


# Electric Dipole Moment Searches using Storage Rings

Frank Rathmann (on behalf of the JEDI collaboration)

Paul-Scherrer Institut, 06.12.2018





# Contents

- Introduction
- 2 Progress toward storage ring EDM experiments
- Technical challenges and developments
  - E/B deflector
  - Beam-position monitors
  - dC polarimetry data base
  - Beam polarimeter
  - Study of machine imperfections
  - Prototype EDM storage ring
- Proof of principle EDM experiment using COSY
  - Model calculation
  - Technical realization of RF Wien filter
  - Measurements of EDM-induced polarization buildup
- 6 Axion-EDM search using storage ring
- 6 Summary

# Baryon asymmetry in the Universe



Carina Nebula: Largest-seen star-birth regions in the galaxy

# Observation and expectation from Standard Cosmological Model (SCM):

|                      | $\eta = (n_b - n_{ar b})/n_\gamma$            |                                 |
|----------------------|-----------------------------------------------|---------------------------------|
| Observation          | $\left(6.11^{+0.3}_{-0.2} ight)	imes10^{-10}$ | Best Fit Cosmological Model [1] |
|                      | $(5.53-6.76) 	imes 10^{-10}$                  | WMAP [2]                        |
| Expectation from SCM | $\sim 10^{-18}$                               | Bernreuther (2002) [3]          |

# Precision frontier

# EDMs possibly constitute missing cornerstone to explain surplus of matter over antimatter in the Universe:

- SCM gets it wrong by about 8 orders of magnitude.
- Non-vanishing EDMs would add fourth quantum number to fundamental particles

#### Large worldwide effort to search for EDMs of fundamental particles:

- hadrons, leptons, solids, atoms and molecules.
- $\bullet$  ~ 500 researchers (estimate by Harris, Kirch).

## Why search for charged particle EDMs using a storage ring?

Up to now, no direct measurement of charged hadron EDMs are available:

- Charged hadron EDM experiments provide potentially higher sensitivity than for neutrons:
  - longer lifetime,
  - more stored polarized protons/deuterons available than neutrons, and
  - one can apply larger electric fields in storage ring.
- Approach complimentary to neutron EDM searches.
- EDM of single particle not sufficient to identify CP violating source [4]

# Naive estimate of scale of nucleon EDM

# From Khriplovich & Lamoreux [5]:

• CP and P conserving magnetic moment  $\approx$  nuclear magneton  $\mu_N$ .

$$\mu_{N} = rac{e}{2m_{p}} \sim 10^{-14}\,\mathrm{e\,cm}.$$

- A non-zero EDM requires:
  - P violation: price to pay is  $\approx 10^{-7}$ , and
  - *CP* violation (from *K* decays): price to pay is  $\sim 10^{-3}$ .
- In summary:

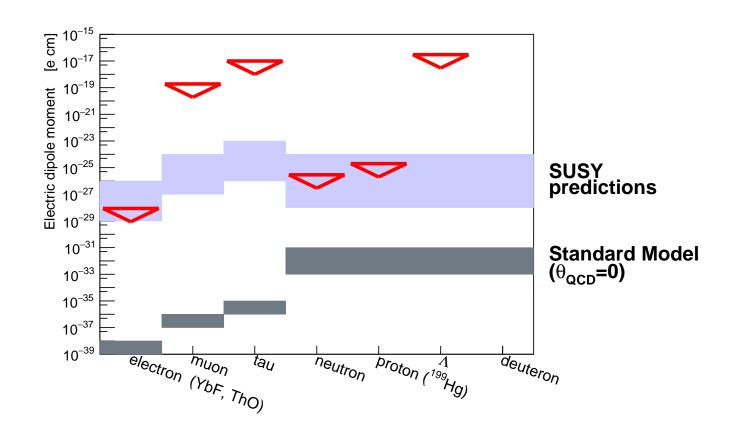
$$||d_{N}| \sim 10^{-7} imes 10^{-3} imes \mu_{N} \sim 10^{-24} \, ext{e cm}|$$

• In Standard model (without  $\theta_{QCD}$  term):

$$|d_N| \sim 10^{-7} imes 10^{-24} \, ext{e cm} \sim 10^{-31} \, ext{e cm}$$

# Region to search for BSM physics ( $\theta_{QCD} = 0$ ) from nucleon EDMs:

$$10^{-24} \,\mathrm{e\,cm} > |d_N| > 10^{-31} \,\mathrm{e\,cm}.$$


# Status of EDM searches I

# EDM limits in units of [e cm]:

- Long-term goals for neutron,  $^{199}_{80}\mathrm{Hg},\,^{129}_{54}\mathrm{Xe},$  proton, and deuteron.
- Neutron equivalent values indicate value for neutron EDM  $d_n$  to provide same physics reach as indicated system:

| Particle             | Current limit                     | Goal                           | d <sub>n</sub> equivalent                            | date [ref] |
|----------------------|-----------------------------------|--------------------------------|------------------------------------------------------|------------|
| Electron             | $< 8.7 \times 10^{-29}$           | $pprox 10^{-29}$               |                                                      | 2014 [6]   |
| Muon                 | $< 1.8 	imes 10^{-19}$            |                                |                                                      | 2009 [7]   |
| Tau                  | $< 1 	imes 10^{-17}$              |                                |                                                      | 2003 [8]   |
| Lambda               | $< 3 \times 10^{-17}$             |                                |                                                      | 1981 [9]   |
| Neutron              | $(-0.21 \pm 1.82) 	imes 10^{-26}$ | $lphapprox10^{-28}$            | $10^{-28}$                                           | 2015 [10]  |
| $^{199}_{80}{ m Hg}$ | $< 7.4 \times 10^{-30}$           | $10^{-30}$                     | $< 1.6 	imes 10^{-26} [11]$                          | 2016 [12]  |
| $^{129}_{54}{ m Xe}$ | $< 6.0 \times 10^{-27}$           | $pprox 10^{-30}$ to $10^{-33}$ | $pprox 10^{-26}$ to $10^{-29}$                       | 2001 [13]  |
| Proton               | $< 2 \times 10^{-25}$             | $lphapprox 10^{-29}$           | $10^{-29}$                                           | 2016 [12]  |
| Deuteron             | not available yet                 | $\approx 10^{-29}$             | $pprox 3 	imes 10^{-29} 	ext{ to } 5 	imes 10^{-31}$ |            |

# Status of EDM searches II



# Missing are *direct* EDM measurements:

- No direct measurements of electron: limit obtained from (ThO molecule).
- No direct measurements of proton: limit obtained from  $^{199}_{80}{\rm Hg}.$
- No measurement at all of deuteron EDM.

# Experimental requirements for storage ring EDM searches

## High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity, and shielding from perturbing magnetic fields.
- High beam intensity:  $N = 4 \times 10^{10}$  particles per fill.
- High polarization of stored polarized hadrons: P = 0.8.
- Large electric fields:  $E = 10 \,\text{MV/m}$ .
- Long spin coherence time:  $\tau_{SCT} = 1000 \, s$ .
- Efficient polarimetry with
  - large analyzing power:  $A_y \simeq 0.6$ ,
  - and high efficiency detection  $f \simeq 0.005$ .

## In terms of numbers given above:

• This implies:

$$\sigma_{\rm stat} = \frac{1}{\sqrt{N f} \, \tau_{\rm SCT} \, P \, A_v \, E} \quad \Rightarrow \quad \boxed{\sigma_{\rm stat}(1 \, {\rm yr}) = 10^{-29} \, {\rm e \, cm}} \,.$$
 (1)

• Experimentalist's goal is to provide  $\sigma_{\text{syst}}$  to the same level.

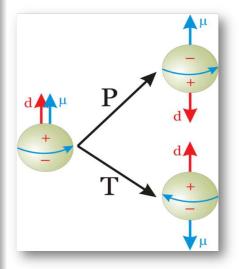
# Particles with magnetic and electric dipole moment

# For particles with EDM $\vec{d}$ and MDM $\vec{\mu}$ ( $\propto \vec{s}$ ),

non-relativistic Hamiltonian:

$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}.$$

• **Energy of magnetic dipole** invariant under *P* and *T*:


$$-\vec{\mu} \cdot \vec{B} \xrightarrow{P \text{ or } T} -\vec{\mu} \cdot \vec{B}, \tag{2}$$

No other direction than spin  $\Rightarrow$   $\vec{d}$  parallel to  $\vec{\mu}$  ( $\vec{s}$ ).

• Energy of electric dipole  $H = -\vec{d} \cdot E$ , includes term

$$\vec{s} \cdot \vec{E} \xrightarrow{P \text{ or } T} -\vec{s} \cdot \vec{E},$$
 (3)

Thus, EDMs violate both P and T symmetry.



