PAUL SCHERRER INSTITUT

Dr. Tim Grüne :: Paul Scherrer Institut :: tim.gruene@psi.ch

Macromolecular Crystallography with Electron Diffraction

PSI MX Journal Club — 12th September 2016

1 - Nanocrystals

The (seemingly) Empty Drop

Luft, Wolfley, Snell, Crystal Growth& Design (2011), 11, 651-663

Drops viewed through TEM

Stevenson,..., Calero, PNAS (2014) 111, 8470–8475 / Calero, ..., Snell, Acta Cryst (2014) F70, 993–1008

How small is "nano"?

typical protein crystal size for X-rays

typical protein crystal size for electrons, 100x140x1,700 nm³

volumes compare like 6 bath tubs of water vs. $10 \mu l$

2 - How to react to Radiation Damage

Radiation Damage limits Diffraction

- Henderson / Garman limit: 20–50 MGy = 20–50 MJ/kg before half intensity is lost
- $m \propto V$: nanocrystal can take 10^{-9} photons compared to macrocrystal
- Same resolution requires same dose (number of counts on detector)

Means to overcome Radiation Damage

- 1. More sensitive detectors: hybrid pixel detectors like Pilatus close to ideal (single count reflections)
- 2. "Measure before destroy": merge data from few to many individual crystals
 - manually since 1980's: room temperature data, virus data
 - automated: high intensity free electron lasers, also minimises noise
- 3. Use electrons instead of X-rays and gain a factor of 1,000 in signal vs. damage

X-ray Interaction with Matter

Illustrative summary of X–ray and γ –ray interactions. JA Seibert & JM Boone, J. Nucl. Med. Technol. 2005;33:3-18

Interaction of X–rays at 12keV with $100\mu m$ soft tissue

Α	Transmission	96.6%
В	Photo absorption	3.0%
С	Elastic Scattering	0.2%
D	Compton Scattering	0.2%

Red: Radiation damage Green: Diffraction Every diffracting photon is accompanied by 16 damaging photons

X-rays Scattering and Electron Scattering

X-rays (10keV)

- Probability of inelastic scattering: 10^{-4}
- Deposited energy: 10keV
- Probability of elastic scattering: $10^{-5} = 10^{-4}/10$
- Damage per diffracted photon: 100keV

(Figures from R. Henderson, Q. Rev. Biophys. (1995), 28, 171–193)

X-rays Scattering and Electron Scattering

X-rays (10keV)

- Probability of inelastic scattering: 10^{-4}
- Deposited energy: 10keV
- Probability of elastic scattering: $10^{-5} = 10^{-4}/10$
- Damage per diffracted photon: 100keV

 e^- (200keV)

- Probability of inelastic scattering: 30%
- Deposited energy: 20eV
- Probability of elastic scattering: 10%
- Damage per diffracted electron: 60eV = 0.06keV

2,000 times more damage with X-rays

(Figures from R. Henderson, Q. Rev. Biophys. (1995), 28, 171–193)

Structural Biology with Electrons

Other Features of Electrons Scattering

- Small crystals may show less defects
- Hydrogen much better visible
- Map corresponds to electrostatic potential
- Powder consist of single nanocrystals

Sample courtesy Novartis, CSD code IRELOH

Electrons — Cure for Radiation Damage?

- 1. Limits in sample thickness (200keV electrons: 100% absorption for samples $> 1 \mu m$, i.e. no signal)
- 2. Nanocrystals difficult to detect
- 3. 500nm = 50*100Å: "countable" number of unit cells
- 4. Cumbersome sample handling
- 5. No anomalous signal: phasing; chirality
- 6. Dynamic and multiple scattering obstruct refinement
- 7. Instruments not made for diffraction

3 - Electron Diffraction

N.B.: 2D and 3D Crystals

The 2012 edition of International Tables F consider "Electron diffraction of protein crystals" (Chapter 19.2) only of 2D crystals.

Here, electron crystallography is the same as X-ray or neutron crystallography:

We measure the diffraction of a 3D crystal, i.e. a solid with periodic repeats in three dimensions, as result of an incoming planar wave.

Structure Determination by Single Crystal Diffraction

- Radiation: X–ray, neutrons, or electrons
- Diffraction spots: interaction between wave and crystal
- Position governed by Laue conditions $(\vec{S}_o \vec{S}_i) \cdot \vec{a} = h \wedge (\vec{S}_o \vec{S}_i) \cdot \vec{b} = k \wedge (\vec{S}_o \vec{S}_i) \cdot \vec{c} = l$
- Experimental result: **Position** and **Intensity** for each spot

Electrons: Multiple Scattering

- electron interact strongly with matter = high scattering probability
- nice, as it enables small crystal volumes
- effects that multiple scattering must be taken into account ($I \not < |F|^2$)

Multiple (Dual) Scattering

- Outgoing ray \vec{S}_o^1 acts as incoming ray for reflection \vec{S}_o^2 .
- Re-reflection with 10% probability at 50 nm path length

