Intro.	Strong fields	Basic processes	Loops	Outro

Quantum physics in intense laser fields

Anton Ilderton

LTP/PSI Colloquium, 2018-10-18

Engineering and Physical Sciences Research Council

- Quantum field theory of light and matter.
- Coupling $\alpha = e^2/(4\pi) \sim 1/137 \ll 1$: small.
- So use perturbation theory.
- Radiation of photons, pair production etc.
- Well tested regime.
- Lamb shift, g 2, Compton effect...

Few-particle scattering in QED

• Fundamental constants: m, e, \hbar , c. Make an electric field...

•
$$E_S = \frac{m^2 c^3}{e \hbar} \simeq 10^{18} \ {\rm V/m}.$$
 Sauter, Schwinger

• Work done: $eE_S \times \lambda_C = m$; pair production.

$$N/V = \left(\frac{eE\hbar}{m^2c^3}\right)^2 \exp\left[-\pi \frac{m^2c^3}{eE\hbar}\right]$$

- Nonperturbative effects from strong fields.
- Still far from Schwinger ... interesting physics along the way!

Intro. 0000	Strong fields	Basic processes	Loops 00000	Outro 00000
Invitation:	switching on	strong fields		

...another parameter to play with...

ъ

- C.o.M. energy
- Coherent source intensity

Intro.	Strong fields	Basic processes	Loops	Outro
00●0	0000		00000	00000
Invitation:	switching on	strong fields		

Intro.	Strong fields	Basic processes	Loops	Outro
000●	0000		00000	00000
Outline				

- Strong fields in classical & quantum electrodynamics "Strong Field QED"
- Electron-laser collisions

Nonlinear Compton & radiation reaction

Laser-laser collisions

Light by light & vacuum birefringence

Future experiments and open questions
 Cascades & breakdown of Strong Field QED

Intro .	Strong fields	Basic processes	Loops	Outro
0000		00000	00000	00000
A limit to	perturbative me	thods		

• Start classically

- Motion in electromagnetic fields \mathbf{E} and $\mathbf{B} \rightarrow F_{\mu\nu}$
- Consider: laser of amplitude E and frequency ω .

$$m\ddot{x}_{\mu} = eF_{\mu\nu}\dot{x}^{\nu}$$

Intro .	Strong fields	Basic processes	Loops	Outro
0000		00000	00000	00000
A limit to	perturbative me	thods		

• Start classically

- Motion in electromagnetic fields \mathbf{E} and $\mathbf{B} \rightarrow F_{\mu\nu}$
- Consider: laser of amplitude E and frequency ω .

$$m\ddot{x}_{\mu} = eF_{\mu\nu}\dot{x}^{\nu} \longrightarrow x'' \sim \frac{eE}{m\omega}x'$$

Intro .	Strong fields	Basic processes	Loops	Outro
0000	•000		00000	00000
A limit to	perturbative	methods		

- Start classically
- Motion in electromagnetic fields ${f E}$ and ${f B} \to F_{\mu\nu}$
- $\bullet\,$ Consider: laser of amplitude E and frequency $\omega.$

$$m\ddot{x}_{\mu} = eF_{\mu\nu}\dot{x}^{\nu} \longrightarrow x'' \sim \frac{eE}{m\omega}x'$$

• Coupling to field / "intensity parameter".

$$a_0 = \frac{eE}{m\omega}$$

Intro .	Strong fields	Basic processes	Loops	Outro
0000		00000	00000	00000
A limit	to perturbative	methods		

- Start classically
- Motion in electromagnetic fields ${f E}$ and ${f B} \to F_{\mu\nu}$
- $\bullet\,$ Consider: laser of amplitude E and frequency $\omega.$

$$m\ddot{x}_{\mu} = eF_{\mu\nu}\dot{x}^{\nu} \longrightarrow x'' \sim \frac{eE}{m\omega}x'$$

• Coupling to field / "intensity parameter".

