Paul Scherrer Institut

September 22nd 2017

Two ways of connecting flavour to Dark Matter: flavour portals and axiflavon

Lorenzo Calibbi ITP CAS, Beijing

Introduction

- Why three families?
- Why the hierarchies?

 $(e.g. m_t^{}/m_e^{} = 3.4 \ge 10^5)$

- LHC found a SM-like Higgs
- No evidence of new phenomena
- We know there is new physics somewhere (DM, neutrino masses, baryogenesis etc.)

SM flavour puzzle

Hierarchy of SM fermion masses and mixing

Up quarks:

CKM matrix

Hints for an organizing principle: is there a dynamical explanation?

- SM fermions charged under a new horizontal symmetry G_F Froggatt Nielsen '79
- G_F forbids Yukawa couplings at the renormalisable level
- $G_{\!F}$ spontaneously broken by "flavons" vevs $\langle \phi_I
 angle$
- Yukawas arise as higher dimensional operators

 $\phi_I < M \implies \epsilon_I \equiv \langle \phi_I \rangle / M \,$ small exp. parameter $n_{I,ij}^{U,D}$ dictated by the symmetry

What is G_F ?

Flavour Models and Dark Matter

Lorenzo Calibbi (ITP)

Leurer Seiberg Nir '92, '93

 G_F abelian or non-abelian, continuous or discrete

U(1), U(1)xU(1), SU(2), SU(3), SO(3), A₄...

Froggatt Nielsen '79; Leurer Seiberg Nir '92, '93; Ibanez Ross '94; Dudas Pokorski Savoy '95; Binetruy Lavignac Ramond '96; Barbieri Dvali Hall '95; Pomarol Tommasini '95; Berezhiani Rossi '98; King Ross '01; Ma '02; Altarelli Feruglio '05...

U(1) example

Chankowski et al. '05

M can be interpreted as the mass scale of new degrees of freedom: the "flavour messengers"

Flavour Models and Dark Matter

How light can the flavour dynamics be?

• Effective Yukawas imply fermion-flavon couplings

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad \Longrightarrow \qquad \mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi$$

- Generically flavour violating
- FCNC induced at tree-level, but suppressed by small quark masses, *e.g.*:

Leurer Seiberg Nir '92, '93

• What if the flavour symmetry is local?

How light can the flavour dynamics be?

• Local flavour symmetry \implies flavour gauge bosons, *e.g.* abelian Z' :

$$\mathcal{L} \supset g_F \,\overline{f} \gamma^\mu (\mathcal{Q}_{f_L} P_L + \mathcal{Q}_{f_R} P_R) f \, Z'_\mu$$

- FV couplings to fermions (different generations have different charges)
- FCNC also arise at tree-level, *e.g.*:

• Additional contributions arise from the messenger sector

FCNC bounds on FN models

Flavour Models and Dark Matter

LC Crivellin Zaldivar '15

- DM must interact weakly with the SM, likely to be a SM singlet
- We introduce DM: fermionic SM singlets charged under G_F
- Flavour interactions are the only connection between dark and visible sector
- Global G_F : DM and SM communicate only through flavon exchange
- Local G_F : interactions can be also mediated by flavour gauge bosons

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n^\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$
$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^\chi + 1) \frac{m_\chi}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_\chi \chi_L \chi_R \phi$$

DM annihilation to SM:

Flavour Models and Dark Matter

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n^\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$
$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^\chi + 1) \frac{m_\chi}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_\chi \chi_L \chi_R \phi$$

DM annihilation to SM:

Flavour Models and Dark Matter

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n^\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$
$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^\chi + 1) \frac{m_\chi}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_\chi \chi_L \chi_R \phi$$

DM annihilation to SM:

Flavour Models and Dark Matter

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n^\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$
$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^\chi + 1) \frac{m_\chi}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_\chi \chi_L \chi_R \phi$$

DM annihilation to SM:

Flavour Models and Dark Matter

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n^\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$
$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^\chi + 1) \frac{m_\chi}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_\chi \chi_L \chi_R \phi$$

DM scattering with nuclei:

Lorenzo Calibbi (ITP)

 $\sigma_{\phi}^{\rm SI} \sim \frac{\lambda_{\chi}^2 \lambda_{\phi N}^2}{m_{\phi}^4} \mu_{\chi N}^2$

