04

0.06

0.08

0.10

d
 [

cm
]

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

(b) Background sample

0 200 400 600 800 1000
2

0.0

0.2

0.4

0.6

0.8

1.0

d
 [

cm
]

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

(c) Background sample on a large scale

Figure 6.26: Correlation between χ2(xv) for reconstructed xv and its dis-
tance d to the target surface for a signal and a background sample.
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The correlation between χ2(xv) and d for a signal and a background
sample is illustrated in Figure 6.26 as a two-dimensional histogram. This
figure shows that for most of the signal events χ2(xv) and d are small at
the same time, especially at the median of the χ2

3 distribution. In contrast
to the signal, the background sample does not show any clear correlation
between χ2(xv) and d on an appropriate scale.

The correlation between χ2(xv) and d for signal motivates the study of
the efficiency and rejection in two dimensions, which might be helpful for
finding the sweet-spot in rejection and efficiency. The two-dimensional ROC
curves for efficiency and rejection are shown in Figure 6.27.

With appropriate choices for χ2(xv) and d in the combined two-dimensional
ROC curves the efficiency and rejection can indeed be improved. By com-
paring the correlation between χ2(xv) and d from a signal sample to a back-
ground sample, one could for example find an appropriate sector of an el-
lipse with the major axis in χ2 and d direction for choosing cut criteria to
distinguish signal from background in the corresponding two-dimensional
ROC-curves.
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Figure 6.27: Efficiency and rejection curve in two-dimensions, i.e. the χ2(xv)
and d threshold are varied at the same time.
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6.4 Invariant Mass Resolution

The kinematics of the µ → eee decay described in chapter 3 show that the
system’s invariant mass at the moment of the decay will be the muon mass
(see Equation 3.1). However, when the particle tracks propagate helically
towards the first detector layer only their absolute momentum will be con-
served, while the angles between the different momentum vectors pi will
change5.

Once the angles between the momentum vectors change, the net mo-
mentum appears not to be conserved or in other words the system’s center
of mass will not stay at rest with respect to the detector frame. This energy
can only be taken from the muon mass. Thus, the invariant mass of a system
in which the particles are propagated anywhere but to the original vertex
position will always be smaller than the muon mass. Furthermore, the in-
variant mass of the particles at the reconstructed vertex position will be
identical to the muon mass, if the reconstructed and original vertex coincide
precisely.

The distributions of the invariant masses for propagation to the point of
closest approach of an arbitrary spatial position or for bending the tracks
directly to the reconstructed vertex position are compared. In this scenario,
the arbitrary position is chosen to be the coordinate origin and the config-
uration from section 6.1 is used.

Figure 6.28 shows the residuals for both distributions with respect to the
muon mass mµ.
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Figure 6.28: Distribution of invariant mass residuals with respect to the
muon mass mµ for signals propagated to the coordinate origin and the re-
constructed vertex position. The RMS is always calculated on a data basis
in range between the 5th and the 95th percentile.

The distribution with the reconstructed vertex position is much more

5This holds for the process of multiple scattering, too.
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narrow than the other one for an xv in the origin. This is expected, because
the reconstructed vertex position will hopefully coincide with the true vertex
position and thus the center of mass will be almost at rest. The muon mass
will be obtained by calculating the system’s invariant mass.

This is a useful aspect for background suppression, too. For every possi-
ble background, the upper bound for the invariant mass will also be mµ. If
an event is measured for which the invariant mass is smaller than the muon
mass, it can be background with neutrinos carrying away momentum or it
can be an actual signal. An additional estimation for distinguishing both
scenarios would be reconstruction of xv, forcing the particle tracks to inter-
sect with xv and calculate the invariant mass of the particle tracks at xv.
For an actual signal the calculation will much more likely yield the muon
mass, while for background the neutrino momentum is still missing.

The mass resolution is highly influenced by badly reconstructed signal
events, e.g. a mismeasurement of a track momentum or direction affects
momentum balance and leads to a measurable missing momentum [2]. Re-
jecting these events will consequently improve the invariant mass resolution.
For this purpose the acoplanar momentum vector pacoplanar is defined as
done by the SINDRUM collaboration [3]. pacoplanar is the vectorial sum of
all particle momenta projected into the decay plane, which is defined by the
three tracks.

Due to multiple scattering the momentum vectors at the reconstructed
vertex position will not necessarily lie in a single plane. Thus, a decay plane
is defined first by its normal vector

n̂ =
p1 × p2 + p2 × p3 + p3 × p1

‖p1 × p2 + p2 × p3 + p3 × p1‖
,

where p1, p2 and p3 denote the momentum vector of the respective particle
track.

