

Ultra-intense lasers: an ideal tool for the study of matter under extreme conditions

Gianluca Sarri

School of Mathematics and Physics, Queen's University Belfast, UK g.sarri@qub.ac.uk

PSI colloquium, 03/05/2018

Main Collaborators

Gianluca Sarri

Slide 1/35

Talk Outline

- **INTRODUCTION** High-power and high-energy lasers: state of the art
 - Laser-driven particle accelerators
- NEUTRAL ELECTRON-POSITRON A
 BEAMS I
 - A pair-plasma in the laboratory
 - Instabilities and magnetic field generation
- QED AND PHOTON-PHOTON
 Radiation Reaction
 SCATTERING
 Pair production in a laser field
- COLLISION-LESS SHOCK WAVES
- The birth of a collision-less shock
- Instabilities in the shock front
- Magnetised shock waves
- CONCLUSIONS AND OUTLOOK

Introduction

Electron beam dynamics in ultra-intense laser fields

High-power lasers

Gianluca Sarri

Slide 3/35

High-energy lasers

TAP $\tau = 0.5 \text{ps} - 1 \text{ns}$ E = 700 J $P \sim 1 PW$

TAW $\tau = 1 \text{ps} - 1 \text{ns}$ E = 0.1 - 1 kJ**P** ∼ 100 TW $I_{max} = 5 \times 10^{20} \text{ W cm}^{-2}$ $I_{max} = 8 \times 10^{19} \text{ W cm}^{-2}$

Gianluca Sarri

Slide 4/35

High-energy lasers

Slide 5/35

Target Area West, Vulcan Laser, Rutherford Appleton Laboratory (UK)

- ns-scale heating of materials up to multi-keV temperatures
- Dense plasmas and warm dense matter
- Ion-acoustic and collision-less shock waves

Laser firing in the target area. The light burst lasts for 1ns

,10⁴ attenuation!

High-power lasers

Astra-Gemini Laser, Rutherford Appleton Laboratory (UK)

- GeV-scale acceleration in a few cm!
- Relativistic plasmas (>MeV temperatutres)
- Ultra-intense fields, close to the Schwinger field
- Pair plasmas

QUEEN'S UNIVERSITY High-power lasers: ELI-NP

Goal Specs (2019)

- E = 200 J
- d = 45 cm
- $\tau = 20 \text{ fs}$
- P = 10 PW
- F/80 focusing (36 m)

Generation of 10+ GeV electron beams within one acceleration stage

Laser-driven electron acceleration

Electron beam dynamics in ultra-intense laser fields

Electron acceleration

Gianluca Sarri

Slide 8/35

A neutral pair-plasma in the laboratory

Electron beam dynamics in ultra-intense laser fields

The laser-driven electrons initiate a quantum cascade, whose main steps are:

- 1. Generation of a high-energy photon during bremsstrahlung in the field of a nucleus
- 2. Creation of an electron-positron pair during the photon propagation in the field of the nucleus

Gianluca Sarri

Slide 9/35

Slide 10/35

Slide 11/35

Pair-plasma dynamics in the laboratory

Electron beam dynamics in ultra-intense laser fields

Astrophysical jets

• Highly-collimated electron-positron jets are observed being emitted by massive and powerful objects, such as quasars, pulsars, and active galactic nuclei

- Associated with strong emission of gamma-rays
- Optically thin
- Power-law spectrum: $n(\gamma) \propto \gamma^{-(2\alpha+1)}$, $\alpha \approx 0.5$
- Some predominantly leptonic
- Relativistic
- Strong interaction with the intergalactic medium
- Largest single events observed in the Universe
- Equipartition: $10^{-1} 10^{-5}$

The generation of gamma rays requires strong and long-lived magnetic fields:

- Intergalactic magnetic field (~ nT) too small
- > MHD shock-compression, equipartion of 10⁻¹¹
- Fields from the central engine, equipartition of 10⁻⁷
- > Weibel-generated fields, too short-lived

Electron-positron beam filamentation?

Beam filamentation: ideal EPSRC Engineering and Physical Sciences Research Council

- ✓ Strong filamentation only for neutral beam (>40%)
- ✓ Saturation reached at ~800 c/w_p
- ✓ Generation of strong B fields
- ✓ Equipartition of the order of $10^{-2} 10^{-4}$
- ✓ Long-lived fields

G. Sarri et al., Nature Communications 6, 6747 (2015)

Gianluca Sarri

Slide 13/35

Laser-driven electron-positron beams have, however, a broad spectrum (Maxwell-Juttner) and a wide divergence

Gianluca Sarri

Slide 14/35

- Electrons (blue) and positrons (red) produce beam-lets with a characteristic diameter of the order of the relativistic skin depth of the beam
- $\checkmark\,$ The beam-lets tend to distribute by filling each others density gaps

- The beam preserves a smooth density distribution
- ✓ Total particle symmetry

Undistinguishable by scintillator screen or any other charge-independent detector

Gianluca Sarri

Slide 15/35

Beam filamentation experimental evidence

Electron beam dynamics in ultra-intense laser fields

Slide 16/35

Filamentation: theory

- ✓ The instability grows within 5 ps (1.5mm) producing **1-2 filaments!**
- ✓ Expected magnetic field of ~ 1 T (equipartition parameter of ~10⁻³)
- ✓ The background plasma gyroradius is smaller than the filament wavelength, suggesting that the **plasma can get magnetised**

J. Warwick et al., Phys. Rev. Lett. (2017)

Proton radiography

Can proton radiography see these fields?

