

Electron Diffraction of Biological Macromolecules

Bioinformatics and X–Ray Structural Analysis

Tim Gruene Paul Scherrer Institute tim.gruene@psi.ch

1 Crystals and Diffraction

1.1 Structure Determination by Single Crystal Diffraction

- Diffraction spots: interaction between wave and crystal
- Experimental result: **Position** and **Intensity** for each spot

1.2 Spot Position and Spot Intensity

• Spots positions according to Laue Conditions and orientation of Unit Cell:

$$(\vec{S}_o - \vec{S}_i).\vec{a} = h$$

and $(\vec{S}_o - \vec{S}_i).\vec{b} = k$
and $(\vec{S}_o - \vec{S}_i).\vec{c} = l$

- Monochhromatic wave: $\vec{S} = (S_o S_i)$ can be calculated from experimental geometry
- Spot position \Leftrightarrow Crystal lattice
- Spot intensity \Leftrightarrow Unit cell content

<u>1.3 Data Collection ... \rightarrow ... Structure Refinement</u>

- Structure determination: atom coordinates refined against idealized amplitudes $|F_{ideal}(hkl)|$
- Relationship amplitudes and intensities: $|F_{ideal}(hkl)|^2 \propto I_{ideal}(hkl)$
- Detector signal = experimental intensity $I_{exp}(hkl)$
- Data processing: from detector signal to amplitudes

1.4 Data Processing and Scaling

For X–rays*:

$$I_{\exp}(hkl) = \frac{e^4}{m_e^2 c^4} \underbrace{\frac{\lambda^3 V_{\text{crystal}}}_{V_{\text{unit cell}}} I_0 LPTE}_{\text{exp. Parameter}} I_{\text{ideal}}(hkl)$$

Data Integration Extraction of *I*_{exp} from detector: intensity counts after background subtraction — largely **independ**-**ent** from radiation source

Data Scaling Conversion from *I*_{exp} to *I*_{ideal}: reduction of experimental errors, crystal shape, detector properties, ... — **depends** on type of radiation

^{*}C. Giacovazzo, *Fundamentals of Crystallography*, Oxford University Press

2 Types of Radiation

For atomic structure solution by crystallography:

1. X-rays

2. neutrons

3. electrons

3 Differences between Types of Radiation

- 1. Calculation of $|F_{calc}(hkl)|$ from atom coordinates
- 2. Conversion from $I_{exp}(hkl)$ to $|F_{ideal}(hkl)|$
- 3. X–rays and neutrons: $|F_{ideal}(hkl)| \propto \sqrt{I_{exp}(hkl)}$

3.1 Types of Radiation — X-rays

- 1. most advanced (pipelines from data collection to structure refinement)
- 2. typical wavelength: $\lambda = 0.8 1.9$ Å
- 3. standard structure determination
- 4. PDB (Protein Data Base):
 - 80,000 X-ray structures
 - 80 neutron structures
 - 60 electron structures

3.2 Types of Radiation — neutrons

- 1. (virtually) no radiation damage
- 2. requires large crystals (≥ 1 mm³)
- 3. visualisation of hydrogen atoms
- 4. adjacent elements (e.g. K^+ vs. Cl^- , Zn^{2+} vs. Cu^+)
- 5. structure determination from radiation sensitive samples (Photosystem II)

PDB ID 2ZOI: D/H exchange in β -strand (Gruene *et al*, J. Appl. Cryst. 47 (2014), 462–466

3.3 Types of Radiation — electrons

- 1. strong interaction compared with X–rays: good for very small crystals ($\ll 1 \mu m$ thickness)
- 2. typical wavelength: 200keV = 0.0251Å: flat Ewald sphere
- 3. charge enables electron optics: imaging and diffraction
- 4. new phasing possibilities

Diffraction of nanocrystals

(van Genderen et al., Acta Cryst A72 (2016))

Inset: HIV to scale, courtesy Thomas Splettstoesser, en.wikipedia.org

3.4 Goal of Diffraction Experiment

- Fit molecule into density $\rho(x, y, z)$ to determine atomic structure
- $\rho(x, y, z) = \sum_{h,k,l} |F_{\text{ideal}}(hkl)| e^{i\phi(hkl)} e^{-2\pi i(hx+ky+lz)}$

3.5 Crystallographic Maps

- After phasing, diffraction data provide *density maps* $\rho(x, y, z)$
- The type of map depends on the interaction

Radiation	Interaction	Map type
X-ray	e ⁻	electron density map
n	nucleus	nucleic "density" map
e ⁻	$p+e^{-}$	Coulomb potential $pprox$ electron density map