In a similar way to reconstruct the invariant mass, the effects of vertex
reconstruction on pacoplanar can be studied. The distribution of its magni-
tude is shown with respect to the coordinate origin and the reconstructed
vertex position xv in Figure 6.29. For the signal decay pacoplanar should
vanish at the decay position due to its kinematics as seen in Equation 3.2.

Again the distribution with respect to the reconstructed vertex position
is much more narrow, i.e. reconstructing vertices can compensate mismea-
surements of momenta.

Since the distributions of the invariant mass difference and the acopla-
nar momentum show a similar behaviour, their correlation is shown in Fig-
ure 6.30 with respect to reconstructed vertices. The acoplanar momentum
reconstruction seems to be dominant in reconstructing the invariant mass
in the decay plane. If pacoplanar is small, the invariant mass difference is
close to zero in most cases. Finally, the invariant mass resolution could be
improved by applying an appropriate cut for pacoplanar.
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Figure 6.29: Distribution of the absolute acoplanar momentum pacoplanar
for signals propagated to the coordinate origin and the reconstructed vertex
position. The RMS is always calculated on a data basis between the 5th
and the 95th percentile.
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Figure 6.30: Correlation between invariant mass difference and acoplanar
momentum.
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Chapter 7

Conclusion

Since neutrino oscillations have been observed, it is evident that lepton
flavour conservation as predicted by the original formulation of the Stan-
dard Model is violated in the neutral lepton sector. Many new physics
models include lepton flavour violation in the charged sector as well, but an
experimental discovery is still missing.

In order to search for physics beyond the Standard Model the Mu3e
experiment is specifically designed to search for the lepton flavour vio-
lating muon decay µ→ eee with a branching ratio sensitivity of about
B = O(10−16) [2] – four orders of magnitude more sensitive than the latest
experimental result published by the SINDRUM collaboration [3].

The proposed branching ratio sensitivity requires high precision for tim-
ing, momentum and position measurements. This precision is achieved by a
novel experimental design involving four thin cylindrical layers of pixel detec-
tors based on HV-MAPS [14] positioned around a double hollow cone target.
For precise momentum measurements a homogeneous solenoidal magnetic
field is aligned along the rotational axis of the detector. Due to Lorentz
forces the decay electrons move on helical trajectories in the magnetic field.
The track curvature is defined by the momentum of the respective particle.

The decay electrons of µ→ eee are limited in their kinetic energy by an
upper bound of approximately 53 MeV, leading to low momentum particle
tracks. Consequently, they are strongly deflected due to multiple Coulomb
scattering when traversing the detector layers. The effects of multiple scat-
tering in the detector material are the dominant source of uncertainties in
track reconstruction.

A useful characteristic of µ→ eee to distinguish it from accidental back-
ground is the fact that the decay products originate in a common vertex,
which has to be reconstructed. Due to multiple scattering and bent particle
tracks this reconstruction is not trivial.

In this thesis a linearised three-dimensional vertex fit for low momentum
particles in a solenoidal magnetic field was presented and its performance in
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the context of the Mu3e experiment was investigated. This is a completely
new approach in vertex reconstruction, because multiple scattering is taken
into consideration as the only source of measurement uncertainties while
the remaining track parameters such as momentum or hit position in the
detector layers are assumed to be known exactly.

The performance was evaluated using a computer simulation written in
Python. A full detector simulation was not needed and several simplifica-
tions were made. Only the first detector layer was taken into consideration
and assumed to have a perfect cylindrical shape. For evaluating the general
performance of the vertex reconstruction the layer’s finite pixel structure
was neglected, i.e. spatial uncertainties were avoided. A Gaussian model
was used to simulate multiple Coulomb scattering as the only source of
uncertainties in track reconstruction.

The performance of the linearised vertex reconstruction algorithm was
studied in terms of reconstruction efficiency, vertex position resolution, par-
ticle momentum and algorithm configuration dependencies, background sup-
pression and invariant mass resolution.