Global G_F

$$(m_f)_{ij} = a_{ij}^f \left(\frac{\langle \phi \rangle}{M}\right)^{n_{ij}^f} \frac{v}{\sqrt{2}} \qquad m_\chi = b_\chi \left(\frac{\langle \phi \rangle}{M}\right)^{n^\chi} \langle \phi \rangle \qquad m_\phi = k \langle \phi \rangle$$
$$\mathcal{L} \supset n^f \frac{m_f}{\langle \phi \rangle} f_L f_R \phi + (n^\chi + 1) \frac{m_\chi}{\langle \phi \rangle} \chi_L \chi_R \phi \equiv \lambda_f f_L f_R \phi + \lambda_\chi \chi_L \chi_R \phi$$

DM scattering with nuclei:

Flavour Models and Dark Matter

Simple $(U(1)_F)$ only few parameters (besides O(1) coeffs.): $m_{\phi}, m_{\chi}, k \equiv m_{\phi}/\langle \phi \rangle$ $\lambda_{ii}^{(u,d)} = a_{ij}^{(u,d)} (\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}) \epsilon^{\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}} \frac{\upsilon}{\langle \phi \rangle}$ $\Omega_{\rm DM} h^2 \le 0.13$ k=2 k=1 6 k=0.5 5 m_∲ [TeV] 4 3 2 1 0 2 3 4 5 0 1 m_γ [TeV]

Thermal freeze-out via flavour portal motivation for TeV-scale flavour dynamics!

Flavour Models and Dark Matter

Simple $(U(1)_F)$ only few parameters (besides O(1) coeffs.): $m_{\phi}, m_{\chi}, k \equiv m_{\phi}/\langle \phi \rangle$

$$\lambda_{ij}^{(u,d)} = a_{ij}^{(u,d)} (\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}) \epsilon^{\mathcal{Q}_{q_i} + \mathcal{Q}_{(u_j,d_j)}} \frac{v}{\langle \phi \rangle}$$

Axiflavon

LC Goertz Redigolo Ziegler Zupan '16

- Another puzzle of the SM is the strong CP problem
- The strong CP problem is elegantly solved by an axion field
- The axion field can also provide the correct density of cold DM
- The axion is the PNGB of a colour-anomalous global U(1)
- Can we identify this symmetry with a Froggatt-Nielsen U(1)?

Axiflavon

LC Goertz Redigolo Ziegler Zupan '16

- Another puzzle of the SM is the strong CP problem
- The strong CP problem is elegantly solved by an axion field
- The axion field can also provide the correct density of cold DM
- The axion is the PNGB of a colour-anomalous global U(1)
- Can we identify this symmetry with a Froggatt-Nielsen U(1)?

Spoiler: Yes!

Flavour Models and Dark Matter

Axiflavon

LC Goertz Redigolo Ziegler Zupan '16

- Another puzzle of the SM is the strong CP problem
- The strong CP problem is elegantly solved by an axion field
- The axion field can also provide the correct density of cold DM
- The axion is the PNGB of a colour-anomalous global U(1)
- Can we identify this symmetry with a Froggatt-Nielsen U(1)?

Realisation of an old idea by Wilczek of using a subgroup of the global U(3)⁵ flavour symmetry of the SM [as is the PQ U(1)] Wilczek '82 The strong CP problem ...

Why is the coefficient of the QP operator

$$\mathcal{L}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

$$\mathbf{E}_{SM} \supset \bar{\theta} \frac{\alpha_s}{8\pi} G_{a\mu\nu} \tilde{G}_a^{\mu\nu} \text{ so tiny}?$$

borrowed from F. Goertz

Flavour Models and Dark Matter

Florian Goertz

Lorenzo Calibbi (ITP)₄₂

... and its Peccei-Quinn axion solution

Why is the coefficient of the CP operator
$$\mathcal{L}_{
m SM} \supset ar{ heta} rac{lpha_s}{8\pi} G_{a\mu
u} ilde{G}_a^{\mu
u}$$
 so tiny?

• Promote θ from parameter to dynamical variable: **axion** a = PNGB of spontaneously broken U(1)_{PQ} symmetry $\sigma \sim \frac{f}{\sqrt{2}}e^{ia/f}$ \rightarrow solves strong CP problem:

•
$$\mathcal{L} \supset \theta_0 \frac{\alpha_s}{8\pi} G \tilde{G} + \frac{\alpha_s}{4\pi} N \frac{a}{f} G \tilde{G}$$

Potential induced by QCD instantons

 \rightarrow minimum CP conserving $\langle a \rangle = -af/(2N)\theta_0 \rightarrow G\tilde{G}$ term vanishes Peccei, Quinn, PRL 38, 1440, Vafa, Witten, PRL 53, 535

