Scientific Highlights LTH

29 November 2016

teaser picture

Simulations for More Efficient Power Stations

Energy and Environment Nuclear Power Plant Safety

In most cases, electricity is generated when water is heated and transformed into vapour. Vapour bubbles in the water play a decisive role in this process. Using computer simulation, researchers at the Paul Scherrer Institute have succeeded in representing the behaviour of vapour bubbles – and in making their performance more calculable.

28 September 2016

teaser image.png

Infrared imaging sheds new light on the condensation/evaporation process

Researcher at PSI (NES/LTH) have brought modern infrared technologies into their large thermal-hydraulic facility, called LINX, to obtain insights into condensation/evaporation process occurring under thermodynamic conditions resembling those of a nuclear power plant containment during a severe accident scenario. In such a scenario, condensation is of prime importance to control the thermodynamic state of the containment. It affects the pressure history, the overall gas (steam, hydrogen) and fission product distribution within this last barrier. Better understanding of these phenomena under accident conditions is essential to properly predict the accident evolution.

27. November 2014

teaserbild.jpg

New method for iodine retention in the nuclear power plant venting filters faces crucial tests

Energy and Environment Nuclear Power Plant Safety

These days, the Federal Office of Public Health distributes iodine tablets to the population living close to the Swiss nuclear power plants (NPP). The dispensing of iodine tablets within a radius of, now, fifty kilometres around NPP sites is aimed at protecting the residents from contamination with carcinogenic, radioactive iodine in the event of a severe nuclear accident.To make sure that as little radioactive iodine as possible gets into the environment as a result of a nuclear accident, researchers from the Paul Scherrer Institute PSI have for many years been developing a method that can be used in containment venting filters.