The performance analysis of a signal sample showed that the linearised
vertex reconstruction algorithm works quite well. The proper reconstruction
of vertices only fails at the 1 % level. For the remaining fitted vertex positions
xv the minimized χ2(xv) function is well defined and follows the expected χ2

3

distribution with three degrees of freedom. The vertex position residuals of
the signal sample showed that there is no spatial bias in the algorithm and
yielded a total vertex position resolution of about 200µm in each spatial
dimension. This matches the expectation from early sensitivity studies [2].
The pull distributions of the reconstructed multiple scattering angles Φ and
Θ showed that χ2(xv) function shifts them to smaller values than expected
or generated respectively because of the lack of constraints. However, this
is an intrinsic problem of the fitting procedure by construction and could be
resolved by adding additional constraints, e.g. requiring the particle tracks
to be in the same plane. However, the effects of additional constraints again
have to be studied in terms of background suppression. As expected, the
vertex reconstruction works best for high momentum particles, because they
are less bent in the magnetic field and less deflected by multiple scattering
in the first detector layer.

The investigation of algorithm configuration dependencies showed that
the vertex reconstruction is more affected by external changes than by in-
ternal ones.

On the internal side the method by which the reconstruction procedure
is terminated, affected the vertex reconstruction the most. For proper recon-
struction efficiency and appropriate vertex position resolution at least four
iterations of the vertex reconstruction procedure should be executed, if fast
online data analysis is considered. The method of initial vertex finding did
not have any significant influence on the vertex reconstruction at all except
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for minor changes in the reconstruction efficiency. For the purpose of the
Mu3e experiment, the methods described in this thesis seem to be sufficient.
Nevertheless, improved initial guesses of an initial vertex position might be
considered, e.g. the target’s surface could be used to minimize the distance
from the initial vertices to the surface or the point of closest approach of
two helical tracks could be calculated.

On the external side only the pixel size and the thickness of the detector
layers had a strong influence on the performance of the vertex reconstruc-
tion whereas the muon beam profile did not induce any effects. It turned
out that a pixel size above 200µm significantly reduces the vertex position
resolution. A realistic pixel size of 80µm as to be used by the Mu3e exper-
iment [2] is an appropriate choice in terms of vertex resolution, because in
this range the reconstruction is independent of the pixel size. Moreover, the
simplification of a vanishing pixel structure and neglecting spatial resolution
for the purpose of vertex reconstruction was justified. Multiple scattering
in the first detector layer was indeed the dominant source of uncertainties
compared to spatial ones. The material thickness yielded similar results -
a relative thickness of x/X0 = 0.001 is again appropriate for having high
vertex resolution.

Another essential achievement of the vertex reconstruction is the sup-
pression of accidental background. In contrast to the signal samples consid-
ered before, the vertex fitting procedure does not work properly on acciden-
tal background samples, which is a desired aspect in terms of background
suppression. The suppression was investigated using ROC curves with vary-
ing χ2(xv) and distance to the target surface d thresholds for reconstructed
vertices xv. The ROC curves showed that especially the value of χ2(xv) is a
helpful threshold for discriminating signal against background. High rejec-
tion at the 99 % level and high efficiency at the 95 % level can be achieved
at the same time using χ2(xv) as a discrimination threshold. This is a much
better sweet-spot than using the distance d as a discrimination threshold.
Furthermore, this sweet-spot might be even improved due to correlations
between χ2(xv) and d for signal, e.g. by choosing an appropriate sector of
an ellipse with the major axis in χ2(xv)- and d-direction as a cut criterion.
The intrinsic check of the assumption of a common vertex is a powerful tool
for discriminating signal against accidental background.

Finally, the invariant mass resolution was investigated. Due to the kine-
matics of µ→ eee the system’s invariant mass at the moment of the decay
will be always the mass of the muon. However, when the decay electrons
propagate in the magnetic field the angles between the different momentum
vectors will change. The center of mass will not stay at rest with respect
to the detector frame and the calculation of the system’s invariant mass
will yield values smaller than the muon mass. The exact muon mass will
only be obtained, if the momentum vectors at the the true decay position
are taken into the calculation. Thus, reconstructing the vertex will hope-
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fully yield the muon mass. The corresponding distribution showed that the
invariant mass resolution is significantly improved by the vertex reconstruc-
tion which is helpful for background suppression, because the upper bound
for any possible background is also the muon mass. However, if the vertex is
reconstructed properly, calculating the invariant mass will much more likely
yield the muon mass for actual signal than for background. Similar results
were seen for the acoplanar momentum, i.e. the sum of all particle momenta
projected into the decay plane. The acoplanar momentum reconstruction is
highly correlated to the invariant mass reconstruction. An appropriate cut
in this quantity might consequently lead to an improvement of the invariant
mass resolution.