$$a_0 = \frac{eE}{m\omega}$$

- Interaction is strong when $\operatorname{coupling} > 1$.
- $a_0 > 1$ now regularly achieved. ($10^{18} \text{ W/cm}^2 \text{ optical}$)

 Intro.
 Strong fields
 Basic processes
 Loops
 Outro

 0000
 0000
 00000
 00000
 00000

A laser of amplitude E and frequency $\omega.$

- **1**. $a_0 > 1 \iff eE\lambda > m$
- Energy gained/ laser wavelength > electron mass.
- Relativistic effects.

eE $a_0 =$ $m\omega$

A laser of amplitude E and frequency $\omega.$

1. $a_0 > 1 \iff eE\lambda > m$

$$a_0 = \frac{eE}{m\omega}$$

- Energy gained/ laser wavelength > electron mass.
- Relativistic effects.
- **2**. $a_0 > 1 \iff eE\lambda_C > \omega$
 - Energy gained / Compton wavelength > photon energy.
 - Nonlinear/'multiphoton' effects.

A laser of amplitude E and frequency ω .

1. $a_0 > 1 \iff eE\lambda > m$

$$a_0 = \frac{eE}{m\omega}$$

- Energy gained/ laser wavelength > electron mass.
- Relativistic effects.

2.
$$a_0 > 1 \iff eE\lambda_C > \omega$$

- Energy gained / Compton wavelength > photon energy.
- Nonlinear/'multiphoton' effects.
- Strong fields means a₀ > 1 ⇒ no perturbation in a₀.
 Non-perturbative, nonlinear, relativistic regime.

Intro. 0000	Strong fields 00●0	Basic processes	Loops 00000	Outro 00000
Coheren	ce and intensity	,		

- Laser-particle collisions
- Particles: number state
- Laser: photon coherent state.

$$|e^{-}, \tilde{\mathcal{A}}\rangle = |e^{-}\rangle \otimes \exp\left[\int \mathrm{d}k \,\tilde{\mathcal{A}}(k) a_{k}^{\dagger}\right]|0\rangle$$

! Infinitely many Feynman diagrams for any process.

Intro . 0000	Strong fields 00●0	Basic processes	Loops 00000	Outro 00000
Coheren	ce and intensity			

- Laser-particle collisions
- Particles: number state
- Laser: photon coherent state.

$$|e^{-}, \tilde{\mathcal{A}}
angle \simeq |e^{-}
angle \otimes \left(|0
angle + \int \! \mathrm{d}k \, \tilde{\mathcal{A}}(k) a_{k}^{\dagger} |0
angle
ight)$$

! Infinitely many Feynman diagrams for any process.

• Perturbation \rightarrow e.g. Compton, familiar.

Intro . 0000	Strong fields 00●0	Basic processes	Loops 00000	Outro 00000
Coherence and intensity				

- Laser-particle collisions
- Particles: number state
- Laser: photon coherent state.

$$|e^{-}, \tilde{\mathcal{A}}\rangle = |e^{-}\rangle \otimes \exp\left[\int \mathrm{d}k \,\tilde{\mathcal{A}}(k) a_{k}^{\dagger}\right]|0\rangle$$

! Infinitely many Feynman diagrams for any process.

- Perturbation \rightarrow e.g. Compton, familiar.
- But ... but what if field is strong?

Intro .	Strong fields	Basic processes	Loops	Outro
0000	000●		00000	00000
Strong field	QED			

• Resum?

- $\checkmark~$ Exactly solvable examples.
- ✓ *Non*-pert. approximations.

Radiation of photons, pairs, etc, in vertex as usual.

• "Strong Field QED".

Electron laser collisions: Nonlinear Compton scattering

- Collide electrons & laser pulse.
- Look at emitted radiation.
- $a_0 > 1$
- Nonlinear effects.

- Collide electrons & laser pulse.
- Look at emitted radiation.
- $a_0 > 1$
- Nonlinear effects.
- Typical signatures: Harmonics Interference patterns.