## In rest frame of particle,

• equation of motion for spin vector  $\vec{S}$ :

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E}. \tag{4}$$

# Frozen-spin

# Spin precession frequency of particle relative to direction of flight:

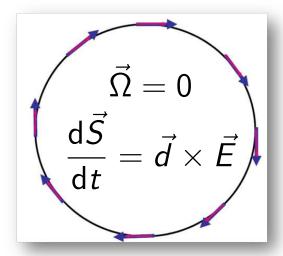
$$ec{\Omega} = ec{\Omega}_{\mathsf{MDM}} - ec{\Omega}_{\mathsf{cyc}}$$

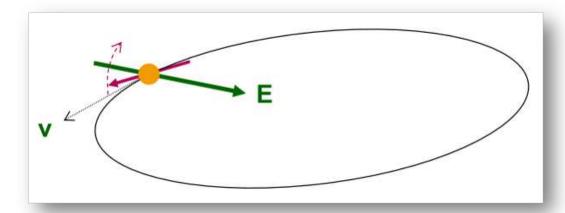
$$= -rac{q}{\gamma m} \left[ G \gamma ec{B}_{\perp} + (1+G) ec{B}_{\parallel} - \left( G \gamma - rac{\gamma}{\gamma^2 - 1} \right) rac{ec{eta} imes ec{E}}{c} 
ight]. \tag{5}$$

- $\Rightarrow$   $\vec{\Omega} = 0$  called frozen spin, because momentum and spin stay aligned.
  - ullet In the absence of magnetic fields  $(B_\perp = ec{B}_\parallel = 0)$ ,

$$\vec{\Omega} = 0$$
, if  $\left(G\gamma - \frac{\gamma}{\gamma^2 - 1}\right) = 0$ . (6)

• Possible only for particles with G > 0, such as proton (G = 1.793) or electron (G = 0.001).


## For protons, (6) leads to *magic momentum*:


$$G - \frac{1}{\gamma^2 - 1} = 0 \Leftrightarrow G = \frac{m^2}{p^2} \quad \Rightarrow \quad \boxed{p = \frac{m}{\sqrt{G}} = 700.740 \,\text{MeV} \,\text{c}^{-1}}$$
 (7)

# Protons at magic momentum in pure electric ring:

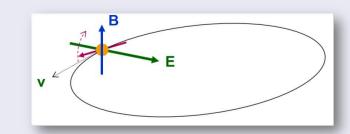
## Recipe to measure EDM of proton:

- 1. Place polarized particles in a storage ring.
- 2. Align spin along direction of flight at magic momentum.
  - ⇒ freeze horizontal spin precession.
- 3. Search for time development of vertical polarization.





# New method to measure EDMs of charged particles:


- Magic rings with spin frozen along momentum of particle.
- Polarization buildup  $P_y(t) \propto d$ .

# Search for charged particle EDMs with frozen spins Magic storage rings

## For any sign of G, in *combined* electric and magnetic machine:

Generalized solution for magic momentum

$$E_r = \frac{GB_y c\beta \gamma^2}{1 - G\beta^2 \gamma^2},\tag{8}$$



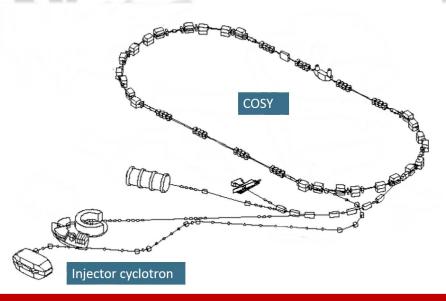
where  $E_r$  is radial, and  $B_y$  vertical field.

• Some configurations for circular machine with fixed radius  $r = 25 \,\mathrm{m}$ :

| particle | G      | $ ho[{ m MeV}{ m c}^{-1}]$ | T [MeV] | $E[{ m MVm^{-1}}]$ | <i>B</i> [T] |
|----------|--------|----------------------------|---------|--------------------|--------------|
| proton   | 1.793  | 701                        | 232.8   | 16.789             | 0.000        |
| deuteron | -0.143 | 1000                       | 249.9   | -3.983             | 0.160        |
| helion   | -4.184 | 1285                       | 280.0   | 17.158             | -0.051       |

## Offers possibility to determine

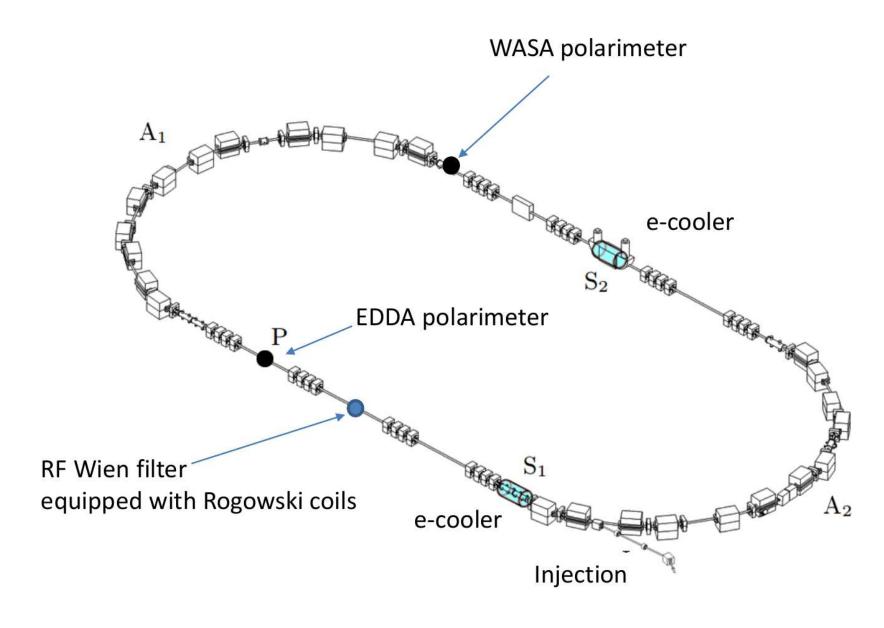
EDMs of protons, deuterons, and helions in one and the same machine.


# Progress toward storage ring EDM experiments

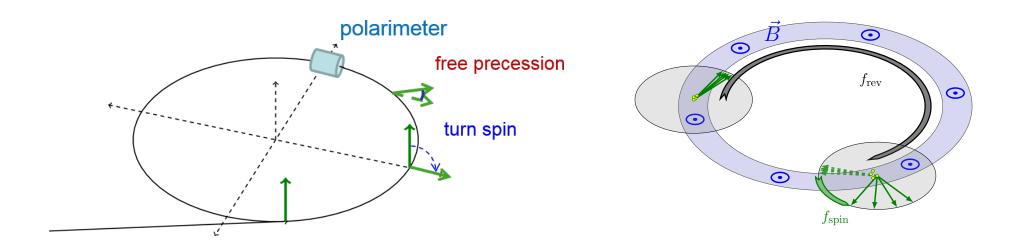
Complementing the spin physics tool box

## COoler SYnchrotron COSY

- Cooler and storage ring for (polarized) protons and deuterons.
- Momenta  $p = 0.3 3.7 \,\text{GeV/c}$ .
- Phase-space cooled internal and extracted beams.



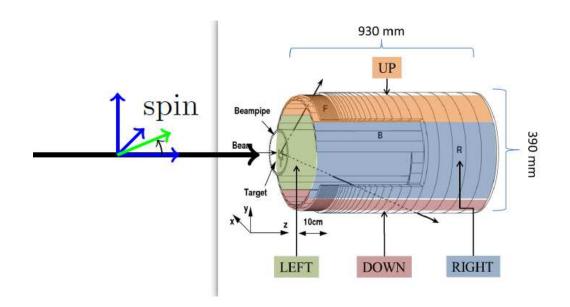


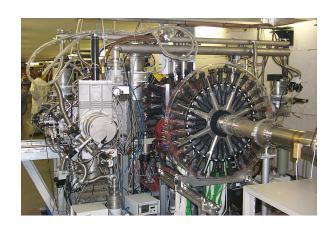


# COSY formerly used as spin-physics machine for hadron physics:

- Provides an ideal starting point for srEDM related R&D.
- Will be used for a first direct measurment of deuteron EDM.

# COSY Landscape




# Principle of spin-coherence time measurement




# Measurement procedure:

- 1. Vertically polarized deuterons stored at  $p \simeq 1 \, \text{GeV} \, \text{c}^{-1}$ .
- 2. Polarization flipped into horizontal plane with RF solenoid ( $\approx 200 \, \text{ms}$ ).
- 3. Beam extracted on Carbon target with ramped bump or by heating.
- 4. Horizontal (in-plane) polarization determined from U-D asymmetry in polarimeter.