In this thesis, it was shown that the linearised vertex reconstruction
method for particles in a solenoidal magnetic field suffering from multiple
scattering does work and that the assumption of multiple scattering as the
only source of uncertainty is justified in the context of the Mu3e experiment.
A vertex resolution of 200µm can be achieved. The constraint of a common
vertex for three particle tracks is a very helpful tool for discriminating sig-
nal against background and for reconstructing the invariant mass. For the
real experimental situation the track reconstruction including a finite mo-
mentum resolution from more than one detector layer has to be taken into
account and its influences on the vertex reconstruction have to be investi-
gated. Furthermore, since the Mu3e experiment will run at high intensities,
the vertex reconstruction has to be further improved in terms of stability
and processing speed, e.g. by running it on a graphics processing unit.
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Appendix A

Mathematical Derivations

A.1 Transverse Intersection Point

The following derivation for two intersection points of two circles is taken
from [15]. All quantities in this derivation are given and evaluated in the
transverse plane only.

In the transverse plane charged particle tracks in a solenoidal magnetic
field are described by circles. Let R1 and R2 be the radii and c1 and c2 be
the two center points of the circles in the transverse plane.

Both circles have two intersection points, if

|c1 + c2| < R1 +R2 ∧ |c1 + c2| > |R1 −R2| .

Let u be the normalised vector, connecting both center points:

u :=
c2 − c1

‖c2 − c1‖
.

Furthermore, let v be the orthonormal vector to u in the transverse
plane, i.e. ‖u× v‖ = 1.

The positions of the two intersection points represented by the coordi-
nates (u, v) are then given by

u =
(c2 − c1)2 +R2

1 −R2
2

2 ‖c2 − c1‖
(A.1)

v = ±
√
R2

1 − u2 . (A.2)

If the circles are separated from one another, i.e. no intersection points
exist, the center point of the line connecting the circle center points is taken.
If one circle contains the other, the smallest distance between both is taken.
In the context of helical particle tracks this scenario is not very likely.
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A.2 Solution of Transcendental Φ0V Equation

The possible starting values for numerical methods are taken from [17].
A solution to Equation 4.12 only exists, if d2/(4R2) < 1.
There two possible scenarios, requiring different starting values of Φ0V

for solving Equation 4.12 numerically.
If z2 ≤ d2, Φ0V = ±2 arcsin d

2R is to be used.

If z2 > d2, Φ0V =
√

z2+d2

R2 is the more appropriate choice.

A.3 Spatial Derivatives of Φ and Θ

The derivatives of the multiple scattering angles Φ and Θ with respect to the
vertex position xv are calculated in the following section. This calculation
can be found in a similar way in [15]. The following notation will be used:

x = xH − xv ,

where xH denotes the hit position of a particle track in the first detector
layer.

At first the derivatives of the bending angle Φ0V with respect to d and
z have to be calculated from Equation 4.12, yielding:

∂Φ0V (xv)

∂d
=

Φ2
0V d

(Φ2
0VR

2 − z2) sin Φ0V + 4z2 sin2 (Φ0V /2)
Φ0V

(A.3)

∂Φ0V (xv)

∂z
=

4z sin2 (Φ0V /2)

(Φ2
0VR

2 − z2) sin Φ0V + 4z2 sin2 (Φ0V /2)
Φ0V

. (A.4)

The derivatives ∂Φ0V (xv)
∂x and ∂Φ0V (xv)

∂y are obtained by substituting:

∂d

∂x
=

x

d
(A.5)

∂d

∂y
=

y

d
. (A.6)

Finally, the derivatives with respect to xv are obtained, using

K = (Φ2
0VR

2 − z2) sin Φ0V + 4z2 sin2 (Φ0V /2)

Φ0V
.

First Derivatives of Φ

∂Φ

∂xv
=

x

2K
Φ2

0V −
y

d2
(A.7)

∂Φ

∂yv
=

y

2K
Φ2

0V +
x

d2
(A.8)

∂Φ

∂zv
=

2z

K
sin2 Φ0V

2
(A.9)

76



A.4. SPATIAL DISTRIBUTION OF µ DECAYS

First Derivatives of Θ

∂Θ

∂xv
=

xzΦ0V

K
√

Φ2
0VR

2 − z2
(A.10)

∂Θ

∂yv
=

yzΦ0V

K
√

Φ2
0VR

2 − z2
(A.11)

∂Θ

∂zv
=

1√
Φ2

0VR
2 − z2

[
4z2 sin2 Φ0V

2

K Φ0V
− 1

]
(A.12)

A.4 Spatial Distribution of µ Decays

The geometry of a hollow double cone of maximal radius R and length L
can be described in terms of the radius r as a function of the position z on
the rotational symmetry axis as seen in Figure A.1:

r(z) =

{
−2R

L |z|+R z ∈
[
−L

2 ,
L
2

]
0 otherwise

. (A.13)

r

z

R

0 2
L

2
L−

Figure A.1: Radius r of the double cone target as a function of longitudinal
position z.