• axion coupled to $G\tilde{G}$ via chiral anomaly

borrowed from F. Goertz

Flavour Models and Dark Matter

Lorenzo Calibbi (ITP)₄₂

Axion Dark Matter

Flavour Models and Dark Matter

The axiflavon setup

The axion identified with the Nambu-Goldstone boson of a broken global FN U(1), *i.e.* as the phase of the flavon field \longrightarrow "axiflavon"

$$\Phi = \frac{1}{\sqrt{2}} (V_{\Phi} + \phi) e^{ia/V_{\Phi}}$$

The axiflavon couples to the SM fermions exactly like the flavon:

$$\mathcal{L}_{aff} = \lambda_{ij}^{f} a F_{i} F_{j}^{c} + \text{h.c.} \qquad \lambda_{ij}^{u,d,e} = i([L]_{i} + [R]_{j}) \frac{v}{V_{\Phi}} y_{ij}^{u,d,e}$$
flavour violating!

And to gluons and photons via colour and electromagnetic anomalies:

$$\mathcal{L} = \frac{\alpha_s}{8\pi} \frac{a}{f_a} G\tilde{G} + \frac{E}{N} \frac{\alpha_{\rm em}}{8\pi} \frac{a}{f_a} F\tilde{F} \qquad f_a = V_{\Phi}/2N$$

Usual axion mass induced by the QCD anomaly:

$$m_a = 5.7 \,\mu \mathrm{eV} \left(\frac{10^{12} \mathrm{GeV}}{f_a}\right)$$

[no contributions from messengers, vectorilike under U(1)]

E.M. $E = \sum_{i} \frac{4}{3} \left([q]_i + [u]_i \right) + \frac{1}{3} \left([q]_i + [d]_i \right) + [l]_i + [e]_i,$

QCD $N = \frac{1}{2} \sum_{i} 2[q]_i + [u]_i + [d]_i,$

Flavour Models and Dark Matter

The axiflavon setup

$$\mathcal{L} = \frac{\alpha_s}{8\pi} \frac{a}{f_a} G\tilde{G} + \frac{E}{N} \frac{\alpha_{\rm em}}{8\pi} \frac{a}{f_a} F\tilde{F} \qquad f_a = V_{\Phi}/2N$$

Key observation: FN U(1) to reproduce observed Yukawas is necessarily anomalous and the coefficients are linked to the quark masses:

Sharp prediction for the coupling to photons $\frac{1}{4}g_{a\gamma\gamma}aF\tilde{F}$, independent of U(1) charges and little sensitive to O(1)s:

 $\sim 30 \, \mathrm{keV}$

$$\frac{E}{N} \in [2.4, 3.0] \longrightarrow g_{a\gamma\gamma} \in \frac{[1.0, 2.2]}{10^{16} \text{GeV}} \frac{m_a}{\mu \text{eV}}$$

Compare to DFSZ and KSVZ axions:

 $|E/N| \in [0.3, 2.7]$ $|E/N| \in [0, 6]$

$$m_a = 5.7 \,\mu \text{eV} \left(\frac{10^{12} \text{GeV}}{f_a}\right)$$

Flavour Models and Dark Matter

Stellar evolution bounds $f_a > 10^8$ GeV [natural DM window 10^{10} GeV $< f_a < 10^{13}$ GeV]

flavour processes considered before are suppressed

Despite the tiny couplings low-energy searches for rare processes are sensitive to flavour-violating decays to ultralight axiflavons! *E.g.*:

$$K^+ \to \pi^+ a \qquad B^+ \to K^+ a \qquad \mu^+ \to e^+ a$$

Small rates but strong constraints! Most stringent from Kaons:

$$\Gamma(K^+ \to \pi^+ a) \simeq \frac{m_K}{64\pi} |\lambda_{21}^d + \lambda_{12}^{d*}|^2 B_s^2 \left(1 - \frac{m_\pi^2}{m_K^2}\right)$$

10⁻⁴

Stellar evolution bounds $f_a > 10^8$ GeV [natural DM window 10^{10} GeV $< f_a < 10^{13}$ GeV]

 10^{-2}

flavour processes considered before are suppressed

Despite the tiny couplings low-energy searches for rare processes are sensitive to flavour-violating decays to ultralight axiflavons! *E.g.*:

$$K^+ \to \pi^+ a \qquad B^+ \to K^+ a \qquad \mu^+ \to e^+ a$$

Small rates but strong constraints! Most stringent from Kaons:

$$BR(K^+ \to \pi^+ a) \simeq 1.2 \cdot 10^{-10} \left(\frac{m_a}{0.1 \,\mathrm{meV}}\right)^2 \left(\frac{\kappa_{sd}}{N}\right)^2 \qquad \kappa_{sd}/N \sim \mathcal{O}(1)$$

BR
$$(K^+ \to \pi^+ a) < 7.3 \cdot 10^{-11}$$
 $f_a \gtrsim \frac{\kappa_{sd}}{N} \times 7.5 \cdot 10^{10} \,\text{GeV}$
E787, E949

Increased sensitivity ~70x is expected at NA62!

