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1 Crystals and Diffraction
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1.1 Structure Determination by Single Crystal Diffraction

Detector

Radiation Planar
source wave

/ Beam stop

e Diffraction spots: interaction between wave and crystal

e Experimental result: Position and Intensity for each spot
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1.2 Spot Position and Spot Intensity

Spots positions according to Laue Conditions and orientation of Unit Cell:

l

(So—S).d=h
and (S, —S,).b =k
and (S, —S;).c =1

Monochhromatic wave: S = (S, — S;) can be calculated from experimental geometry

Spot position < Crystal lattice

Spot intensity < Unit cell content
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1.3 Data Collection ... — ... Structure Refinement

e Structure determination: atom coordinates refined against idealized amplitudes |Figea (k)|

e Relationship amplitudes and intensities: |Figeq)(hkl)|? o< Ligeqi(hkl)

o Detector signal = experimental intensity lexp (k)

e Data processing: from detector signal to amplitudes
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1.4 Data Processing and Scaling

For X—rays™:

4 A3,

€ crystal

Sy YL IOLPTE Ligeq(hkl)
Me~C < unit cell P

TV
exp. Parameter

Iexp (hkl) —

Data Integration Extraction of Iexp from detector: intensity counts after background subtraction — largely independ-
ent from radiation source

Data Scaling Conversion from Iexp 10 figeg: reduction of experimental errors, crystal shape, detector properties,
...— depends on type of radiation

*C. Giacovazzo, Fundamentals of Crystallography, Oxford University Press
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2 Types of Radiation

For atomic structure solution by crystallography:

1. X-rays

2. neutrons

3. electrons
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3 Differences between Types of Radiation

1. Calculation of |F5c(hkl)| from atom coordinates

2. Conversion from Iexp(hkl) 10 |Fgeq)(hkl)|

3. X-rays and neutrons: |Fqgq)(hkl)| o< +/Iexp(hkl)
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3.1 Types of Radiation — X—rays

1. most advanced (pipelines from data collection to structure refinement)

2. typical wavelength: A =0.8—1.9A

3. standard structure determination

4. PDB (Protein Data Base):
e 80,000 X—ray structures
e 80 neutron structures

e 60 electron structures
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3.2 Types of Radiation — neutrons

1. (virtually) no radiation damage

2. requires large crystals (> 1mm?)

3. visualisation of hydrogen atoms

4. adjacent elements (e.g. Kt vs. CI~, Zn** vs. Cu™)

5. structure determination from radiation sensitive samples (Photosystem |l) ’ .
- ¢ — e S ! . Nl J"_._.“J i

PDB ID 2Z0OI: D/H exchange in B—strand
(Gruene et al, J. Appl. Cryst. 47 (2014), 462—46¢
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3.3 Types of Radiation — electrons

1. strong interaction compared with X-rays: good for very small
crystals (< 1um thickness)

2. typical wavelength: 200keV = 0.0251A: flat Ewald sphere
3. charge enables electron optics: imaging and diffraction

4. new phasing possibilities

200nm

Diffraction of nanocrystals
(van Genderen et al., Acta Cryst A72 (2016))
Inset: HIV to scale, courtesy Thomas Splettstoesser, en.wikipedia.org
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3.4 Goal of Diffraction Experiment

e Fit molecule into density p(x,y,z) to determine atomic structure

e p(x,5,2) = Lk, |Fideal (hkl) i (kD) p=2mi(hx-+hy+1z)
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3.5 Crystallographic Maps

e After phasing, diffraction data provide density maps p(x,y,z)

e The type of map depends on the interaction

Radiation | Interaction | Map type

X—ray e electron density map

n nucleus | nucleic “density” map

e p+e” Coulomb potential ~ electron density map

e Macromolecules can be built into the maps “as usual”
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4 Applications for Electron Diffraction

