In-gas jet laser ionization spectroscopy of heavy elements

Piet Van Duppen Department of Physics and Astronomy KU Leuven, Belgium

Outline

- Studying the heavy element region: motivation
- Basics of laser spectroscopy and the "In-Gas Laser Ionization Spectroscopy -IGLIS"
- Studies of the nobelium and neutron-deficient actinium isotopes
- Improvements of the IGLIS technique and expected performances
- Outlook using IGLIS at
 If If I and at
 If I and at

Study of heavy and super-heavy elements

S. Cwiok, - Nature, 433 (2005), M. Bender, - PLB 515 (2001), Staszczak, - PRC80 (2009)
 Y. Oganessian and K. Rykaczewski, Physics Today 68 (2015), S. Goriely – G.M. Pinedo NPA944 (2015)

• What is known about the heaviest elements?

 \rightarrow Laser spectroscopy in the heavy element region

Nuclear observables: I, μ , Q, Isotope Shift $\rightarrow \delta < r^2 >$

Magnetic Moment

Quadrupole Moment

Optical Spectroscopy 111Rg <u>110</u>Ds 109Mt <u>____</u>Hs Stable isotopes ₁₀₇Bh-Radioactive isotopes/isomers studied by optical spectroscopy $\overline{}_{106}$ Sg ₁₀₅Db- $\frac{1}{104}$ Rf 103Lr I_{102} No ₁₀₁Md- $\overline{100}$ Fm 99ES $\overline{}_{98}$ Cf ₉₇Bk ____6Cm ₉₅Am ____Pu $-_{92}U$ ₉₁Pa-____Th ₈₉Ar N = 126 N = 152

- Production mechanism:
 - heavy-ion fusion evaporation reactions
- Low production rates of actinides and trans-actinides:
 - highly sensitive and efficient laser spectroscopy technique
- Short half life:
 - fast technique
- Resolving the hyperfine structure:
 - High <u>spectral resolution</u> to resolve hyperfine structure

Laser Spectroscopy: basics

Laser Spectroscopy: basics

Laser Spectroscopy: basics

In-Gas Laser Ionization and Spectroscopy - IGLIS

Laser ionization spectroscopy of ^{252,253,254}No

13

Leuven Isotope Separator On-Line (LISOL) facility: In-Gas Laser Ionization and Spectroscopy of RIBs (IGLIS)

¹⁹⁷Au(²⁰Ne-145 MeV,4-5n)^{212,213}Ac

¹⁹⁷Au(²²Ne-143 MeV,4-5n)^{214,215}Ac

Production & first laser spectroscopy tests of Ac

In-Gas Jet Laser Ionization Spectroscopy

- stopping in the buffer gas cell
- formation of a gas jet through a 'de Laval' nozzle
- homogenous, low-density, cold supersonic gas-jet
- transport of the ions in Radio Frequency Ion Guides → purification/detection system

In-Gas Jet versus In-Gas Cell Laser Ionization Spectroscopy

17 R. Ferrer et al, Nature Commun. 8 (2017), Yu. Kudryavtsev et al, NIMB61 (2016)

Nuclear Moments of Ac²²⁷†

MARK FRED AND FRANK S. TOMKINS, Chemistry Division, Argonne National Laboratory, Lemont, Illinois

AND

WILLIAM F. MEGGERS, National Bureau of Standards, Washington, D. C. (Received April 11, 1955) Phys. Rev. 98, 1514

The values derived for the moments from the conventional treatment of hfs in intermediate coupling are +1.1 nm and -1.7×10^{-24} cm². The experimental error is believed to be less than 10 percent, but it is difficult to estimate the total error because of the configuration interaction and the large relativity corrections. No correction for closed shell distortion was made.

It is hoped that improved values can be obtained, but meanwhile it appears useful to offer the present results. We should like to acknowledge helpful discussions with Dieter Kurath and R. E. Trees.

Multi-Configuration Dirac Fock atomic physics calculations: ²²⁷Ac

Magnetic dipole moments and electical quadrupole moments

- Shell model calc. are in good agreement with experimental quadrupole moments (using atom. physics input) and magnetic dipole moments
- ²⁰⁸Pb good core for shell model predictions (N=126)

In-Gas Jet: Expected Performances

• collisions
$$\Delta \vartheta_{\rho} \sim \left(\frac{T_{jet}}{T_{293K}}\right)^{0.3} * \rho_{jet}$$

• temperature
$$\Delta \vartheta_{\text{Doppler}} \sim \vartheta_0 \sqrt{T_{jet}}/A$$

	Gas cell	Gas jet	Gas jet (projected)
Linewidth (FWHM), MHz	5800	394	~ 100
Efficiency, %	0.42	0.40	> 10

IGLIS @ KU Leuven

• Planar Laser Induced Fluorescence (PLIF) - technique

→ temperature, velocity and density jet 'maps'

23 A. Zadvornaya et al. Phys. Rev. X (2018)

Validation of PLIF-spectroscopy – Free Gas Jet Mach disk position and density drop in the expansion zone

Validation of PLIF-spectroscopy – Free Gas Jet

Narrow-band laser spectroscopy on ^{63,65}Cu

Jets formed by de Laval nozzle Narrowband PLIF-spectroscopy of 63,65 Cu Central line of underexpanded jet ($P_{bg} < P_{opt}$)

Jets formed by de Laval nozzle Narrowband PLIF-spectroscopy of 63,65 Cu Central line of quasiuniform ($P_{bg} \sim P_{opt}$)

Expected performances

IGLIS at **GANIL**

S³-Low Energy Branch - general layout

IGLIS @ S3

- > High intensity heavy-ion LINAC: >10 $p\mu A$
- Super Separator Spectrometer (S3)
- N=Z nuclei (towards ¹⁰⁰Sn) and heavy and **Super Heavy Elements**

Conclusion – Outlook

- In-gas jet Laser Ionization Spectrosopy: a new tool to study the heavy element ٠ region
 - improved spectral resolution and efficiency
- Production of pure (isomerically), heavy element beams for further studies
- Implementation of IGLIS at GSI and GANIL •
 - new atomic and nuclear physics information of the heaviest elements ٠

KU Leuven

L.P. Gaffney, L. Ghys, C. Granados, M. Huyse, S. Kraemer, Yu. Kudryavtsev, E. Mogilevskiy, S. Sels, P. Van den Bergh, P. Van Duppen, M. Verlinde, E. Verstraelen, A. Zadvornaya

GANIL- IPN Orsay – LPC Caen:

B. Bastin, D. Boilley, Ph. Dambre, P. Delahaye, P. Duchesne, X. Fléchard, S. Franchoo, N. Lecesne, H. Lu, F. Lutton, Y. Merrer, B. Osmond, J. Piot, O. Pochon, H. Savajols, J. C. Thomas, E. Traykov

University of Mainz:

R. Heinke, T. Kron, P. Nauberreit, P. Schoenberg, K. Wendt

GSI: M. Laatiaoui, S. Raeder, M. Block

JYFL University of Jyväskylä: I. Moore, V. Sonnenschein