Flavour Models and Dark Matter

Stellar evolution bounds $f_a > 10^8$ GeV [natural DM window 10^{10} GeV $< f_a < 10^{13}$ GeV]

flavour processes considered before are suppressed

Despite the tiny couplings low-energy searches for rare processes are sensitive to flavour-violating decays to ultralight axiflavons! *E.g.*:

$$K^+ \to \pi^+ a \qquad B^+ \to K^+ a \qquad \mu^+ \to e^+ a$$

Interesting effects in the lepton sector too:

$$\Gamma(\mu^+ \to e^+ a) \simeq \frac{m_{\mu}}{16\pi} |\lambda_{21}^e + \lambda_{12}^{e*}|^2 \qquad \qquad \lambda_{12}^e \sim \frac{m_{\mu}}{f_a} \quad \text{for an archical neutrinos}$$

$$BR(\mu^+ \to e^+ a) \simeq 2.4 \times 10^{-8} \left(\frac{m_a}{0.1 \text{ meV}}\right)^2 \left(\frac{\kappa_{\mu e}}{N}\right)^2$$

Limit on muon decay to "Majoron": 2.6x10⁻⁶, 30 years old! TRIUMF '86

Flavour Models and Dark Matter

Axiflavon phenomenology

Axiflavon can be complementary tested at axion and flavour experiments!

Axiflavon phenomenology

Axiflavon can be complementary tested at axion and flavour experiments!

Axiflavon phenomenology

Axiflavon can be complementary tested at axion and flavour experiments!

Conclusions

Froggatt-Nielsen flavour models are possible explanation of hierarchies in fermion masses and mixing

FCNC constraints still allows TeV-scale flavour dynamics

Dark Matter can be a thermal relic charged under the flavour symmetry only

No ad hoc quantum numbers: SM-DM interactions dictated by the flavour dynamics ("Flavour Portal")

Direct DM searches and flavour experiments can test this class of models

Conclusions

谢谢

Additional slides

• If smaller than M_{Pl} , M can be interpreted as the mass scale of new degrees of freedom: the "flavour messengers"

- New fields in vector-like representations of the SM group and G_F -charged
- Effective Yukawa couplings generated by integrating out the messengers. Two possibilities: heavy fermions or heavy scalars:

see e.g. LC Lalak Pokorski Ziegler '12

messengers mix with SM fermions or scalar fields and induce FCNC

Flavour Models and Dark Matter

How light can the messenger sector be?

By construction always present couplings (with O(1) coeffs.) of the form:

Flavour Models and Dark Matter

Collider signatures?

Flavon production and decay \rightarrow distinctive signatures, *e.g.* same-sign tops

Low production at the LHC: 0.1 (10⁻³) fb for 500 (1000) GeV flavon

Flavon-Higgs mixing \rightarrow flavour-violating Higgs decays

$$\mathcal{L} \supset H^{\dagger} H \phi^{\dagger} \phi$$

Flavour Models and Dark Matter

Generic setup: flavour gauge bosons mediation

Local G_F $\mathcal{L} \supset g_F \overline{\chi} \gamma^{\mu} (\mathcal{Q}_{\chi_L} P_L + \mathcal{Q}_{\chi_R} P_R) \chi \ Z'_{\mu} + g_F \overline{f} \gamma^{\mu} (\mathcal{Q}_{f_L} P_L + \mathcal{Q}_{f_R} P_R) f \ Z'_{\mu}$ DM annihilation to SM: $m_{Z'} = \sqrt{2}g_F \langle \phi \rangle$ $\langle \sigma_{Z'} v \rangle \sim \frac{g_F^*}{(m_{Z'}^2 - 4m_{\chi}^2)^2 + \Gamma_{Z'}^2 m_{Z'}^2} m_{\chi}^2$ no velocity suppression no quark mass dependence DM scattering with nuclei: $\sim g_F$ X $\sigma_{Z'}^{\rm SI} \sim \frac{g_F^2 \lambda_{Z'N}^2}{m_{Z'}^4} \mu_{\chi N}^2 \qquad \lambda_{Z'N} \propto g_F$ $\sim q_F$

Flavour Models and Dark Matter

Local U(1)_F, relic density bound only fulfilled on the resonance: $m_{\chi} \approx m_{Z'}/2$

Flavour Models and Dark Matter