• Macromolecules can be built into the maps "as usual"

4 Applications for Electron Diffraction

- 1. Diffraction & Radiation Damage
- 2. Nanocrystals have less Defects
- 3. Powder contains Single Nanocrystals
- 4. Seemingly failed Crystallisation Attempts contain Nanocrystals

4.1 X-rays Scattering and Electron Scattering

X-rays (10keV)

- Probability of inelastic scattering: 10^{-4}
- Deposited energy: 10keV
- Probability of elastic scattering: $10^{-5} = 10^{-4}/10$
- Damage per diffracted photon: 100keV

4.2 X-rays Scattering and Electron Scattering

X-rays (10keV)

- Probability of inelastic scattering: 10^{-4}
- Deposited energy: 10keV
- Probability of elastic scattering: $10^{-5} = 10^{-4}/10$
- Damage per diffracted photon: 100keV

- Probability of inelastic scattering: 30%
- Deposited energy: 20eV
- Probability of elastic scattering: 10%
- Damage per diffracted electron: 60eV = 0.06keV

2,000 times more damage with X-rays

4.3 X–rays Scattering and Electron Scattering

- Small Crystals very radiation sensitive
- X-rays mostly pass through (99.99%): beamstop
- X-rays mostly damage (10:1).

4.4 Small Crystals

X–rays

You **can** measure nanocrystals. You need

- Free Electron Laser (XFEL, SwissFEL, ...)
- 10,000 100,000 crystals, $V \approx 5 \ ml$
- Special Software, Computational Demands

Electrons

You **must** measure nanocrystals. You need

- Electron Microscope
- 1-2 nanocrystals
- standard software (XDS, SHELX, Refmac5,...)
- Direct Pixel Detector helps (Timepix, Dectris Eiger, ...)

4.5 Joint Venture: Free Electron Lasers and Electron Diffraction

- Beamtime for FELs will be very competitive
- Only few end stations available
- Electron Microscopes are "more abundant"
- Sample quality can be pre-assessed with Electron Diffraction
- Structures can be solved from Electron Diffraction
- \Rightarrow FEL have more time to time-resolved studies
- \Rightarrow Electron diffraction enhances the through-put of FELs

4.6 Applications: Better Ordered Crystals

- "long" range disorder
- worse with larger crystals
- worse with freezing
- nanocrystals: often better defined spots

4.7 Applications: Single Crystals

- Powder samples often contain single nanocrystals suitable for electron diffraction
- Usually too small for conventional crystallography
- Highly interesting for the pharmaceutical industry

4.8 Applications: Crystals at all!

- macromolecules are difficult to crystallise
- in particular: membrane proteins
- Large fraction of clear drops actually contains nanocrystals Stevenson et al., PNAS (2014) 111, 8470–8475

5 Instruments for Electron Diffraction

5.1 Electron Microscopes

5.2 Direct Pixel Detectors

Monolithic direct electron detector:

- damage prone
- Small point spread
- Low dynamic range

Ideal for imaging

Hybrid pixel detector:

5

- radiation hard
- Larger point spread
- High dynamic range

Ideal for diffraction

Si

sensor

Analogue

mplificatio

Digital

processing

(Courtesy Prof. Abrahams)

5.3 Direct Pixel Detectors

Direct Pixel Detectors have no electronic noise, only background scattering

5.4 The Timepix Detector

- Timepix assembly:
- ASI read-out
- Electronics outside vacuum
- Peltier cooling of detector $\pm 0.1K$
- 512×512 and 1024×1024 pixel versions
- linear: 1–10,000 e^- / frame
- read-out: up to 120 frames /s
- radiation hard

5.5 Electron Microscope: Imaging Mode

5.6 Electron Microscope: Imaging Mode

5.7 Electron Microscope: Diffraction Mode

5.8 Electron Microscope: Diffraction Mode

Image at Backfocal Plane = ||Fouriertransform of object||

If object = crystal:

diffraction spots according to Laue condition

Backfocal Plane Rays of **equal direction** focus on detector

6 Example Data and Example Structures

- 1. Carbamazepine (van Genderen et al., Acta Cryst (2016) A72 (2))
- 2. Lysozyme (Manuscript in preparation)

6.1 Carbamazepine

- Drug for epilepsy
- Small organic compound $C_{15}H_{12}N_2O$
- Well know strucuture used as test case (El Hassan *et al.*, Crystal Growth and Design (2013), 13, 2887–2896)