1. Diffraction & Radiation Damage

2. Nanocrystals have less Defects

3. Powder contains Single Nanocrystals

4. Seemingly failed Crystallisation Attempts contain Nanocrystals
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4.1 X—rays Scattering and Electron Scattering

50nm

AR

X-rays (10keV)

e Probability of inelastic scattering: 10~

e Deposited energy: 10keV

e Probability of elastic scattering: 107> = 10~4/10
e Damage per diffracted photon: 100keV
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4.2 X—rays Scattering and Electron Scattering

50nm 50nm

AR
Ui

X-rays (10keV) e~ (200keV)

e Probability of inelastic scattering: 10~* Probability of inelastic scattering: 30%

e Deposited energy: 10keV e Deposited energy: 20eV
e Probability of elastic scattering: 10> = 10~4/10 ® Probability of elastic scattering: 10%
e Damage per diffracted photon: 100keV e Damage per diffracted electron: 60eV = 0.06keV

2,000 times more damage with X-rays
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4.3 X—rays Scattering and Electron Scattering

e Small Crystals very radiation sensitive
e X-—rays mostly pass through (99.99%): beamstop

e X—rays mostly damage (10:1).
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4.4 Small Crystals

X-rays Electrons
You can measure nanocrystals. You need You must measure nanocrystals. You need
e Free Electron Laser (XFEL, SwissFEL, ...) e Electron Microscope
e 10,000 — 100,000 crystals, V ~ 5 ml e 1-2 nanocrystals
e Special Software, Computational Demands e standard software (XDS, SHELX, Refmac5,...)

e Direct Pixel Detector helps (Timepix, Dectris Eiger, ...)
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4.5 Joint Venture: Free Electron Lasers and Electron Diffraction

e Beamtime for FELs will be very competitive

e Only few end stations available

e Electron Microscopes are “more abundant”

e Sample quality can be pre-assessed with Electron Diffraction

e Structures can be solved from Electron Diffraction

= FEL have more time to time—resolved studies

= Electron diffraction enhances the through-put of FELs

February 2016 Uni Konstanz 19/0



PAUL SCHERRER INSTITUT

Tim Griine Electron Diffraction =

4.6 Applications: Better Ordered Crystals

\ i v : - "
§ f \ L
- * . :
¢ % : i & . 4
. ¢ 7 e “ong”range disorder . .
= e worse with larger crystals
e ipesmuamremar e worse with freezing
i i e nanocrystals: often better wm
' defined spots
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4.7 Applications: Single Crystals

e Powder samples often contain single nanocrystals suitable for electron diffraction

e Usually too small for conventional crystallography

e Highly interesting for the pharmaceutical industry
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4.8 Applications: Crystals at all!

e macromolecules are difficult to crystallise

e in particular: membrane proteins

e Large fraction of clear drops actually contains nanocrystals —Stevenson et al., PNAS (2014) 111, 8470-8475
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5 Instruments for Electron Diffraction
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5.1 Electron Microscopes

Electron gun [:\I

Condensor aperture

Specimen port

Objective aperture

= = ¢ Objective lens
i Iﬁ

_ Diffraction lens

Intermediate aperture _
h Intermediate lens

]| .

. £/ rojector lenses

Binoculars g Eﬁ'h X ]
| luorescent screen

s'/ \L

( H a~

d Image recording system[

= (Wikipedia)
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5.2 Direct Pixel Detectors

Electronics and
interconnect
(2 few pm thick)

Sensitive volume
(2 - 20 pm thick)

Subsirate

(300 - 500 pm
thick)

Monolithic direct electron detector:
- damage prone

- Small point spread

- Low dynamic range

|deal for imaging

Solder bump bonds

Readout Chip
Medipix or Timepix
in 250um IBM CMOS

Chip read-out

Hybrid pixel detector:
- radiation hard

- Larger point spread

- High dynamic range

Ideal for diffraction

(Courtesy Prof. Abrahams)
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5.3 Direct Pixel Detectors