# Detector system: EDDA [14]

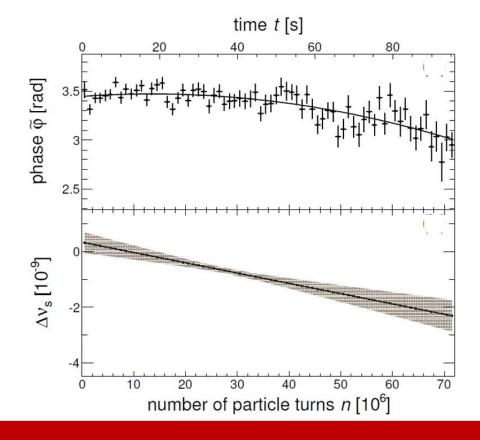




## EDDA previously used to determine $\vec{p}\vec{p}$ elastic polarization observables:

- ullet Deuterons at  $p=1\,{
  m GeV}\,{
  m c}^{-1}$ ,  $\gamma=1.13$ , and  $u_s=\gamma G\simeq -0.161$
- Spin-dependent differential cross section on unpolarized target:

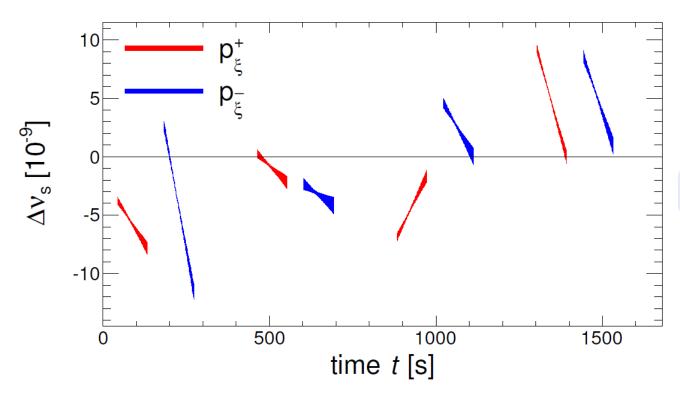
$$N_{\rm U,D} \propto 1 \pm \frac{3}{2} p_z A_y \sin(\nu_s f_{\rm rev} t)$$
, where  $f_{\rm rev} = 781 \, \mathrm{kHz}$ . (9)


# Precision determination of the spin tune [15, 2015]

# Time-stamping events accurately,

• allows us to monitor phase of measured asymmetry with (assumed) fixed spin tune  $\nu_s$  in a 100 s cycle:

$$u_s(n) = \nu_s^{\text{fix}} + \frac{1}{2\pi} \frac{d\tilde{\phi}}{dn}$$

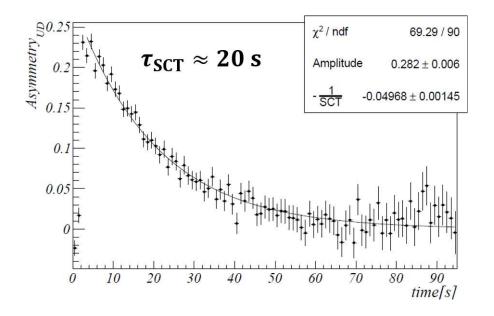

$$= \nu_s^{\text{fix}} + \Delta \nu_s(n)$$
(10)



## Experimental technique allows for:

- Spin tune  $\nu_s$  determined to  $\approx 10^{-8}$  in 2s time interval.
- In a 100 s cycle at  $t\approx 38$  s, interpolated spin tune amounts to  $|\nu_{\rm s}|=(16097540628.3\pm 9.7)\times 10^{-11}$ , i.e.,  $\Delta\nu_{\rm s}/\nu_{\rm s}\approx 10^{-10}$ .
- ullet  $\Rightarrow$  new precision tool to study systematic effects in a storage ring.

# Spin tune as a precision tool for accelerator physics

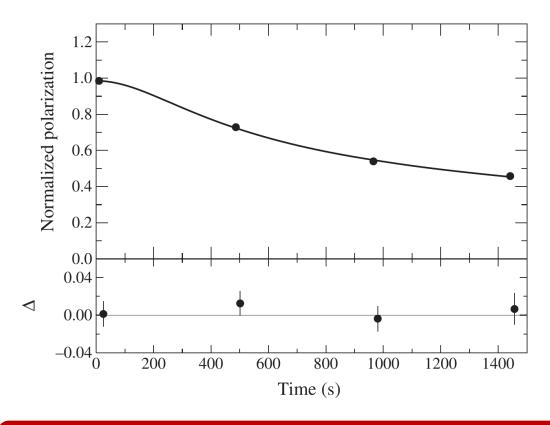



Walk of spin tune  $\nu_s$  [15].

## Applications of new technique:

- Study long term stability of an accelerator.
- Feedback system to stabilize phase of spin precession relative to phase of RF devices (so-called **phase-lock**).
- Studies of machine imperfections.

# Optimization of spin-coherence time: [16, 2014]




**2012:** Observed experimental decay of asymmetry

$$\epsilon_{\text{UD}}(t) = \frac{N_D(t) - N_U(t)}{N_D(t) + N_U(t)}.$$
 (11)

**2013:** Using sextupole magnets, higher order effects are corrected, and spin coherence substantially increased.

# More optimizations of spin-coherence time: [18, 2016]



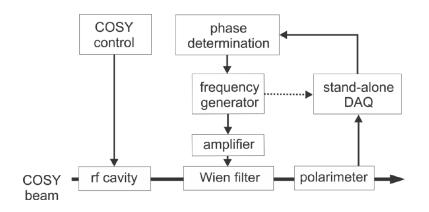
## Recent progress on $\tau_{SCT}$ :

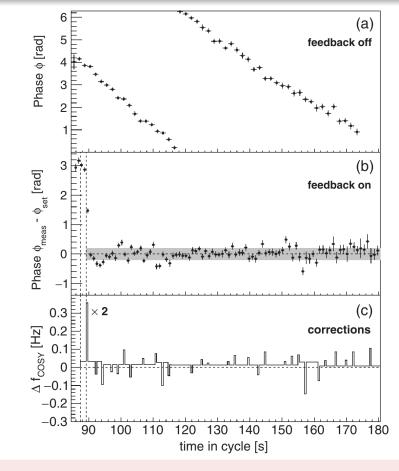
$$au_{\sf SCT} = ({f 782 \pm 117})\,{\sf s}$$

• Previously:  $\tau_{\text{SCT}}(\text{VEPP}) \approx 0.5 \, \text{s} \, [17]$  ( $\approx 10^7$  spin revolutions).

# **Spring 2015:** Way beyond anybody's expectation:

- With about 10<sup>9</sup> stored deuterons.
- Long spin coherence time was one of main obstacles of srEDM experiments.
- Large value of  $au_{\sf SCT}$  of crucial importance (1), since  $\sigma_{\sf stat} \propto rac{1}{ au_{\sf SCT}}$ .


# Phase locking spin precession in machine to device RF PhD work of Nils Hempelmann


# At COSY, one cannot freeze the spin precession

⇒ To achieve precision for EDM, phase-locking is next best thing to do.

## Feedback system maintains

- 1. resonance frequency, and
- 2. phase between spin precession and device RF (solenoid or Wien filter)



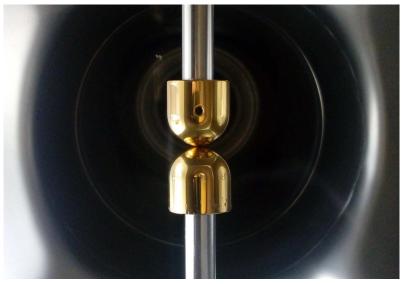


**Major achievement** : Error of phase-lock  $\sigma_{\phi} = 0.21 \, \mathrm{rad} \, [19, \, 2017]$ .

# More technical challenges of storage ring EDM experiments

Charged particle EDM searches require development of new class of high-precision machines with mainly electric fields for bending and focussing:

#### Main issues:

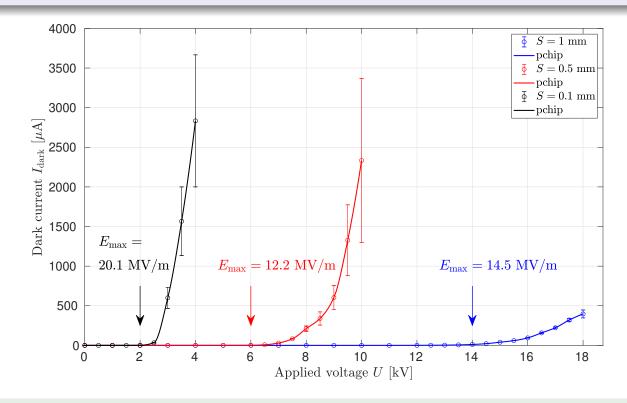

- ullet Large electric field gradients  $\sim 10$  to  $20\,\mathrm{MV/m}$ .
- Spin coherence time  $\tau_{\rm SCT} \sim 1000\,{\rm s}$  [18, 2016].
- Continuous polarimetry with relative errors < 1 ppm [20, 2012].</li>
- Beam position monitoring with precision of 10 nm.
- High-precision spin tracking.
- Alignment of ring elements, ground motion, ring imperfections.
- Magnetic shielding.
- For deuteron EDM with frozen spin: precise reversal of magnetic fields for CW and CCW beams required.

