

#### ANITA: Hunting for neutrinos and new physics

#### **Ryan Nichol**

PSI 29th November 2018



#### LEVERHULME TRUST

# Brief scientific timeline leading to ANITA **JUCL**



Wolfgang Pauli does "something very bad"... he postulates the neutrino 1930



Wilson and Penzias discover the cosmic microwave background

1965

**1912** Victor Hess discovers cosmic rays, by flying balloons up to 3 miles above Austria



#### 1962

Gurgen Askaryan hypothesises coherent radio emission from particle cascades in dielectric media



# 



Berezinksy & Zatsepin realise the GZK effect will produce neutrinos 1969



ANITA-I launches from Williams Field in Antarctica

2006

**1966** Greisen, Zatsepin & Kuzmin predict the end of the cosmic ray spectrum



#### 1987

Kamiokande, IMB and Baksan detect neutrinos from a nearby supernova



#### Complete\* History of Neutrino Particle Astrophysics





#### • SN1987A

- –24 neutrino events
   detected by Kamikande-II,
   IMB and Baksan
- –Learned about
  - Supernova collapse mechanisms
  - Neutrinos feel gravity (similarly to photons)
  - Neutrino mass < 23eV from time of flight dispersion
  - Neutrinos are not charged
  - Limits on non-neutrino weakly interacting particles
  - Axion bounds
  - Neutrino mixing and oscillations
  - Exotic neutrino disappearance

## Why High Energy Neutrinos?

For Astronomers: The Pretty Pictures Argument



For Particle Physicists:

The 300 TeV (CoM) Neutrino Beam Argument

| 1 /                   | J                    |                                    |
|-----------------------|----------------------|------------------------------------|
| type                  | L/E                  | $t_{proper} \sim (L/c)(m_{\nu}/E)$ |
| CERN SpS/WANF         | 500 m/25 GeV         | 3 attoseconds                      |
| Stopped $\mu$ (LAMPF) | 30 m/ 40 MeV         | 130 attoseconds                    |
| NUMI                  | 735 km/ 4 GeV        | 30 femtoseconds                    |
| Reactor (KamLAND)     | 150 km/5 MeV         | 800 femtoseconds                   |
| Atmospheric           | 10,000 km/1 GeV      | 2 picoseconds                      |
| Sun                   | 150,000,000 km/5 MeV | 800 nanoseconds                    |
| GZK                   | 1 Gpc/100 PeV        | 50 milliseconds                    |
| SN-1987a              | 50 kpc/15 MeV        | 1 hour                             |

#### Aside: The GZK Effect



 Greisen-Zatsepin-Kuzmin (GZK) calculated cosmic rays above 10<sup>19.5</sup>eV should be slowed by CMB within 50MPc.

盦

 Berezinksy and Zatsepin realised this would produce a flux of neutrinos

$$\Delta^* \rightarrow n + \pi^+$$

$$\Delta^* \mu^+ + \nu_\mu$$

$$\Delta e^+ + \overline{\nu_\mu} + \nu_e$$

= "Guaranteed" Cosmogenic Neutrino "Beam"!



# BREAKTHROUGH OF THE YEAR 2013

ST

physicsworld

# IceCube

ICECUBE

#### lceCube



- Completed in 2010
- 1km<sup>3</sup> of ice at the South Pole
- 5160 PMTs
- 86 strings
- 17m vertical spacing
- 125m horizontal spacing
- DeepCore
  - Densely
     instrumented array
     of 8 strings in deep
     good ice



#### IceCube Results

 IceCube have definitively observed an excess of high energy neutrino events above the atmospheric neutrino prediction





• Some Numbers:

~1 cosmogenic neutrino/km<sup>2</sup>/yr @  $10^{18}$  eV the  $\nu$ -N interaction length ~ 300km

- : 0.003 neutrinos/km<sup>3</sup>/year
- Need a huge detector
   volume (>>100 km<sup>3</sup>) to
   ensure detection
- Use naturally occurring medium
  - Transparent (to some signal)
  - Possibilities
    - Air, Ice, Salt, Water, The Moon