Direct Pixel Detectors have no electronic noise, only background scattering

a0 | B =
= & . e * Length: 9.1 rmm

g00 Lattice: 43.2 4 —
. 400 ” —
Lk 200 L Ht Cross—section with spots
L
] . 1] 2000 4000 G000 aooo
% *
- . . : & | |
24 Length: 4.4 rmm

Latt1 : 44 IZI &
18

: MLM WHWT H _ Cross—section without spots

n 0 1800 2700 3E00
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5.4 The Timepix Detector

e Timepix assembly:

e ASI read—out

e Electronics outside vacuum

e Peltier cooling of detector +0.1K

e 512 x 512 and 1024 x 1024 pixel versions
e linear: 1-10,000 ¢~ / frame

e read-out: up to 120 frames /s

e radiation hard

February 2016 Uni Konstanz 27/0



PAUL SCHERRER INSTITUT

Tim Griine Electron Diffraction =

5.5 Electron Microscope: Imaging Mode

/////
4 N N

Plane Wave Object Lense Image Plane (Detector)
Rays of equal origin focus on detector
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5.6 Electron Microscope: Imaging Mode

Detector noise and radi-
ation senstivity require
low contrast images

/////
- N N

Martinez-Rucobo et al. Mo-
lecular Cell (2015) 58, 1079—
1089

Plane Wave Object Lense Image Plane (Detector)
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5.7 Electron Microscope: Diffraction Mode

Plane Wave Object Lense
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5.8 Electron Microscope: Diffraction Mode

Image at Backfocal Plane =
| Fouriertransform of object||

If object = crystal:

diffraction spots according to Laue condition

Backfocal Plane
Rays of equal direction focus on detector

Plane Wave Object Lense
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6 Example Data and Example Structures

1. Carbamazepine (van Genderen et al., Acta Cryst (2016) A72 (2))

2. Lysozyme (Manuscript in preparation)
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6.1 Carbamazepine

e Drug for epilepsy

e Small organic compound C;5H2N,O

e Well know strucuture used as test case (El
Hassan et al., Crystal Growth and Design

(2013), 13, 2887-2896)
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6.2 Carbamazepine Data

Crystal Size 1.2x0.8x0.2
Rotation range 51°

Dose 4.0e= /A°

Space group  P2;/n

Resolution 8.7—0.8 (0.85-0.80)A
Completeness 45% (46%)

Rmerge 8.4% (35.8%)

I/op 5.6 (1.8)

Rcomplete 28.0 %
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6.3 Carbamazepine Structure Solution

shelxt solution final model

e Solved with direct methods, i.e. no chemical information

e No atoms missed, no atoms too many

e Only 4 wrongly assigned atom types
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6.4 Carbamazepine Structure Solution

Low data completeness affects map quality despite atomic resolution
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6.5 Solving Macromolecular Data: Lysozyme

e Currently PDB holds three entries from 3D electron diffraction
1. 4ZNN: peptide involved in Alzheimers disease, P2, 1.4A [Rodriguez et al. Nature (2015) 525, 486—490]
2. 5A3E: Lysozyme, P2, 2.5A [Nannenga et al. Nat. Meth. (2014) 11, 927]

3. 3J7U: Catalase, P2,212{, 3.2A [Yonekura et al. PNAS (2015) 112, 3368—3373]

Structures 1+2 are collected from u crystals; Structure 3 was solved by merging data from 99 crystals.
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6.6 Data from a single Lysozyme nanocrystal

Electron Diffraction

e Collected 40° before radation damage destroyed crystal

e Crystal thickness ~ 100nm

e Data processed with RED and with XDS in P1

Cell

Resolution

I/G[
Rmerge

Completeness

# refl.

# unique refl.

February 2016

RED

32.3A 69.7A 105.6A
93.6° 92.0° 90.1°
32.3-2.4 (2.5-2.4)

21.2 (8.8)
7.9% (13.7%)
4.1% (0.1%)
1897

1568

Uni Konstanz

XDS

32.1A 70.9A 104.0A

93.4° 91.9°91.1°

32.1 —2.2 (2 3-2.2
7 (1.