6.2 Carbamazepine Data

1.2 imes 0.8 imes 0.2
51°
$4.0e^-/\text{\AA}^2$
$P2_{1}/n$
8.7–0.8 (0.85–0.80)Å
45% (46%)
8.4% (35.8%)
5.6 (1.8)
28.0 %

6.3 Carbamazepine Structure Solution

shelxt solution

final model

- Solved with direct methods, *i.e.* no chemical information
- No atoms missed, no atoms too many
- Only 4 wrongly assigned atom types

6.4 Carbamazepine Structure Solution

Low data completeness affects map quality despite atomic resolution

6.5 Solving Macromolecular Data: Lysozyme

- Currently PDB holds three entries from 3D electron diffraction
 - 1. 4ZNN: peptide involved in Alzheimers disease, P21, 1.4Å [Rodriguez et al. Nature (2015) 525, 486–490]
 - 2. 5A3E: Lysozyme, P21, 2.5Å [Nannenga et al. Nat. Meth. (2014) 11, 927]
 - 3. 3J7U: Catalase, *P*2₁2₁2₁, 3.2Å [Yonekura *et al.* PNAS (2015) 112, 3368–3373]

Structures 1+2 are collected from μ crystals; Structure 3 was solved by merging data from 99 crystals.

6.6 Data from a single Lysozyme nanocrystal

- Collected 40° before radation damage destroyed crystal
- Crystal thickness $\approx 100 nm$
- Data processed with RED and with XDS in *P*1

	RED	XDS
Cell	32.3Å 69.7Å 105.6Å	32.1Å 70.9Å 104.0Å
	$93.6^{\circ}~92.0^{\circ}~90.1^{\circ}$	93.4° 91.9° 91.1°
Resolution	32.3–2.4 (2.5–2.4)	32.1 –2.2 (2.3–2.2)
I/σ_I	21.2 (8.8)	6.7 (1.4)
R _{merge}	7.9% (13.7%)	28.9% (49.8%)
Completeness	4.1% (0.1%)	20.7% (20.8%)
# refl.	1897	14148 (2571)
# unique refl.	1568	9542 (1539)

6.7 Spacegroup of Lysozyme nanocrystal

- Cell: $32.1 \times 70.9 \times 104.0$, $93.4^{\circ} 91.9^{\circ} 91.1^{\circ}$
- XDS suggests: P 2 1 1
- PDB ID 4R0F: $P2_12_12$ with $104.63 \times 66.49 \times 31.65$

Possible explanations:

- 1. α angle distorted because of erroneous parameters (distance, frame width, rotation range, image distortions)
- 2. Macrocrystal induces more rigid packing \Rightarrow enforces higher symmetry
- \Rightarrow Currently an open question

6.8 Lysozyme: Model Bias

Refined map from Refmac5

Refined map from Shelxl

6.9 Lysozyme: is it Real? (I)

Refined map from ShelxI (zoomed)

Same map 4x NCS averaged

Electron Diffraction

6.10 Lysozyme: is it Real? (II)

- Purple: Molecular replacement including side chains
- Green: Molecular replacement with poly-Ala model; side chains autobuilt with Buccaneer
- Autobuilding uses sequence information and data.
- Many side chains consistent

7 Phasing with Images

7.1 The Crystallographic Phase Problem

$$\rho(x, y, z) = \sum_{h,k,l} |F_{\text{ideal}}(hkl)| e^{i\phi(hkl)} e^{-2\pi i(hx+ky+lz)}$$

- Diffraction experiment measured amplitudes $|F_{ideal}(hkl)|$
- Phases $\phi(hkl)$ "get lost"
- Phasing methods:
 - 1. Molecular Replacement
 - 2. SAD/MAD Single–/Multi–wavelength anomalous dispersion
 - 3. SIRAS Isomorphous replacement with anomalous dispersion

7.2 Electron Microscope Imaging

- 1. Record *many* images
- 2. Classify, group, and reduce noise
- 3. Find orientations
- 4. Reconstruct 3D electron density

(EMDB 3281, A chimeric sapovirus capsid)

7.3 Indexing Diffraction Data

- Diffraction Data can be indexed
- \Rightarrow Unit Cell Dimensions and (often) Space group are known without solving the structue
- \Rightarrow Place single atom at unit cell corners and create projections from "single atom map" from all orientations

7.4 EM Imaging from Crystals

Projected Lysozyme Density $210\text{\AA} \times 210\text{\AA}$

Projected Single Atom Density $210\text{\AA} \times 210\text{\AA}$ Same Orientation Match: 3.6% Projected Single Atom Density $210\text{\AA} \times 210\text{\AA}$ Different Orientation Match: 0.8%