# 

#### Radio Emission Mechanisms



### Radio Cherenkov -- The Askaryan Effect AUCL

 In 1962 Gurgen Askaryan hypothesised coherent radio transmission from EM cascades in a dielectric:



Typical Dimensions: L  $\approx$  10 m R<sub>Moliere</sub>  $\approx$  10 cm

- -20% Negative charge excess:
  - Compton Scattering:  $\gamma + e^{-}(rest) \Rightarrow \gamma + e^{-}$
  - Positron Annihilation:  $e^+ + e^-(rest) \Rightarrow \gamma \gamma$
- -Excess travelling with, v > c/n

• Cherenkov Radiation: dP  $_{\propto} \nu$  d  $\nu$ 

-For  $\lambda$  > R emission is coherent, so P  $\sim$  E<sup>2</sup><sub>shower</sub>

#### Flashy Ice

# 



From PRL 99, 171101 (2007)

### **Radio Emission from Air Showers**

- Air shower emission is complicated
  - -Geomagnetic component from positron-electron separation
  - -Askaryan component
  - -Cherenkov effects from the varying refractive index of air, compresses pulse giving high frequency component



â

-T-510 experiment at SLAC tried to disentangle these

T-510: Phys.Rev.Lett. 116 (2016) no.14, 141103



# 

#### **ANITA Collaboration**

**Ohio State University** 

**University of Kansas** 

Washington University in St. Louis

**University of Delaware** 

University of California, Los Angeles



University of Hawaii at Manoa National Taiwan University University College London Jet Propulsion Laboratory Stanford Linear Accelerator Center

**University of Chicago** 

UCLA











SLAC





Jet Propulsion Laboratory California Institute of Technology





### Need the world's largest detector

- Let's go to Antarctica!
- It is the coldest, driest, windiest place on Earth
- But...
  - -Lots of Ice
    - Despite our best efforts
    - Over 4km thick in places
  - -Also:
    - The only continent exclusively dedicated to scientific research
    - No indigenous (human) population
    - Home of NASA's longduration balloon program





#### ANITA

- The ANtarctic Impulsive Transient Antenna
  - –A balloon borne experiment
    - Grown from 32 to 48 dual polarisation antennas
    - Altitude of 37km (120,000 ft)
    - Horizon at 700km
    - Over 1 million km<sup>3</sup> of ice visible





Not to scale, angles don't reflect reality









## **ANITA Electronics and Trigger**

 Need a low power (only solar energy), 90 channel, multi-GHz bandwidth oscilloscope.



- Split trigger and waveform paths
- Use left and right circular polarisation for linear polarised trigger
- 'Buffer' waveform data in switched capacitor array



#### ANITA 1-4

#### 



ANITA-3 Flight Path 17th December 2014 - 19 January 2015







### **Ballooning in Antarctica**

 Balloons launched from Williams Field since 1988



'Fits' inside

the balloon

at altitude



R 16 2006



### **ANITA-1 End of Flight**

Image: Dana Braun, Wash. U.

### **ANITA-2 End of Flight**



#### **ANITA-3 End of Flight**





Image: Josh F., Australian Antarctic Division

#### **ANITA-4 End of Flight**





<sup>30</sup> Image: Christian Miki, University of Hawaii

#### How did we get the data back?





Google

lap data @2015 Google



#### ANITA Analysis

Image: Dana Braun, Wash. U.

#### How ANITA sees the world



#### Narrow band noise

- Satellites and human bases using communications in the bands:
  - -260 MHz
  - -380 MHz
- Frequency (MHz)

• How to get rid of this?