# E/B Deflector development using small-scale lab setup

Work by Kirill Grigoriev (IKP, RWTH Aachen and FZJ)

- Polished stainless steel
  - 240 MV/m reached at distance of 0.05 mm with half-sphere facing flat surface.
  - 17 MV/m with 1 kV at 1 mm with two small half-spheres.
- Polished aluminum
  - 30 MV/m measured at distance of 0.1 mm using two small half-spheres.
- TiN coating
  - Smaller breakdown voltage.
  - Zero dark current.





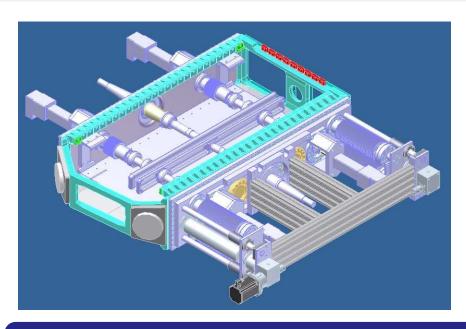

# Recent results

# Dark current of stainless-steel half-sphere electrodes (10 mm radius)

• distances S = 1, 0.5, and 0.1 mm, where

$$E_{\text{max}} = \frac{U}{S} \cdot F$$
, where  $F = \frac{1}{4} \left[ 1 + \frac{S}{R} + \sqrt{\left(1 + \frac{S}{R}\right)^2 + 8} \right]$ , (12)




Results promising, but tests with real size deflector elements are necessary.

# E/B deflector development using real-scale lab setup



## Equipment:

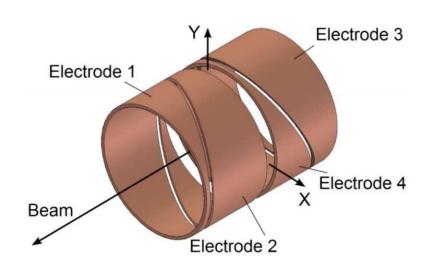
- Dipole magnet  $B_{\text{max}} = 1.6 \,\text{T}$
- Mass = 64 t
- Gap height = 200 mm
- Protection foil between chamber wall and deflector



#### Parameters:

- Electrode length = 1020 mm
- Electrode height = 90 mm
- Electrode spacing = 20 to 80 mm
- Max. electric field =  $\pm 200 \,\text{MV}$
- Material: Aluminum coated by TiN

#### Next steps:


Equipment ready for assembling. First test results expected before Christmas.

# Beam position monitors for srEDM experiments

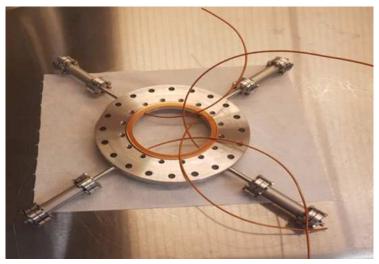
PhD work of Falastine Abusaif, improving earlier work by F. Trinkel

# Development of compact BPM based on segmented Rogowski coil

ullet Main advantage is short installation length of  $pprox 1\,\mathrm{cm}$  (along beam direction)



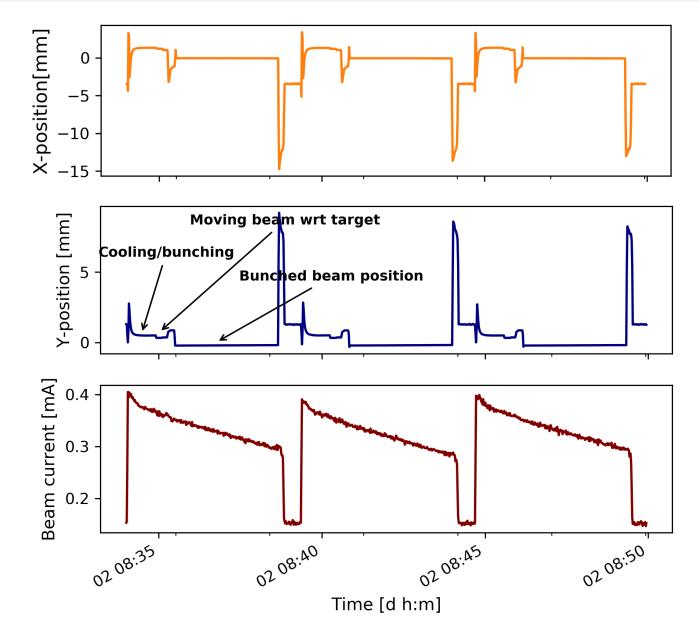
## Conventional BPM


- Easy to manufacture
- length = 20 cm
- resolution  $\approx 10\,\mu m$

# Rogowski BPM (warm)

- Excellent RF-signal response
- length = 1 cm
- resolution  $pprox 1.25\,\mu\mathrm{m}$

# Assembly stages of one Rogowski-coil BPM





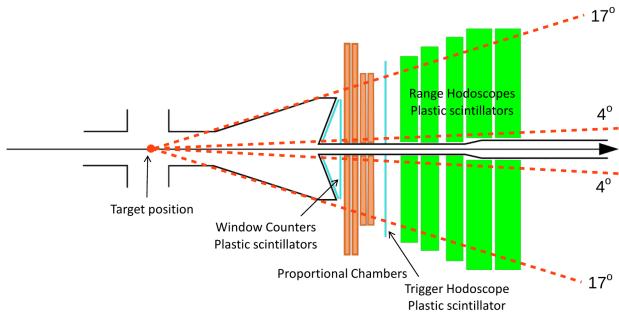





# Measured beam positions at entrance of RF Wien filter from ongoing run

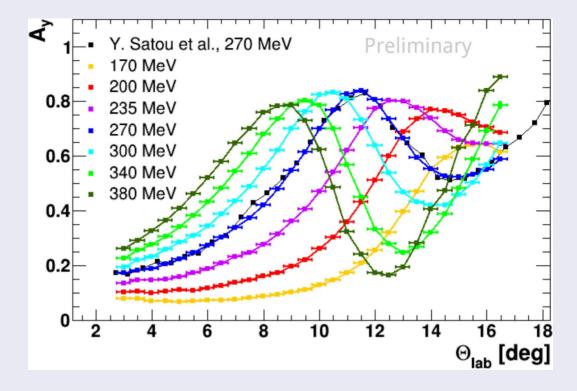


# dC polarimetry data base I


Data analysis mainly by Maria Zurek and PhD Fabian Müller

# Motivation: Optimize polarimetry for ongoing JEDI experiments:

- Determine vector and tensor analyzing powers  $A_y$ ,  $A_{yy}$ , and differential cross sections  $d\sigma/d\Omega$  of dC elastic scattering at
  - deuteron kinetic energies  $T = 170 380 \,\mathrm{MeV}$ .


# Detector system: former WASA forward detector, modified

- Targets: C and CH2
- Full azimuthal coverage, scattering angle range  $\theta = 4^{\circ} 17^{\circ}$ .

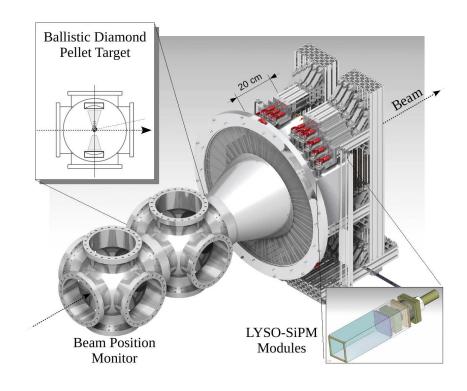


# dC polarimetry data base II

# Preliminary results of elastic dC analyzing powers



- Analysis of differential dC cross sections in progress.
- Similar data base measurements carried out to provide pC data base.


# High-precision beam polarimeter with internal C target Development led by Irakli Keshelashvili

# Based on LYSO Scintillation Material

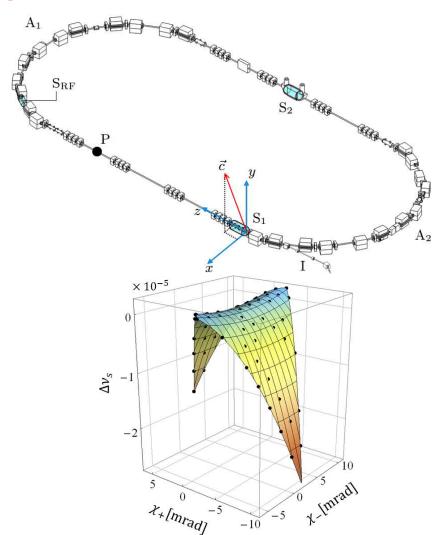
- Saint-Gobain Ceramics & Plastics: Lu<sub>1.8</sub>Y<sub>.2</sub>SiO<sub>5</sub>:Ce
- Compared to NaI, LYSO provides
  - high density  $(7.1 \text{ vs } 3.67 \text{ g/cm}^3)$ ,
  - very fast decay time (45 vs 250 ns).