- Collide electrons & laser pulse.
- Look at emitted radiation.
- $a_0 > 1$
- Nonlinear effects.
- Typical signatures: Harmonics Interference patterns.
- Observation: $a_0 \simeq 1$
- Classical and quantum.

Intro . 0000	Strong fields	Basic processes	Loops 00000	Outro 00000
Nonlinear (Compton	scattering as 'radiation	reaction	1

- Acceleration, radiation, energy loss.
- Measure radiation and e^- spectra
- Recent experiments at Gemini

Cole et al. PRX 8 (2018), Poder et al. PRX 8 (2018)

- Acceleration, radiation, energy loss.
- Measure radiation and e^- spectra
- Recent experiments at Gemini

Cole et al. PRX 8 (2018), Poder et al. PRX 8 (2018)

Quantum nonlinearity parameter

$$\chi = \frac{e}{m^3} \sqrt{p \cdot F^2 \cdot p} = \frac{E_{\rm r.f.}}{E_S} \simeq \gamma \frac{E}{E_S}$$

• Quantum effects: $\chi > 0.01$

•
$$\chi_{\rm gemini} \sim 0.07$$

•
$$m_e \gamma = 500 \text{ MeV}$$

•
$$a_0 \simeq 10$$

• $\chi \simeq 0.07$

Cole et al, PRX 8 (2018) 011020

- \times Lorentz (energy not conserved)
- × Classical radiation reaction (L.A.D. or L.L.)
- ✓ QED (PIC + Monte Carlo)

Cole et al, PRX 8 (2018) 011020

Not yet discussed effects of pulse duration...

Intro .	Strong fields	Basic processes	Loops	Outro
0000	0000	000●0	00000	00000
Quantum	quenching			

- Classical particle in external field: Lorentz force trajectory.
- Classical particle inc. radiation reaction: $L.A.D. \rightarrow L.L.$

Lorentz 1909 Abraham 1905 Dirac 1938, Landau & Lifshitz 1975

Harvey, Gonoskov, Ilderton, Marklund, PRL 118 (2017) 105004

• Future experiments at higher χ what else can happen?

- Photon can be converted to pairs.
- Nonlinear Breit-Wheeler.
- Non-perturbative in incoming photon χ_{γ} .

$$P \sim \chi_{\gamma} \exp\left(-\frac{8}{3\chi_{\gamma}}\right)$$
 for $a_0 \gg 1$
 $\chi \ll 1$

SLAC E144 (1998) & ongoing experiments

- Optimal: $\chi \sim \mathcal{O}(1)$.
- Nonlinear effects.
- Signature: thresholds & channel opening.

From Dinu Heinzl Ilderton Marklund PRD 89 (2014)

Intro .	Strong fields	Basic processes	Loops	Outro
0000	0000		●oooo	00000
Light-by-lig	ht scattering			

• Loops mean real photons can scatter:

• Loops mean real photons can scatter:

- Optical photons: $\omega = 1 \text{ eV} \implies \sigma \sim 10^{-66} \text{ cm}^2$
- Optical experiments: $\sigma < 10^{-48}~{
 m cm}^2$. [Bernard et al EPJD 10 (2000) 141]

• Loops mean real photons can scatter:

- Optical photons: $\omega = 1 \text{ eV} \implies \sigma \sim 10^{-66} \text{ cm}^2$
- Optical experiments: $\sigma < 10^{-48}~{
 m cm}^2$. [Bernard et al EPJD 10 (2000) 141]

• X-ray photons: $\omega = 1 \text{ keV} \implies \sigma \sim 10^{-46} \text{ cm}^2$

• X-ray experiments: $\sigma < 10^{-20}~{
m cm}^2$. [Inada et al PLB 732 (2014) 356]

- Heavy ion collisions at ATLAS ATLAS, Nat.Phys '17 [1702.01625]
- 'Quasi-real' photons . . .
- $\bullet~{\rm Virtuality}~Q^2 < 10^{-3}~{\rm GeV^2}$

From Ellis et al PRL 118 (2017) 261802

- ! More physics in the diagram than momentum change!
- Photons carry momentum and helicity (= ± 1 , discrete).
- Free photons: momentum and helicity conserved.
- Two photons: helicity can flip.