This expression can be rewritten as a piecewise linear function:

r(z) =


2R
L z +R z ∈ [−L

2 , 0[

−2R
L z +R z ∈ [0, L2 ]

0 otherwise

. (A.14)
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The inverse function is then given by

z(r) =


L

2Rr − L
2 z ∈ [−L

2 , 0[

− L
2Rr + L

2 z ∈ [0, L2 ]

0 otherwise

. (A.15)

These will be useful functions for generating the decay position on the target.
Now we want to consider two different beam distribution profiles (a uni-

form and a Gaussian one) and generate the muon decays on the target’s
geometry correspondingly.

A.4.1 Uniform Distribution

Considering a uniformly distributed muon beam profile, we want to draw
samples from the resulting distribution F (x) on the target without an ex-
plicit function but using a random number generator, drawing uniformly
distributed samples U ∈ [0, 1].

Consequently, we will make use of the so called inversion method as
described in [27] in the following way:

“Let F be a continuous distribution function on R with inverse F−1

defined by
F−1(u) = inf {x : F (x) = u, 0 < u < 1} .

If U is a uniform [0, 1] random variable, then F−1(U) has distribution func-
tion F . Also, if X has distribution function F , then F (X) is uniformly
distributed on [0, 1]” [27].

That is if we draw uniformly distributed samples U ∈ [0, 1], X = F−1(U)
will follow the desired distribution.

This applies to our case, because we have some a radial distribution
r(z) as given in Equation A.14. For simplicity I will calculate a normalised
distribution p(z) = γr(z) with normalisation factor γ, which is given by the
condition

∫∞
−∞ p(z)dz = 1. This yields γ = 2

RL .

In the next step the distribution function U = F (Z) =
∫ Z
−∞ p(t)dt is to

be calculated and inverted, i.e. Z = F−1(U).
A straight forward calculation finally yields:

Z(U) = L


√

U
2 − 1

2 0 ≤ U ≤ 1
2

1
2 −

√
1−U2

2
1
2 < U ≤ 1

0 otherwise

, (A.16)

with U uniformly distributed in [0, 1]. Note that these are only the solutions
that are physically and geometrically relevant for the problem.

Finally, to generate a complete random three-dimensional position infor-
mation for the muon decay on the target we can use a common cylindrical
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coordinate system (r, φ, z). The z-coordinate can be drawn from Equa-
tion A.16. The corresponding radius r(z) can be calculated using Equa-
tion A.14 and finally a random azimuthal angle φ can be uniformly drawn
from [0, 2π] because of the rotational symmetry with respect to the z-axis.

A.4.2 Gaussian Distribution

Considering a two-dimensional Gaussian distributed muon beam profile, the
approach for generating a sample from the resulting distribution on the
target is different from the one described above.

Again, because of the rotational symmetry a common cylindrical coor-
dinate system (r, φ, z) is appropriate. In fact the two-dimensional Gaussian
distribution can be described by a one-dimensional Gaussian distribution in
the radial coordinate r, which probability density function is described by

f(r) =
1√
2πσ

exp

(
−1

2

(
r − µ
σ

)2
)

(A.17)

with mean µ and standard deviation σ.
Because the muon beam itself will be collimated to a diameter of 2σ, the

real distribution will be

p(r) = χ[µ−σ,µ+σ](r)f(r) , (A.18)

where χ denotes the indicator function on [µ− σ, µ+ σ].
Consequently, a sample for the r-coordinate can be drawn from Equa-

tion A.18 by choosing its absolute value |r|. Furthermore, a random az-
imuthal angle φ can be uniformly drawn from [0, 2π]. Because the corre-
sponding z-coordinate given in terms of z(r) in Equation A.15 is ambiguous
for a given r, one of both segments has to be randomly chosen. This is
accomplished with a 50− 50% chance.

Finally a complete random three-dimensional position information (r, φ, z)
is given.
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