- ANITA 1-3: software
- ANITA 4: hardware

Min Bias Peak Direction



#### **Analysis -- Cross Correlation**

mm mm ~3.5m m Mm 2 mm 3 mm ⊮~1m Manth vin 4 1 2 T12 T13 waveform cross-correlation T14 gives baseline delays T23 ↔ T24 → T34

from A. Romero Wolf, Neutrino 2008

http://dx.doi.org/10.1016/j.astropartphys.2014.06.006



#### Calibration





ELEVATION ANGLE

AZIMUTH ANGLE

from S. Hoover Measured azimuth (degrees)

#### **Thermal Noise**

ANITA can "see" the Sun



ANITA-2



### Clustering

• From previous cuts, ~500k events



- Look for isolated singlets and doublets
- Remove anything that clusters with human bases
- Remove anything which forms a cluster of 3 or more

#### What's left?

- One V-POL candidate
- Background estimate: 0.7<sup>+0.5</sup>-0.3 per polarisation
- No known human activity within 260km



#### **Neutrino limit**



• From previous cuts, ~100k events

Limit on all-flavour-sum diffuse UHE neutrino flux



#### What about Horizontal Polarisation?





- Askaryan signals from neutrinos strongly favour vertical polarisation
  - Only top of Cherenkov cone escapes TIR at surface
  - Fresnel coefficients transmit more V-pol than H-pol
- Reflections from above the horizon sources would favour H-pol over V-pol at the balloon
- What could the signal be?

NO. 4969 January 23, 1965

NATURE

RADIO PULSES FROM EXTENSIVE COSMIC-RAY AIR SHOWERS

By Dr. J. V. JELLEY and J. H. FRUIN Atomic Energy Research Establishment, Harwell

PROF. N. A. PORTER and T. C. WEEKES University College, Dublin AND

#### UHECR

# 

ANITA1: 16 UHECR 14 reflected + 2 direct ANITA-2: 2 UHECR H-pol trigger was off ANITA-3: 20 UHECR ANITA-4: analysis in progress





arXiv:1803.05088 [astro-ph.HE]

#### **ANITA-1** mystery event



#### And ANITA-3 mystery event



Chord length: 5500-7000 km (20-30,000km water equivalent) 1600km SM interaction length @ 1 EeV



â | | (

**Direct Cosmic Rays** 

**Reflected Cosmic Rays** 



#### All news is good news?





**f**<sub>0</sub>



OCTOBER 22, 2018

 If these are tau neutrinos why hasn't IceCube seen them?



arXiv:1803.05088v1 [astro-ph.HE] 47

Problem 2: Why didn't ANITA see more? **JCL** 

- Both the ANITA-1 and ANITA-3 events were relatively close to the balloon
- There is much more acceptance close to the horizon
- Where are those tau candidate events?



arXiv:1803.05088v1 [astro-ph.HE]

### **Solution 1: Sterile Neutrinos?**

- Cherry and Shoemaker proposed that the ANITA anomalous events could be explained through sterile neutrino mixing
- To avoid IceCube constraints the source needs to be transient
- To avoid an excess of events in ANITA you need a conspiracy that disfavours events close to the horizon (L/E near the Δm<sup>2</sup> for the active to sterile)



arXiv:1802.01611v2 49

## Solution 2: Supersymmetry?

- Fox *et al* provide further evidence that it is hard to incorporate these anomalous events in the standard model.
  - -Goldilocks scenario
    - Horizon disfavoured by long lived BSM particle
    - Upping disfavoured by energy loss / earth attenuation
- Collins *et al* also suggest a BSM particle explanation
  - "It would be remarkable if weak-scale supersymmetry was discovered in such an unexpected way!"



arXiv:1810.08479



#### **Future?**

Image: Dana Braun, Wash. U.

#### **ANITA 1-4: Progress and regress**



- ANITA-1 - 2006
  - 2000
  - 32 Antennas
  - Circularly
     polarised
     coincidence
     trigger
  - Frequency
     banded
     trigger

- ANITA-2
  - 2008
  - 40 Antennas
  - Vertically
     polarised
     trigger
  - Frequency
     banded
     trigger

- ANITA-3
  - 2014
  - 48 Antennas
  - Vertically & horizontally polarised triggers
  - Frequency
     banded
     trigger
  - GPU software filter

- ANITA-4
  - -2016
  - 48 Antennas
  - Circularly polarised coincidence trigger
  - Frequency
     banded trigger
  - GPU software filter
  - Tuneable notch filter