## After several runs with external beam:

- System ready for installation at COSY in 2019.
- Not yet ready: Ballistic diamond pellet target for homogeneous beam sampling.



# Study of machine imperfections


PhD work of Artem Saleev

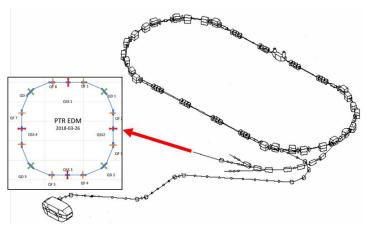
JEDI developed new method to investigate magnetic machine imperfections based on highly accurate determination of spin-tune [21, 2017].

## Spin tune mapping

- Two cooler solenoids act as spin rotators ⇒ generate artificial imperfection fields.
- Measure spin tune shift vs spin kicks.

- Position of saddle point determines tilt of stable spin axis by magnetic imperfections.
- Control of background from MDM at level  $\Delta c = 2.8 \times 10^{-6} \, \text{rad}.$
- Systematics-limited sensitivity for deuteron EDM at COSY  $\sigma_d \approx 10^{-20} \, \mathrm{e} \, \mathrm{cm}$ .




# Prototype EDM storage ring

## Next step:

- Build demonstrator for charged-particle EDM.
- Project prepared by a new CPEDM collaboration (CERN + JEDI + srEDM).
  - Physics Beyond Collider process (CERN), and the
  - European Strategy for Particle Physics Update.
- Possible host sites: COSY or CERN

## Scope of prototype ring of 100 m circumference:

- p at 30 MeV all-electric CW-CCW beams operation.
- p at 45 MeV frozen spin including additional vertical magnetic fields



Electric Dipole Moment Searches using Storage Rings

- Storage time
- CW/CCW operation
- Spin coherence time
- Polarimetry
- magnetic moment effects
- Stochastic cooling
- pEDM measurement

# CPEDM time frame

| 1 Precursor Experiment                                                                                                                                 | 2 Prototype Ring                                                                                                                                                                  | → 3<br>All-electric Ring                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dEDM proof-of-capability<br>(orbit and polarization control;<br>first dEDM measurement)                                                                | <b>pEDM proof-of-principle</b><br>(key technologies,<br>first direct pEDM measurement)                                                                                            | pEDM precision experiment<br>(sensitivity goal: 10 <sup>-29</sup> e cm)                                                                                                  |
| <ul> <li>Magnetic storage ring</li> <li>Polarized deuterons</li> <li>d-Carbon polarimetry</li> <li>Additional E-field by RF<br/>Wien-filter</li> </ul> | <ul> <li>High-current all-electric ring</li> <li>Simultaneous CW/CCW op.</li> <li>Frozen spin control (with combined E/B-field ring)</li> <li>Phase-space beam cooling</li> </ul> | <ul> <li>Frozen spin all-electric (at p = 0.7 GeV/c)</li> <li>Simultaneous CW/CCW op.</li> <li>B-shielding, high E-fields</li> <li>Design: cryogenic, hybrid,</li> </ul> |
| Ongoing at COSY (Jülich)<br>2014 → 2021                                                                                                                | Ongoing within CPEDM<br>2017 → 2020 (CDR) → 2022 (TRD)<br>Start construction > 2022                                                                                               | After construction and operation of prototype > 2027?                                                                                                                    |

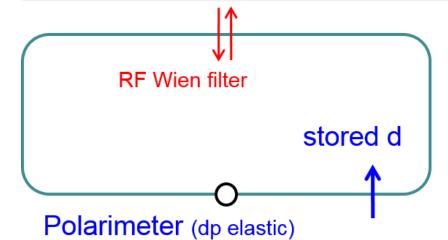
# Proof of principle experiment using COSY Precursor experiment

# Highest EDM sensitivity shall be achieved with a new type of machine:

- An electrostatic circular storage ring, where
  - centripetal force produced primarily by electric fields.
  - E field couples to EDM and provides required sensitivity ( $< 10^{-28}$  e cm).
  - In this environment, magnetic fields mean evil (since  $\mu$  is large).

# Idea behind proof-of-principle experiment with novel RF Wien filter $(\vec{E} \times \vec{B})$ :

- In magnetic machine, particle spins (deuterons, protons) precess about stable spin axis ( $\simeq$  direction of magnetic fields in dipole magnets).
- Use RF device operating on some harmonic of the spin-precession frequency:
  - ⇒ Phase lock between spin precession and device RF.
  - $\Rightarrow$  Allows one to accumulate EDM effect as function of time in cycle ( $\sim$  1000 s).


# Goal of proof-of-principle experiment:

Show that conventional storage ring useable for first direct EDM measurement

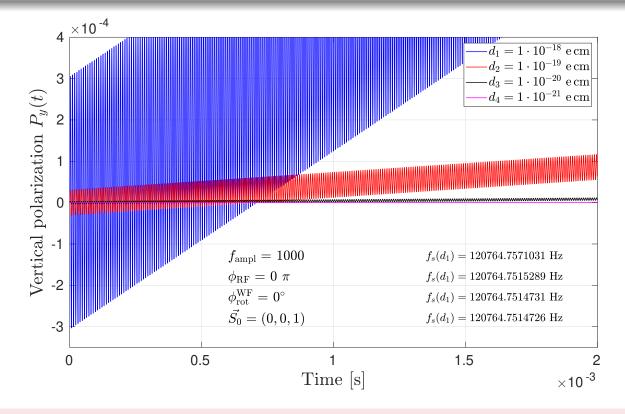
# RF Wien filter

## A couple more aspects about the technique:

- RF Wien filter  $(\vec{E} \times \vec{B})$  avoids coherent betatron oscillations in the beam:
  - Lorentz force  $\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0$ .
  - EDM measurement mode:  $\vec{B} = (0, B_y, 0)$  and  $\vec{E} = (E_x, 0, 0)$ .



- Deuteron spins lie in machine plane.
- If  $d \neq 0 \Rightarrow accumulation$  of vertical polarization  $P_y$ , during spin coherence time  $\tau_{\text{SCT}} \sim 1000 \, \text{s}$ .

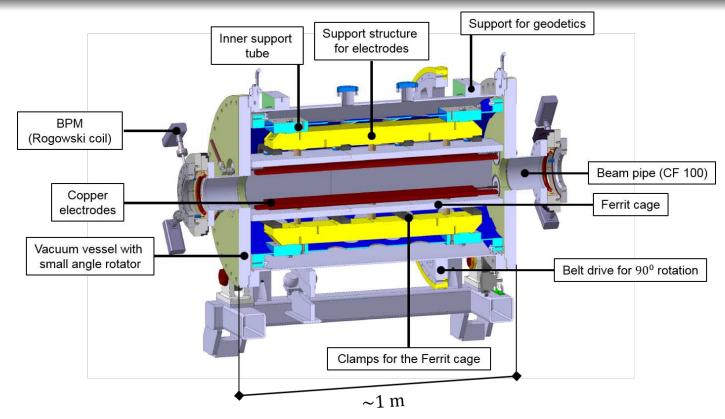

## Statistical sensitivity:

- in the range  $10^{-23}$  to  $10^{-24}$  e cm for d(deuteron) possible.
- Systematic effects: Alignment of magnetic elements, magnet imperfections, imperfections of RF-Wien filter etc.