✓ Azimuthal magnetic fields left in the background plasma persist for longer than the duration of the beam (proton radiography resolution ~ ps)

Gianluca Sarri

Slide 17/35

Slide 18/35

Slide 19/35

The divergence and low-density of the pair beam only allows for the **linear stage of the instability** to be detected

Gianluca Sarri

Slide 20/35

High-field QED in the laboratory

Electron beam dynamics in ultra-intense laser fields

Radiation Reaction

Electron beam dynamics in ultra-intense laser fields

⇒ Radiation Reaction is one of the oldest and most fundamental problems in electromagnetism: How do we correctly model the electron dynamics if we include radiative losses?

0. Classical Lorentz force $m\frac{du^{u}}{ds} = eF^{uv}u_{v}$

X No energy loss

1. LAD Equation

$$m\frac{du^u}{ds} = eF^{uv}u_v + \frac{2}{3}e^2\left(\frac{d^2u^u}{ds^2} + \frac{du^v}{ds}\frac{du^v}{ds}u^u\right)$$

Damping force (radiation reaction term)
 X Classical renormalisation (point-like electron)
 X Runaway solutions! Diverging acceleration even without external field: a(t) = a₀ e^{-t/τ}, τ ~ 10⁻²³ s

Gianluca Sarri

Slide 21/35

Quantum Radiation Reaction EPSRC Engineering and Physical Sciences Research Council

⇒ The classical treatment of radiation reaction neglects three main additional phenomena:

1. The energy of a single emitted photon can not exceed that of the electron

3. Production of electron-positron pairs (important only for $\chi \ge 1$)

QUEEN'S

NIVERSITY

Radiation Reaction

Gianluca Sarri

Slide 23/35

Radiation Reaction: The first experiment

Electron beam dynamics in ultra-intense laser fields

What do we see?

Gianluca Sarri

Slide 24/35

Pair production in the Laser field

Electron beam dynamics in ultra-intense laser fields

Slide 26/35

Slide 27/35

Pair production: photon-laser

QUEEN'S

UNIVERSITY BELFAST

Collisionless shocks in the laboratory

Electron beam dynamics in ultra-intense laser fields

Collision-less shock generation

- The background gas gets photo-ionised by x-rays generated in the laser-matter interaction
- The ablated plasma forms a rarefaction wave streaming in the low-density background plasma

Gianluca Sarri

Slide 29/35

L. Romagnani et al. Phys. Rev. Lett. 101, 025004 (2008).

Gianluca Sarri

0.00

0.50

0.0

0.2

0.1 ([mm] region II

Slide 30/35

QUEEN'S

BEI FAST

Slide 31/35

QUEEN'S UNIVERSITY Magnetised collision-less shock

Gianluca Sarri

Slide 32/35

Conclusions and Outlook

Electron beam dynamics in ultra-intense laser fields

D •	1	1
Pair	n	lasmas

Slide 33/35

High field QED

Gianluca Sarri

Slide 34/35

Slide 35/35

Thanks for your attention!

Gianluca Sarri

g.sarri@qub.ac.uk

Further reading:	
Pair plasmas:	[1] G. Sarri et al., Phys. Rev. Lett. 110, 255002 (2013)
	[2] G. Sarri et al., Plasma Phys. Contr. F. 55, 124017 (2013)
	[3] G. Sarri et al., Nat. Comm. 6, 6747 (2015)
	[4] G. Sarri et al., Plasma Phys. Contr. F. 59, 014015 (2017)
	[5] J. Warwick et al., Phys. Rev. Lett. 119, 185002 (2017)
QED:	[6] G. Sarri et al., Phys. Rev. Lett. 113, 224801 (2014)
	[7] J. Cole et al., Phys. Rev. X 8, 011020 (2018)
	[8] K. Poder et al., submitted to PRX available on ArXiv (2018)
Shocks:	[9] G. Sarri et al., Phys. Rev. Lett. 107, 025003 (2011)
	[10] H. Ahmed et al., Phys. Rev. Lett. 110, 205001 (2013)
	[11] H. Ahmed et al., Astrophys. J. Letters 834, L21 (2017)