Intro .	Strong fields	Basic processes	Loops	Outro
0000	0000		oo●oo	00000
Microscopic	to macroscopic	2		

- Consider a beam of light with some polarisation.
- Collide an X-FEL probe with an intense optical laser.

Heinzl et al., Opt.Commun. 267 (2006)

Helicity flip of photons → change in beam polarisation.
 Dinu, Heinzl, Ilderton, Marklund, Torgrimsson PRD 89 (2014) 125003

Schlenvoigt et al, Phys. Scripta 91 (2016)

Intro .	Strong fields	Basic processes	Loops	Outro
0000	0000		000●0	00000
Vacuum b	irefringence			

• Approximate form:
$$\delta \sim a_0 \ \chi_x \sim \frac{2\alpha}{15} \frac{E^2}{E_S^2} \frac{L}{\lambda_X}$$
 (1)

Intro .	Strong fields	Basic processes	Loops	Outro
0000	0000		ooo●o	00000
Vacuum bi	refringence			

• Birefringent medium
$$\rightarrow$$
 ellipticity. $\delta = \pi (n_{\parallel} - n_{\perp}) \frac{L}{\lambda_X}$ (2)

Intro .	Strong fields	Basic processes	Loops	Outro
0000	0000	00000	000●0	00000
Vacuum	birefringence			

• Approximate form: $\delta \sim a_0 \ \chi_x \sim \frac{2\alpha}{15} \frac{E^2}{E_S^2} \frac{L}{\lambda_X}$ (1)

Optics

• Birefringent medium
$$\rightarrow$$
 ellipticity. $\delta = \pi (n_{\parallel} - n_{\perp}) \frac{L}{\lambda_X}$ (2)

Euler-Heisenberg

- Low energy effective QED: $n = 1 + \frac{2\alpha}{45\pi} \begin{cases} 7 \\ 4 \end{cases} \frac{E^2}{E_S^2}$ (3)
- Plug (3) into (2) ...

Intro .	Strong fields	Basic processes	Loops	Outro
0000		00000	000●0	00000
Vacuum k	birefringence			

• Approximate form: $\delta \sim a_0 \ \chi_x \sim \frac{2\alpha}{15} \frac{E^2}{E_S^2} \frac{L}{\lambda_X}$ (1)

Optics

• Birefringent medium
$$\rightarrow$$
 ellipticity. $\delta = \pi (n_{\parallel} - n_{\perp}) \frac{L}{\lambda_X}$ (2)

Euler-Heisenberg

• Low energy effective QED: $n = 1 + \frac{2\alpha}{45\pi} \begin{cases} 7 \\ 4 \end{cases} \frac{E^2}{E_S^2}$ (3) • Plug (3) into (2) ... recovers (1).

The quantum vacuum, exposed to intense light, is birefringent.

Toll, PhD thesis, 1952

Intro .	Strong fields	Basic processes	Loops	Outro
0000	0000		oooo●	00000
Experiment	al scenarios			

- Flagship experiment @ European XFEL.
- Needs accurate X-ray polarimetry: $\delta \sim 2 \times 10^{-6}$

Marx et al PRL 110 (2013), Della-Valle et al EPJC 76 (2016)

Intro .	Strong fields	Basic processes	Loops	Outro
0000	0000	00000	oooo●	00000
Experimenta	al scenarios			

- Flagship experiment @ European XFEL.
- Needs accurate X-ray polarimetry: $\delta \sim 2 \times 10^{-6}$

Marx et al PRL 110 (2013), Della-Valle et al EPJC 76 (2016)

- Generate gamma-rays from backscattering.
- Collide with 10PW laser.

Nakamiya et al, PRD 96 (2017)

Ilderton & Marklund J.Plasma Phys. 82 (2016)

• Challenge: gamma ray pair polarimetry.