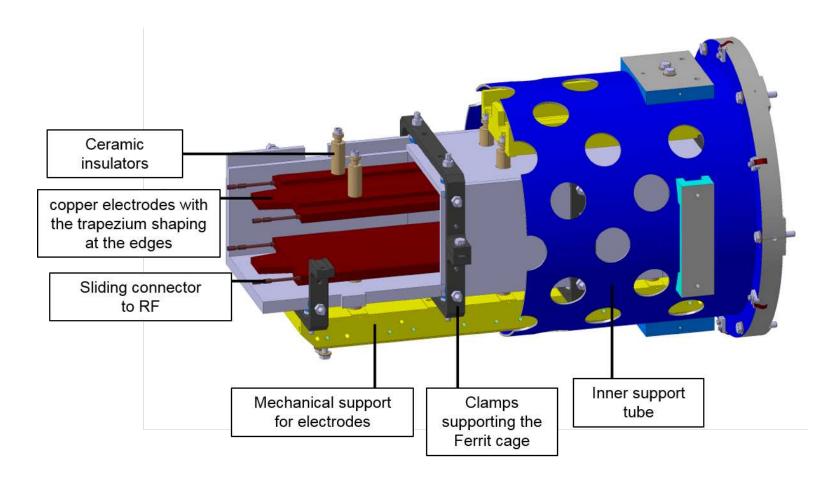
# Model calculation of EDM buildup with RF Wien filter

### Ideal COSY ring with deuterons at $p_d = 970 \,\mathrm{MeV/c}$ :

- G = -0.143,  $\gamma = 1.126$ ,  $f_{\rm s} = f_{\rm rev}(\gamma G + K_{(=0)}) \approx 120.765\,{
  m kHz}$
- Electric RF field integral assumed  $1000 \times \int E_{WF} \cdot d\ell \approx 2200 \, \text{kV}$  (w/o ferrites) [22, 2016].




EDM accumulates in  $P_y(t) \propto d_{\rm EDM}$  [21, 23, 24].


# Design of waveguide RF Wien filter

#### Joint Jülich – RWTH Aachen development:

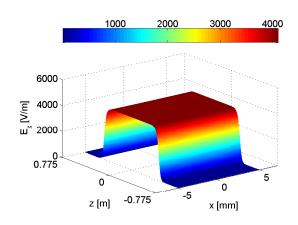
- Institute of High Frequency Technology, RWTH Aachen University:
  - Heberling, Hölscher, and PhD Student Jamal Slim, and ZEA-1 of Jülich.
- Waveguide provides  $\vec{E} \times \vec{B}$  by design.
- Minimal  $\vec{F}_L$  by careful electromagnetic design of all components [22].

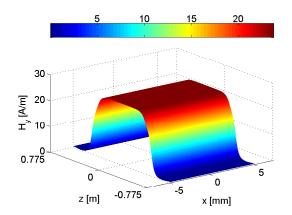


### Internal structure



### Aim was to build the best possible device, with respect to


- Electromagnetic performance [22] and mechanical tolerances [25].
- Excellent cooperation with RWTH Aachen University and ZEA-Jülich.


# Electromagnetic field simulations (incl. ferrites) [? ]

#### Full-wave simulations

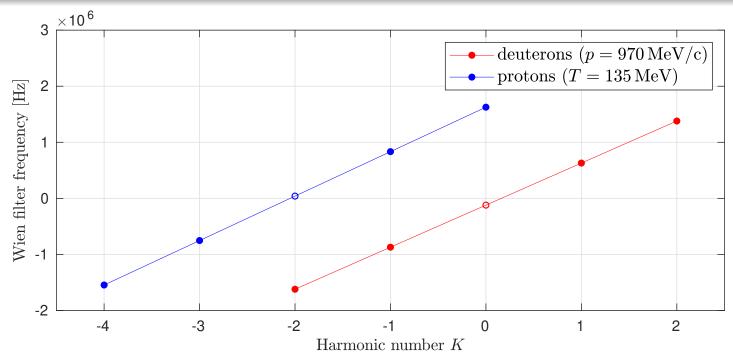
using CST Microwave Studio<sup>a</sup>.

<sup>a</sup>Computer Simulation Technology AG, Darmstadt, Germany, http://www.cst.com





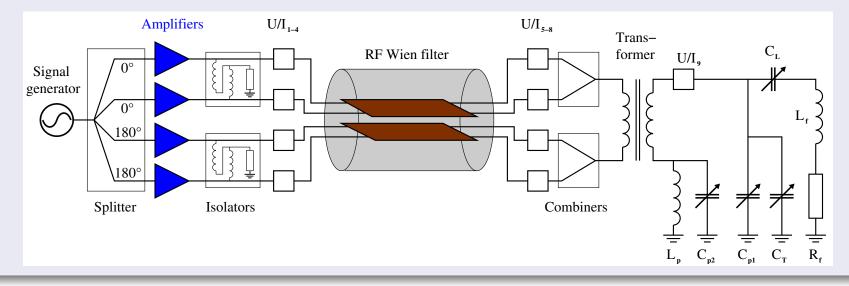
At an input power of 1 kW, magnetic and electric field integrals are  $(\ell = 1.550 \, \text{m})$ :


$$\int_{-\ell/2}^{\ell/2} \vec{B} dz = \begin{pmatrix} 2.73 \times 10^{-9} \\ 2.72 \times 10^{-2} \\ 6.96 \times 10^{-7} \end{pmatrix} \text{ T mm}, \quad \int_{-\ell/2}^{\ell/2} \vec{E} dz = \begin{pmatrix} 3324.577 \\ 0.018 \\ 0.006 \end{pmatrix} \text{ V}$$
(13)

# Frequencies of RF Wien filter

#### Resonance condition:

$$f_{\mathsf{WF}} = f_{\mathsf{rev}} \left( \gamma \mathsf{G} \pm \mathsf{K} \right) \,, \mathsf{k} \in \mathbb{Z}.$$
 (14)


- RF Wien filter operates at frequencies between 0 to 2 MHz,
- Open symbols not reachable with present setup of driving circuit, i.e.,
  - deuterons at K = 0 (-120.8 kHz), and
  - protons at K = -2 (39.4 kHz).



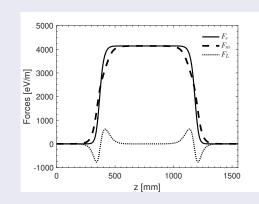
# Driving circuit

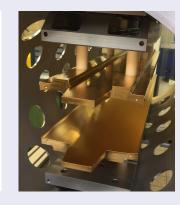
#### Realization with load resistor and tunable elements (L's and C's):

Design layout using four separate 1 kW power amplifiers.



#### Circuit fully operational


- Tuneable elements<sup>a</sup> allow [22]:
  - minimization of Lorentz-force, and
  - $\bullet$  velocity matching to  $\beta$  of the beam.
- Power upgrade to  $4 \times 2 \, \text{kW}$ :  $\int B_z dz = 0.218 \, \text{T} \, \text{mm}$  possible.


<sup>&</sup>lt;sup>a</sup>built by Fa. Barthel, http://www.barthel-hf.de.

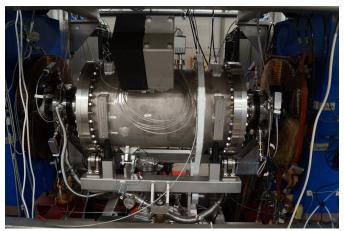
# Lorentz force compensation [22]

#### Integral Lorentz force is of order of $-3 \,\mathrm{eV/m}$ :

- Electric force  $F_e$ , magnetic force  $F_m$ , and Lorentz force  $F_L$  inside RF Wien filter.
- Trapezoid-shaped electrodes determine crossing of electric and magnetic forces.






#### Lorentz force

$$\vec{F}_{\mathsf{L}} = q \left( \vec{E} + \vec{v} \times \vec{B} \right) \,, \tag{15}$$

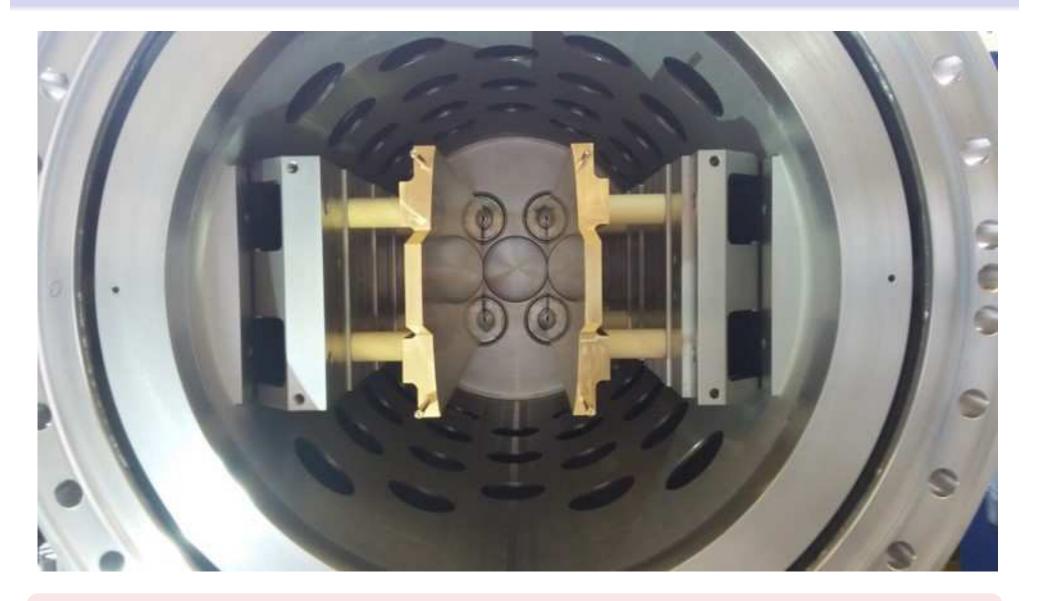
- particle charge q, velocity vector  $\vec{v} = c(0, 0, \beta)$ , fields  $\vec{E} = (E_x, E_y, E_z)$  and  $\vec{B} = \mu_0(H_x, H_y, H_z)$ ,  $\mu_0$  vacuum permeability.
- For vanishing Lorentz force  $\vec{F}_L = 0$ , field quotient  $Z_q$  given by

$$E_x = -c \cdot \beta \cdot \mu_0 \cdot H_y \quad \Rightarrow \quad \left| Z_q = -\frac{E_x}{H_y} = c \cdot \beta \cdot \mu_0 \approx 173 \ \Omega \right|.$$
 (16)