#### Think smarter not harder





### Summary

- Radio detection of high energy particles is a vibrant field
- The first three flights of ANITA have been used to set the most stringent limits on the UHE neutrino flux
  - -ANITA has detected over 30 UHECRs
  - -There are two interesting events with flipped polarity
- Still analysing ANITA-4 data
- The next generation of neutrino astronomy facilities may finally realise the ambition of probing the universe with "new eyes".
  - Probing fundamental physics at energies beyond the reach of terrestrial accelerators.
- Hopefully soon we will have the first unambiguous detection of an UHE neutrino.
  - But in the mean time there are the anomalous events and UHECR

Me in front of the Royal Society Range in 2008? or 2006? or 2014? or 2016?

### Up, up and away

- The Balloon
  - -Just 0.02mm thick
  - Takes 100 million litres of helium (and several hours) to fill







#### Calibration





ELEVATION ANGLE

**AZIMUTH ANGLE** 

from S. Hoover Measured azimuth (degrees)

#### **ANITA -- Angular Resolution**



- Using signals from multiple antennas it is possible to measure the direction of arrival of radio pulse to ~0.5° in elevation and ~1.5° in azimuth (based on ANITA-lite calibration data)
- The neutrino direction can vary around radio pulse direction but is constrained to ~2° in elevation and by 3-5° in azimuth by polarization angle.

#### **Anthropogenic Backgrounds**



- Use clustering algorithms to associate events with known bases and with other events
- Remove all events that cluster leaving only isolated events
- Remaining background is the number of unknown sites of anthropogenic noise which we have not identified... hard to quantify 59

### **Neutrino Limits**

ANITA-2 Results

| Isolated v-pol<br>events   | 1           |
|----------------------------|-------------|
| Expected background events | 0.97 ± 0.42 |

 Use calibration pulser and simulation to determine efficiency and set the best limit on UHE neutrino flux.

<u>10.1103/PhysRevD.85.049901</u> <u>10.1103/PhysRevD.82.022004</u>

Also limits on magnetic monopoles and neutrinos from gamma-ray bursts



### ANITA-II

- Additional ring of antennas
- Lower noise amplifiers
- Trigger only on vertical polarisation\*\*
- Directional trigger masking
- Net improvement:
  - –Factor of 1.7 in threshold --> x3 in event rate
  - Up to 30% in exposure (flight path dependent)
  - -Up to 40% in live time
  - -Total factor > 5 in neutrino sensitivity







\*\* Decision made before the ANITA-I analysis was completed

Are they really cosmic ray signals?

- The 14 events that reconstruct to the surface (i.e. are reflections) have very similar waveforms
- The 2 events that reconstruct above the surface have the opposite polarity
- Consistent with some signal that is generated above the surface



#### Are they really cosmic ray signals?







# ANITA-1 mystery event (PRL 117 071101) **JUCL**

- Recent paper from ANITA discussing the direct cosmic ray signals in the 1st flight
- Uncovered one extra event that clearly points to the ice, but looks very similar to the direct h-pol waveforms
- The measured polarisation is consistent with a shower emerging from the ice
  - –Could this be a tau neutrino candidate event?
    - Would be unlikely to survive given standard cross-section extrapolation
      - Should be attenuated by the Earth over the 5500km chord length
  - –Could this be a cosmic ray with inverted polarity?
  - -Could this be anthropogenic noise?



#### **ANITA --- The Calorimeter**

٠

The observed voltage  $V_{obs}$  is proportional to the neutrino energy  $E_v$ :

$$V_{obs} \sim E_{\nu} y h_{eff} R^{-1} exp \left( -\frac{\beta^2}{2\sigma_{\beta^2}} - \alpha d \right)$$

y is the fraction of neutrino energy in the cascade  $h_{eff}$  is the effective height of the antenna (gain) R is the range to the cascade Gaussian in  $\beta$  from observer position on Cerenkov cone (estimated from RF spectrum) Exponential is attenuation in ice at depth d. (estimated from RF spectrum and polarization effects)

Gives:  $\Delta E_{\nu} / E_{\nu} \sim 1.9$  (60% of which is intrinsic from y)