Intro .	Strong fields	Basic processes	Loops	Outro
0000	0000	00000	oooo●	00000
Experimenta	al scenarios			

- Flagship experiment @ European XFEL.
- Needs accurate X-ray polarimetry: $\delta \sim 2 \times 10^{-6}$

Marx et al PRL 110 (2013), Della-Valle et al EPJC 76 (2016)

- Generate gamma-rays from backscattering.
- Collide with 10PW laser.

Nakamiya et al, PRD 96 (2017)

Ilderton & Marklund J.Plasma Phys. 82 (2016)

• Challenge: gamma ray pair polarimetry.

• High degree of linear pol. in emission from Neutron Stars.

Mignami et al 1610.08323, Capparelli et al 1705.01540, Turolla et al 1706.02505

• Disputed! What is the B-field and initial photon distribution?

• Usually: drop tadpoles and vacuum bubbles.

Gies, Karbstein & Kohlfürst PRD 97 (2018)

- New corrections to Euler-Heisenberg Gies & Karbstein JHEP 1703 (2017)
- Tadpole diagrams contribute

Edwards & Schubert NPB 923 (2017)

Karbstein JHEP 1710 (2017), Ahmadiniaz, Edwards & Ilderton, to appear.

• New info. on QFT. Richer physics.

Intro .	Strong fields	Basic processes	Loops	Outro
0000	0000	00000	00000	0●000
Motivation:	observing case	ades		

- $I \simeq 10^{23} 10^{24} \text{ W/cm}^2 \text{ or } a_0 \simeq 300 10^3$
- Acceleration \rightarrow emission \rightarrow pairs ()
- Avalanche/cascade of particle production. Bell & Kirk, PRL 101 (2008)
- Application of cascade control: gamma source. Gonoskov et al, Phys.Rev. X7 (2017)
- Reduces field; inhibits Schwinger
 Fedotov et al, PRL 105 (2010), S.S.Bulanov et al, PRL 105 (2010)
 Gonoskov PRL 111 (2013) 060404

- Very large quantum nonlinearity $\chi \gg 1 \dots$ what happens?
- Constant field scalings:

Narozhny, Morozov, Ritus 1968 - 1981

- Breakdown of Furry expansion at $\alpha \chi^{2/3} \simeq 1$?
- $\chi \simeq 1600 \implies$ laser $a_0 = 2000$ for 100 GeV electrons.
- Many open questions . . . intriguing.

Fedotov, J. Phys.: Conf. Ser. 826 (2017) 012027

Intro .	Strong fields	Basic processes	Loops	Outro
0000		00000	00000	000●0
How many	y pairs?			

- Return to Schwinger effect.
 - Start with light. End up with matter.
- What's happening in between?

Intro .	Strong fields	Basic processes	Loops	Outro
0000		00000	00000	000●0
How many	pairs?			

• Return to Schwinger effect.

Start with light. End up with matter.

• What's happening in between?

Intro .	Strong fields	Basic processes	Loops	Outro
0000		00000	00000	000●0
How many	pairs?			

• Return to Schwinger effect.

Start with light. End up with matter.

• What's happening in between?

• Non-asymptotic results seem heavily basis dependent.

Intro .	Strong fields	Basic processes	Loops	Outro
0000		00000	00000	0000●
Conclus	ions			

Strong fields give access to new phenomena.

- Birefringence of the vacuum, electromagnetic cascades
- New era of experiments has begun.
- Many interesting theory questions remain.

A chance to investigate:

- Strongly coupled QFT
- All-orders & non-perturbative effects
- Non-equilibrium processes

Intro.	Strong fields	Basic processes	Loops	Outro

extra slides

Curves: lines of constant c.o.m. energy $s/m^2 \sim 1 + 2\gamma \omega/m \sim 1 + 2\chi/a_0$

• Lab based probes of Beyond Standard Model physics.

• e.g. electron-scalar ALP coupling