# RF Wien filter Installation at COSY

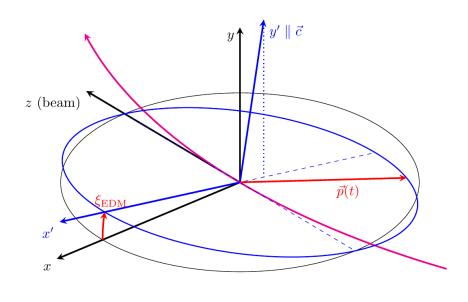






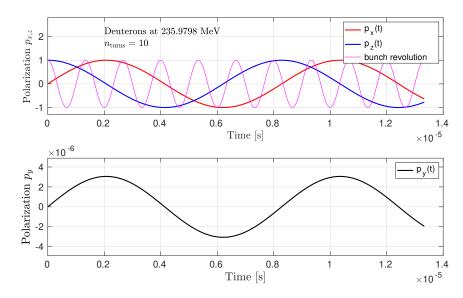






• RF Wien filter between PAX magnets. Upstream Rogowski coil; racks with power amplifiers, each unit delivers up to 500 W; water-cooled 25  $\Omega$  resistor.

### Installation at COSY II




View along the beam axis in the RF Wien filter.

# Effect of EDM on stable spin axis of the ring



#### Beam particles move along z direction

- Presence of an EDM  $\Rightarrow \xi_{\text{EDM}} > 0$ .
- $\Rightarrow$  Spins precess around the  $\vec{c}$  axis.
- $\Rightarrow$  Oscillating vertical polarization component  $p_v(t)$  is generated.



### Evolution for 10 turns $(\vec{p_0} = (0,0,1))$

- $p_x(t)$ ,  $p_z(t)$  and  $p_y(t)$ .
- Bunch revolution indicated as well.
- Magnitude of  $p_y$  oscillation amplitude corresponds to tilt angle  $\xi_{\rm EDM}$ .

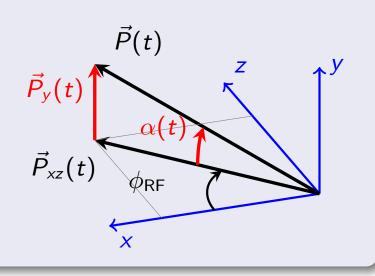
# Strength of EDM resonance

#### EDM induced vertical polarization oscillations,

can generally be described by

$$p_{y}(t) = a \sin(\Omega^{p_{y}} t + \phi_{\mathsf{RF}}). \tag{17}$$

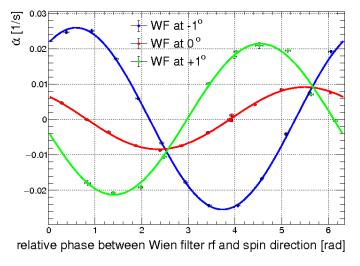
• Define **EDM** resonance strength  $\varepsilon^{\text{EDM}}$  as ratio of angular frequency  $\Omega^{p_y}$  relative to orbital angular frequency  $\Omega^{\text{rev}}$ ,


$$\varepsilon^{\mathsf{EDM}} = \frac{\Omega^{p_{y}}}{\Omega^{\mathsf{rev}}},$$
(18)

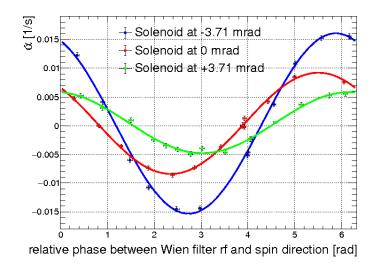
### Alternatively, $\varepsilon^{\text{EDM}}$ is determined from the measured initial slopes $\dot{p}_y(t)|_{t=0}$

ullet through variation of  $\phi_{\mathrm{RF}}$ 

$$\varepsilon^{\mathsf{EDM}} = \frac{\dot{p}_{y}(t)|_{t=0}}{a\cos\phi_{\mathsf{RF}}} \cdot \frac{1}{\Omega^{\mathsf{rev}}}.$$
(19)


• If  $|\vec{P}| = 1$   $\Rightarrow$   $\dot{p}_y(t) = \dot{\alpha}(t)$ 



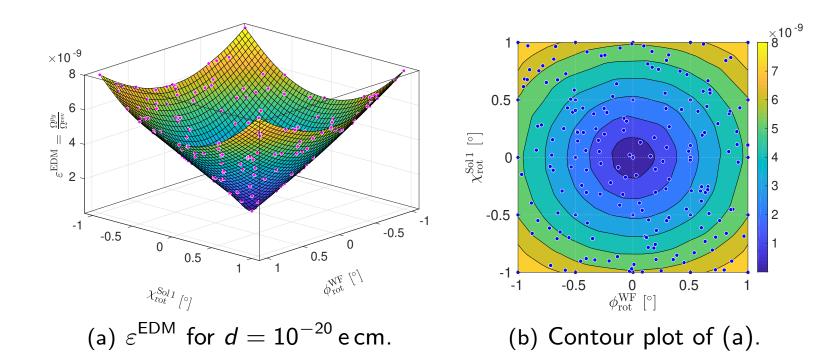

# First measurement of EDM-like buildup signals

#### Rate of out-of-plane rotation angle $\dot{\alpha}(t)|_{t=0}$ as function of Wien filter RF phase $\phi_{\mathsf{RF}}$

- B field of RF Wien filter normal to the ring plane.
- Wien filter operated at  $f_{WF} = 871 \, \text{kHz}$ .
- Variations of  $\phi_{\rm rot}^{\rm WF}$  and  $\chi_{\rm rot}^{\rm Sol \, 1}$  affect the pattern of observed initial slopes  $\dot{\alpha}$ .



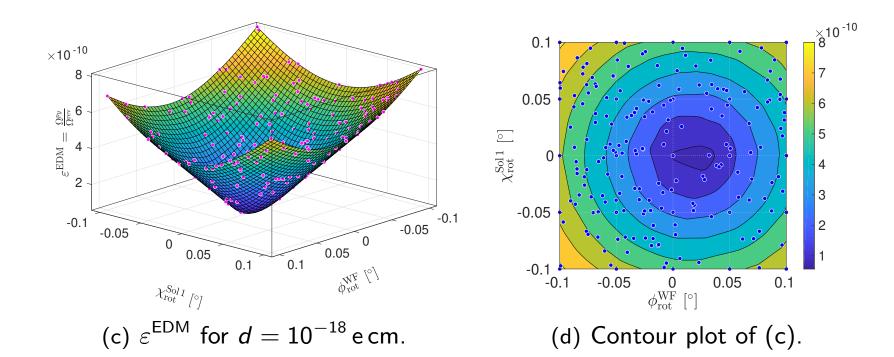
$$\dot{lpha}$$
 for  $\phi^{\mathsf{WF}}_{\mathsf{rot}} = -1^{\circ}$ ,  $0^{\circ}$ ,  $+1^{\circ}$  and  $\chi^{\mathsf{Sol}\,1}_{\mathsf{rot}} = 0$ .  $\dot{lpha}$  for  $\chi^{\mathsf{Sol}\,1}_{\mathsf{rot}} = -1$ ,  $0$ ,  $+1^{\circ}$  and  $\phi^{\mathsf{WF}}_{\mathsf{rot}} = 0$ .




$$\dot{lpha}$$
 for  $\chi^{\mathsf{Sol}\,1}_{\mathsf{rot}} = -1$ , 0,  $+1^{\circ}$  and  $\phi^{\mathsf{WF}}_{\mathsf{rot}} = 0$ 

#### Planned measurements:

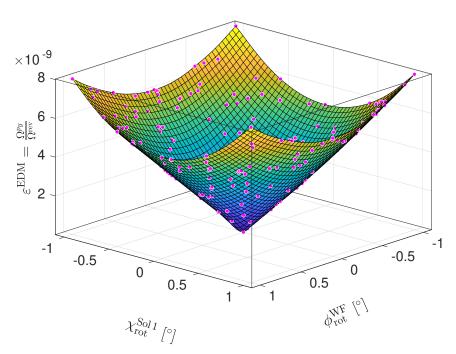
- 1<sup>st</sup> EDM measurement run Nov-Dec/2018 (6 wk, ongoing).
- 2<sup>nd</sup> run planned for Fall/Winter 2019 (6 wk).