28.9% (49 8%

20.7% (20.8%

14148 (2571

9542 (1539

)

4)
)
)
)
)
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6.7 Spacegroup of Lysozyme nanocrystal

o Cell: 32.1 x 70.9 x 104.0, 93.4° 91.9° 91.1°

e XDS suggests: P21 1

e PDB ID 4R0F: P2;22 with 104.63 x 66.49 x 31.65

Possible explanations:

1. a angle distorted because of erroneous parameters (distance, frame width, rotation range, image distortions)

2. Macrocrystal induces more rigid packing = enforces higher symmetry

= Currently an open question
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6.8 Lysozyme: Model Bias

v e

N
ALY
%‘u‘%‘" )

Refined map from Refmac5h Refined map from Shelxl

February 2016 Uni Konstanz 40/0



PAUL SCHERRER INSTITUT

Tim Griine Electron Diffraction d;l:::_

6.9 Lysozyme: is it Real? (l)

- —_‘S-.L"S?A' -
&\"S“‘i\ivu‘k‘«‘ [ ¢

inﬁ.‘ YN TSNS
m*\\'.:'i. NN
=

NN
\ AN
B 20 RV AN
R R TN

. AN

Refined map from Shelxl (zoomed) Same map 4x NCS averaged
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6.10 Lysozyme: is it Real? (ll)

L 4 ' iy,
1wy,
: ol . '

e Purple: Molecular replacement including side chains

e Green: Molecular replacement with poly-Ala model; side chains autobuilt with Buccaneer
e Autobuilding uses sequence information and data.

e Many side chains consistent
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7/ Phasing with Images
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/.1 The Crystallographic Phase Problem

p(x,y,z) = Z |Fidea|(hkl)|ei¢(hkl)e—2ni(hx+ky+lz)
h.,k,l

e Diffraction experiment measured amplitudes |Figeai (k)|
e Phases ¢ (hkl) “get lost”

e Phasing methods:
1. Molecular Replacement
2. SAD/MAD — Single—/Multi-wavelength anomalous dispersion

3. SIRAS — Isomorphous replacement with anomalous dispersion
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7.2 Electron Microscope Imaging

1. Record many images

2. Classify, group, and reduce noise

3. Find orientations

4. Reconstruct 3D electron density

(EMDB 3281, A chimeric sapovirus capsid)
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7.3 Indexing Diffraction Data

e Diffraction Data can be indexed

= Unit Cell Dimensions and (often) Space group are known without solving the structue

=- Place single atom at unit cell corners and create projections from “single atom map” from all orientations

s
!
—_—
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/.4 EM Imaging from Crystals

Projected Single Atom Density Projected Single Atom Density
Projected Lysozyme Density 210A x 210A 210A x 210A
210A x 210A Same Orientation Different Orientation

Match: 3.6% Match: 0.8%

In Image Mode, Contrast between 3.6% and 0.8% too low
(Simulated Data)
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7.5 EM Imaging from Crystals in Fourier Space

Projected Single Atom Density Projected Single Atom Density
Image of Lysozyme Crystal after Fourier Transform after Fourier Transform
after Fourier Transform 210A x 210A 210A x 210A
210A x 210A Same Orientation Different Orientation

Match: 65% Match: 14%

Contrast after Fourier Transformation enables selection of correct orientation
(Simulated Data)
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8 Phasing with EM Images |

FFT Orientations for

e.g. 100 images:

Reconstruction

Images

* Match Orientation

Diffraction

Low resolution
3D map

32A 70A 104A

Indexing Calculate Single Atom FFT
Projections
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9 Phasing with EM Images Il

low resolution
accurate phases

phases

3D map

phase extension

high resolution
intensities

February 2016
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e Phases from Electron imaging low resolu-

tion but accurate

e Phases can be extended to high resolution
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10 Experimental Considerations

e Ewald “plane”

e dynamic scattering

e Instrumental limitations
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10.1 X—rays: The Ewald Sphere

A = 1A, “normal” resolution: 20max = 40°

e Assume: wrong detector distance
e Diffraction spot calculated wrongly (red circle)
e Reciprocal lattice becomes distorted

corre@t distance
T

A
Y

incorrect distance

Curvature of the Ewald sphere gauges the diffraction geometry
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10.2 Electrons: The Ewald “Plane”

1/2Ae =1/0.025A

e Typical X—ray wavelength 1y = 1A
e Typical e~ wavelength A, = 0.025A
e Radius of Ewald sphere 40x greater
e Ewald sphere nearly flat

»1/%(— 1A
—p

<& >
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10.3 Electrons: The Ewald “Plane”

1/Ae =1/0.025A

“normal” resolution:

20max = 1° e opening angle of highest resolution reflections ~
10

e Ewald sphere virtually flat

e Without curvature: impossible to refine both de-

tector distance and cell
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10.4 Electrons: The Ewald “Plane”

e Detector distance and unit cell parameters are strongly related

e Wrongly set distance can lead to incorrect bond lengths

e Distance refinement with X—ray data routine

e Distance refinement with electron data = unstable

Distance calibration from powder sample
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10.5 Distance Calibration

e Bragg’s law: A =2dsin0; d, A are known

Fix
Distance: |[489 { mm) _
Pixel Size: |0.055 {mm} _
wavelength: [0.02502 | (A4) _
2-Theta

~ Horiz.

0,00 { deg) -
“ Vert.
Beam Center

-« ] " J

¥: (258 v pixels

_] Small Spots

_| Fix Contrast Close |
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10.6 Dynamic Scattering

e Kinematic Theory of Diffraction: Every photon / electron / neutron scatters once in the crystal

| Figeal(hkl)| o< \/Iexp(hkl)
e Dynamic Scattering: Multiple Scattering events occur

e Electron Diffraction: Multiple Scattering occurs even with nanocrystals
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10.7 Dynamic Scattering

e Outgoing ray S! acts as in-
coming ray for reflection S2.
° e Re-—reflection with 10% prob-

ability at 50 nm path length

February 2016 Uni Konstanz 58/0



Tim Grune

February 2016

Electron Diffraction ==

PAUL SCHERRER INSTITUT

10.8 Dynamic Scattering

—»
.
.

Laue Conditions (accordingly b and C)

(Sp—Si)-d=h
(_%—S_?)- =hy

a
(S5—S;)-d=hi+h
Experimental Intensities by superposition of two
reflections:

Iexp(hakalp) = |Figeal(hokaln) + 0tFgeal(h1kily)|

e o < 1: 0.1 for 50 nm path length

o (hykyly) strong and (hpkyl) weak = wrong
estimate for |Figeq|(h2ko 1)

e affects high resolution data

Uni Konstanz 59/0
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10.9 Dynamic Scattering for Organic Crystals

e Presence in Macromolecular Diffraction data currently discussed in literature

e Some claim it is negligible

e Experimental evidence equivocal

e Treatment (scaling / refinement) should be improved
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10.10 Other Instrumental limitations

e Electron Microscopes not designed for accurate sample rotation

e Rotation axis not linked to Camera read—out

Lense system rotates (diffraction) image: rotation axis unknown

e Sample holder not desiged for 180° rotation
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10.11 SwissFEDI

Swiss Free Electron Diffraction Instrument

e Horizontal beam

e 15-18m instrument length
1. Reduced Cross—talk between magnetic lenses

2. No optical enlargement of detector distance: 1 — —2° opening angle covers 20 x 20cm? detector area

e Sample holder designed for sample rotation
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