Multiple (Dual) Scattering

Laue Conditions (accordingly \vec{b} and \vec{c}):

$$\begin{aligned} (\vec{S}_o^1 - \vec{S}_i) \cdot \vec{a} &= h_1 \\ (\vec{S}_o^2 - \vec{S}_o^1) \cdot \vec{a} &= h' \\ \hline (\vec{S}_o^2 - \vec{S}_i) \cdot \vec{a} &= h_1 + h' \end{aligned}$$

Simplest approximation:

 $I_{\text{exp}}(h_2k_2l_2) \propto |F_{\text{ideal}}(h_2k_2l_2) + \alpha F_{\text{ideal}}(h_1k_1l_1)|^2$

- α : re-scattering of S_o^1
- $F(h_1k_1l_1)$ must be strong
- F(h',k',l') must be strong
- $F(h_2k_2l_2)$ must be weak
- \Rightarrow affects high resolution data

Protein crystallographers are used to enormous errors: multiple scattering may just add a bit.

4 - Electron Diffraction Structure of Hen Egg Lysozyme

The Crystal and Diffraction Experiments

Lysozyme nanocrystals measured at NeCEN (Netherlands), FEI Titan Krios microscope with Timepix camera

- 0.1615°/frame fast scan
- 0.048° / frame slow scan
- 11 $e^{-}/\text{Å}^2$ dose
- 10Hz read-out
- $\lambda = 0.02508$ Å
- 2.078m (!) detector distance
- 40° largest wedge, mostly 20°
- few spots to 2.2Å (inset)

Data Processing with XDS

- "spots are spots": XDS integrates electron diffraction data
- XDS feature per-pixel spatial corrections: covers a few lens distortions
- *caveat*: unset "REFLECTING_RANGE" refines to 20–40°
- default corrections model most likely inappropriate
- weak spots? determine background "along" pixel

Incomplete Data: Merging Data from six Crystals

	Single crystal	Merged data	
Data integration			
Space group	P21212		
Unit cell dimensions			
a, b, c (Å)	104.56, 68.05, 32.05		
α, β, γ (°)	90.0, 90.0, 90.0		
Number of crystals	1	6	
Resolution $(Å)^1$	32.05-2.50 (2.57-2.50)	57.04-2.50 (2.57-2.50)	
$R_{merge}(\%)$	31.7 (107.3)	35.7 (113.2)	6.0 120.0
Ι/σΙ	2.92 (1.10)	2.87 (1.10)	
Completeness (%)	0	69.0 (51.3)	
Reflections	9518 (817)	25148 (1373)	
Unique reflections	3445 (236)	5808 (299)	4.0
Redundancy	2.76 (3.46)	4.33 (4.59)	Completeness (%)
Refinement			2.0 40.0 ±
R1 (%)	25.90	23.54	AAA AAA
R _{complete} (%) [Luebben 2015]	32.49	27.21	
$\langle B \rangle (A^2)$	33.08	36.49	
RmsZ bonds	0.779	0.765	
RmsZ angles	0.974	0.911	Resolution (Å)

PDB–ID 4R0F: *P*2₁2₁2 with 104.63Å 66.49Å 31.65Å

Structure Solution

- 1. Molecular Replacement from poly Ala **monomer** with Phaser uniquely determines space group *P*2₁2₁2 (TFZ=19.8, LLG=335.3)
- 2. Side chain completion with Buccaneer all except 27 atoms
- 3. Refinement with refmac5
 - *"source electron MB"* scattering factors for electrons
 - *"mapc free exclude"* do not estimate missing reflections: avoid model bias at low completeness

5 - Instruments for Electron Diffraction

Electron Microscopes

(Wikipedia)

- Field emission gun: 100–300keV electrons
- 200kev: $\lambda = 0.02508$ Å
- 2–3 lenses above sample: parallel, narrow beam
- ≥ 1 lens below sample: effective detector distance
- New: hybrid pixel detector (Timepix, Eiger, Jungfrau...)

Electron Microscope: Imaging Mode

Electron Microscope: Imaging Mode

Electron Microscope: Diffraction Mode

Electron Microscope: Diffraction Mode

Image at *Back focal Plane* = ||Fouriertransform of object||

For crystals:

diffraction spots according to Laue conditions

Backfocal Plane Rays of **equal direction** focus on detector

Object

Summary

- Electron diffraction suitable for structural biology
- Ideal for 100–500nm crystal thickness
- Integration, Solution, Refinement: Methods and programs fit for electrons
- Our results direct for hardware improvements:
 - Goniometer precision and accuracy
 - Lens system optimisation for diffraction
 - Hybrid pixel detectors for 300–1,000 keV electrons

6 - Acknowledgements

- Jan Pieter Abrahams, Max Clabbers, Eric van Genderen, Wei Wan
- Emiel Wiegers + NeCEN data centre
- Kay Diederichs and Wolfgang Kabsch
- Robbie Joosten, Garib Murshudov
- Henning Stahlberg, Kenny Goldie at C–CINA