

Crystallography and Molecular Dynamics:

Water–Free *K*⁺ Transport through Membrane Channels

Tim Gruene Paul Scherrer Institute tim.gruene@psi.ch

Potassium Channels — Transport Properties

- Transport of Potassium ions across cell membranes
- Abundant in pro– and eukaryotes (≥ 78 genes in humans)
- Nervous signal transduction, muscle contraction
- Highly K^+ specific selectivity
- Passive transport, *i.e.* gradient driven
- Transport rate nearly diffusion limited

The Selectivity Filter

1998 First Crystal Structures of the K^+ channel KcsA by Roderick MacKinnon.

- Core of channel: 12Å tube
- $S_{cav} \rightarrow S_4 \rightarrow S_1$: transport into membrane compartment
- Conserved sequence TVGYG
- $K^+ O \approx 2.8 \text{\AA}$
- (Backbone–) oxygen atoms mimic 1st hydration shell
- \Rightarrow Blocks other ions, *e.g.* $Na^+, Ca^{2+}: X O \approx 2.4 \text{\AA}$

The "KWKW" Conduction Mechanism

- A. L. Hodgkin, R. D. Keynes (1955): electrostatic repulsion prohibits $K^+K^+K^+$. Shielding by water molecules
- Morais–Cabral, Zhou, MacKinnon, Nature (2001), 414, 37–42: determination of electron density with K⁺ and Rb⁺
- Zhou & MacKinnon, JMB (2003), 333, 965–975: Crystallographic occupancy by means of the anomalous signal of Tl⁺ and K+
 - 1. $Tl^+ O \approx K^+ O \approx 2.8$ Å: interchangeable
 - 2. Occupancy refinement based on the anomalous signal of Tl^+
 - 3. Comparison with K^+ -density
 - \Rightarrow on average 2 K^+ inside filter
 - ⇒ Crystal structure = mixture between "KWKW" and "WKWK"

Established view: co-transport of water through Selectivity Filter

The de Groot/Köpfer Mechanism

Based on Molecular Dynamics: no water inside Selectivity Filter

Köpfer, Song, Gruene, Sheldrick, Zachariae, de Groot: Science (2014), 346, pp. 352–355

Molecular Dynamics: Transport Model

Crystallography: Experimental Data

MD simulation **contradicts** established model. Crystallogrpahy:

Can K^+ ions occupy adjacent sites within the selectivity filter?

Crystallography: Occupancy vs. thermal vibration

Refinement "sees" the area underneath each curve

Atomic Resolution does not Resolve all Problems

- Correlation between atomic displacement parameter and occupancy > 90%
- Restraints: bind *B*-values to chemical environment?

• K^+ ions on 4–fold symmetry axis: artefacts

Step 1: Anomalous Signal in Reciprocal Space

Relative Occupancy of Tl^+ from SAD Phasing

Advantages

- **Only** anomalous signal: no contribution from water molecules
- "Normalized structure factors": point like atoms at 0 K, *i.e.* independence from *B*-values

Drawback: occupancies only *relative* to strongest peak

Results Step 1: Ions equally distributed inside Selectivity Filter

Drawback: occupancies only *relative* to strongest peak

Consequence from Equal Distribution for Occupancy

SAD Phasing: occ(S1) = occ(S2) = occ(S3) = occ(S4), unknown absolute.

lon separation by water requires all four occupancy at least < 0.75.

Step 2: **Absolute** Occupancy of Tl^+ from Structure Refinement

- *Tl*⁺: unrestrained B–values
- Tl^+ : anisotropic B-values
- including anomalous signal

Result Step 2: Ions in Selectivity Filter fully occupied

1R3J (<i>Tl</i> ⁺)					
	S1	S2	S3	S4	Scav
absolute occupancy (SHELXL)	1.02 (4)	0.93 (3)	0.92 (4)	0.99 (4)	0.47 (3)
B[Å ²]	28(1)	26(1)	25(1)	27(1)	20(2)
relative occupancy (SHELXD)	1.0	0.9	0.9	1.0	0.6

• No occupancy < 75%

 $\Rightarrow Tl^+Tl^+Tl^+Tl^+$ predominant in crystal

Why are the Results Different from the Original Work?

(Especially) S2: Fluctuations in map due to $B \leftrightarrow occ$

<u>Conclusions</u>

- Molecular dynamics simulations correct "text book" mechanism
- Crystallographic experimental data confirm molecular dynamics simulations
- K^+ -transport through membrane channels without shielding water

Acknowledgements

B. de GrootD. KöpferG.M. Sheldrick

Roderick MacKinnon

Reference: Köpfer, Song, Gruene, Sheldrick, Zachariae, de Groot: Science (2014), 346, pp. 352–355