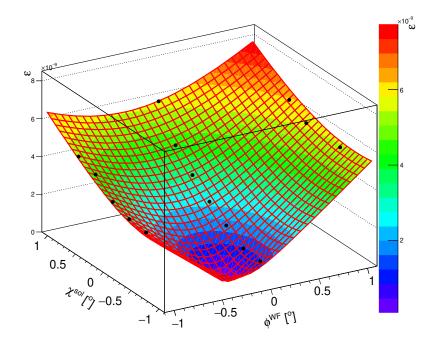

# Expectation for $d=10^{-20}\,\mathrm{e\,cm}$ in ideal COSY ring



### Resonance strengths $\varepsilon^{\text{EDM}}$ from Eq. (18) ( $\approx$ 175 random-points)

- ullet  $\phi_{\mathsf{rot}}^{\mathsf{WF}} = [-1\,^\circ, \dots, +1\,^\circ]$ ,
- ullet  $\chi_{\mathsf{rot}}^{\mathsf{Sol}\,1} = [-1\,^\circ, \dots, +1\,^\circ]$  (100 keV cooler), and
- $\chi_{\text{rot}}^{\text{Sol 2}} = 0$  (2 MeV cooler).
- Each point from calculation with  $n_{\text{turns}} = 50\,000$  and  $n_{\text{points}} = 200$ .


# Expectation for $d=10^{-18}\,\mathrm{e\,cm}$ in ideal COSY ring




### Resonance strengths $\varepsilon^{\text{EDM}}$ from Eq. (18) ( $\approx$ 175 random-points)

- ullet  $\phi_{\mathsf{rot}}^{\mathsf{WF}} = [-0.1\,^{\circ}, \dots, +0.1\,^{\circ}]$ ,
- ullet  $\chi_{
  m rot}^{
  m Sol\,1}=$   $[-0.1\,^{\circ},\ldots,+0.1\,^{\circ}]$  (100 keV cooler), and
- $\chi_{\text{rot}}^{\text{Sol 2}} = 0$  (2 MeV cooler).
- Each point from calculation with  $n_{\text{turns}} = 200\,000$  and  $n_{\text{points}} = 100$ .

# First results from the test run in May-June '18

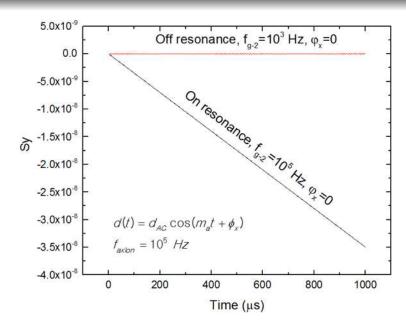




- (e) Simulated  $\varepsilon^{\rm EDM}$  for  $d=10^{-20}\,{\rm e\,cm}$ .
- (f) First 16 points on the map.

### Importance of spin tracking simulations

- Orientation of stable spin axis at location of RF Wien filter *including the EDM* is determined from minimum of map.
- Spin tracking calculations shall provide orientation of stable spin axis without EDM.


# (Oscillating) Axion-EDM search using storage ring

#### Motivation: Paper by Graham and Rajendran [26, 2011]

 Oscillating axion field is coupled with gluons and induces an oscillating EDM in hadronic particles.

#### Measurement principle:

- When oscillating EDM resonates with particle g-2 precession frequency in the storage ring, the EDM precession can be accumulated.
- Due to strong effective electric field (from  $\vec{v} \times \vec{B}$ ), sensitivity improved significantly.



Courtesy of Seongtae Park (IBS, Daejeon, ROK)

# Limits for axion-gluon coupled to oscillating EDM

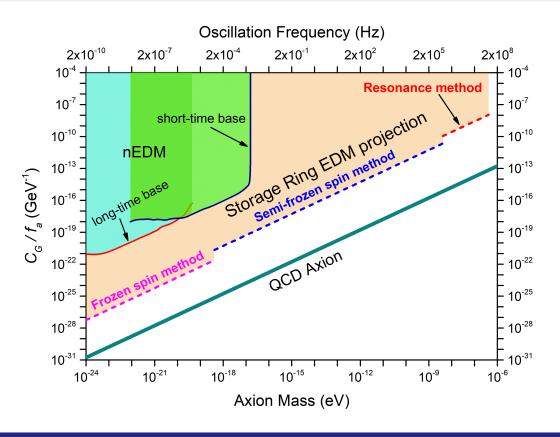



Figure from S.P. Chang et al. [27]

#### Realization

- No new/additional equipment required!
- Can be done in magnetic storage ring (i.e., COSY).
- Proposal for test beam time accepted by CBAC.
- Experiment scheduled for I/2019.

## Summary

### Search for charged hadron particle EDMs (proton, deuteron, light ions):

 New window to disentangle sources of CP violation, and to possibly explain matter-antimatter asymmetry of the Universe.

#### Present investigations

- JEDI is making steady progress in spin dynamics of relevance to future searches for EDM.
- COSY remains a unique facility for such studies.
- First direct JEDI deuteron EDM measurement at COSY underway.
  - Ongoing 6 wk run Nov.-Dec. '18.
  - Sensitivity  $10^{-19} 10^{-20}$  e cm.

### Strong interest of high energy community in storage ring EDM searches

- protons and light nuclei as part of physics program of the post-LHC era.
  - Physics Beyond Collider process (CERN), and
  - European Strategy for Particle Physics Update.
  - As part of this process, proposal for prototype EDM storage ring being prepared by CPEDM (possible hosts: CERN or COSY).

### JEDI Collaboration



### JEDI = Jülich Electric Dipole Moment Investigations

- $\sim 140 \text{ members (Aachen, Daejeon, Dubna, Ferrara, Indiana, Ithaka, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St Petersburg, Stockholm, Tbilisi, . . .$
- http://collaborations.fz-juelich.de/ikp/jedi



### References I

- [1] C. L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003).
- [2] V. Barger, J. P. Kneller, H.-S. Lee, D. Marfatia, and G. Steigman, Phys. Lett. **B566**, 8 (2003).
- [3] W. Bernreuther, Lect. Notes Phys. **591**, 237 (2002).
- [4] J. Bsaisou et al., Journal of High Energy Physics 2015, 1 (2015).
- [5] I. B. Khriplovich and S. K. Lamoreaux, *CP violation without strangeness: Electric dipole moments of particles, atoms, and molecules,* 1997.
- [6] J. Baron et al., Science **343**, 269 (2014).
- [7] G. W. Bennett et al., Phys. Rev. D **80**, 052008 (2009).
- [8] K. Inami et al., Physics Letters B **551**, 16 (2003).
- [9] L. Pondrom et al., Phys. Rev. D 23, 814 (1981).
- [10] J. M. Pendlebury et al., Phys. Rev. **D92**, 092003 (2015).
- [11] V. F. Dmitriev and R. A. Sen'kov, Phys. Rev. Lett. 91, 212303 (2003).
- [12] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, Phys. Rev. Lett. 116, 161601 (2016).
- [13] M. A. Rosenberry and T. E. Chupp, Phys. Rev. Lett. 86, 22 (2001).

### References II

- [14] D. Albers et al., Eur. Phys. J. **A22**, 125 (2004).
- [15] D. Eversmann et al., Phys. Rev. Lett. **115**, 094801 (2015).
- [16] Z. Bagdasarian et al., Phys. Rev. ST Accel. Beams 17, 052803 (2014).
- [17] I. Vasserman et al., Physics Letters B **198**, 302 (1987).
- [18] G. Guidoboni et al., Phys. Rev. Lett. 117, 054801 (2016).
- [19] N. Hempelmann et al., Phys. Rev. Lett. **119**, 014801 (2017).
- [20] N. Brantjes et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **664**, 49 (2012).
- [21] A. Saleev et al., Phys. Rev. Accel. Beams 20, 072801 (2017).
- [22] J. Slim et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **828**, 116 (2016).
- [23] F. Rathmann, A. Saleev, and N. N. Nikolaev, J. Phys. Conf. Ser. **447**, 012011 (2013).

### References III

- [24] Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, Phys. Rev. Lett. **96**, 214802 (2006).
- [25] J. Slim et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **859**, 52 (2017).
- [26] P. W. Graham and S. Rajendran, Phys. Rev. D 84, 055013 (2011).
- [27] S. P. Chang et al., PoS **PSTP2017**, 036 (2018).