In Image Mode, Contrast between 3.6% and 0.8% too low

(Simulated Data)

Uni Konstanz

7.5 EM Imaging from Crystals in Fourier Space

Image of Lysozyme Crystal after Fourier Transform $210\text{\AA} \times 210\text{\AA}$

Projected Single Atom Density after Fourier Transform $210\text{\AA} \times 210\text{\AA}$ Same Orientation Match: 65%

Projected Single Atom Density **after Fourier Transform** $210\text{\AA} \times 210\text{\AA}$ Different Orientation Match: 14%

Contrast after Fourier Transformation enables selection of correct orientation

(Simulated Data)

Uni Konstanz

8 Phasing with EM Images I

9 Phasing with EM Images II

- Phases from Electron imaging low resolution but accurate
- Phases can be extended to high resolution refle

10 Experimental Considerations

- Ewald "plane"
- dynamic scattering
- Instrumental limitations

10.1 X-rays: The Ewald Sphere

Curvature of the Ewald sphere gauges the diffraction geometry

10.2 Electrons: The Ewald "Plane"

- Typical X–ray wavelength $\lambda_X = 1$ Å
- Typical e^- wavelength $\lambda_e = 0.025$ Å
- Radius of Ewald sphere 40x greater
- Ewald sphere nearly flat

10.3 Electrons: The Ewald "Plane"

- opening angle of highest resolution reflections $\approx 1^{\circ}$
- Ewald sphere virtually flat
- Without curvature: impossible to refine both detector distance and cell

10.4 Electrons: The Ewald "Plane"

- Detector distance and unit cell parameters are strongly related
- Wrongly set distance can lead to incorrect bond lengths
- Distance refinement with X-ray data routine
- Distance refinement with electron data = unstable
- Distance calibration from powder sample

10.5 Distance Calibration

• Bragg's law: $\lambda = 2d \sin \theta$; d, λ are known

10.6 Dynamic Scattering

- Kinematic Theory of Diffraction: Every photon / electron / neutron scatters once in the crystal
- $|F_{\text{ideal}}(hkl)| \propto \sqrt{I_{\exp}(hkl)}$
- Dynamic Scattering: Multiple Scattering events occur
- Electron Diffraction: Multiple Scattering occurs even with nanocrystals

10.7 Dynamic Scattering

- Outgoing ray \vec{S}_o^1 acts as incoming ray for reflection \vec{S}_o^2 .
- Re-reflection with 10% probability at 50 nm path length

10.8 Dynamic Scattering

Laue Conditions (accordingly \vec{b} and \vec{c}):

$$\begin{aligned} (\vec{S}_o^1 - \vec{S}_i) \cdot \vec{a} &= h_1 \\ (\vec{S}_o^2 - \vec{S}_o^1) \cdot \vec{a} &= h_2 \\ \hline (\vec{S}_o^2 - \vec{S}_i) \cdot \vec{a} &= h_1 + h_2 \end{aligned}$$

Experimental Intensities by superposition of two reflections:

 $I_{\text{exp}}(h_2k_2l_2) = |F_{\text{ideal}}(h_2k_2l_2) + \alpha F_{\text{ideal}}(h_1k_1l_1)|$

- $\alpha < 1$: 0.1 for 50 nm path length
- $(h_1k_1l_1)$ strong and $(h_2k_2l_2)$ weak \Rightarrow wrong estimate for $|F_{ideal}(h_2k_2l_2)|$
- affects high resolution data

10.9 Dynamic Scattering for Organic Crystals

- Presence in Macromolecular Diffraction data currently discussed in literature
- Some claim it is negligible
- Experimental evidence equivocal
- Treatment (scaling / refinement) should be improved

10.10 Other Instrumental limitations

- Electron Microscopes not designed for accurate sample rotation
- Rotation axis not linked to Camera read-out
- Lense system rotates (diffraction) image: rotation axis unknown
- Sample holder not desiged for 180° rotation

10.11 SwissFEDI

Swiss Free Electron Diffraction Instrument

- Horizontal beam
- 15–18m instrument length
 - 1. Reduced Cross-talk between magnetic lenses
 - 2. No optical enlargement of detector distance: $1 2^{\circ}$ opening angle covers 20×20 cm² detector area
- Sample holder designed for sample rotation

11 Acknowledgements

- Wei Wan (Stockholm)
- Kay Diederichs (Konstanz)
- Jan Pieter Abrahams (Basel / PSI)
- George Sheldrick (Göttingen)