PAUL SCHERRER INSTITUT

Dr. Tim Grüne :: Paul Scherrer Institut :: tim.gruene@psi.ch

Macromolecular Crystallography with Nanocrystals based on Electron Diffraction

CCP4 Study Weekend 10th January 2017

1 - Electron Diffraction

Structure Determination by Single Crystal Diffraction

- Diffraction spots: interaction between wave and crystal
- Experimental result: **Position** and **Intensity** for each spot

Laue equations:

 $(\vec{S}_o - \vec{S}_i) \cdot \vec{a}^* = h$ $(\vec{S}_o - \vec{S}_i) \cdot \vec{b}^* = k$ $(\vec{S}_o - \vec{S}_i) \cdot \vec{c}^* = l$

Independent of radiation type: X, e^-, n

Electrons as Radiation Source

- wave-particle dualism (*cf* de Broglie wavelength)
- typical electron energy: 100–300keV (200keV = 0.02508Å)
- suitable for, but also **require** small samples: 100 keV: < 100 nm, 200 keV: < 300 500 nm
- electrons interact with charge: map = electrostatic potential inside crystal
- strong interaction: multiple scattering events do occur
- require high vacuum throughout (10^{-8}mbar)

The Lens System

- Lenses C1–C3 shape beam
- Crystallography: Parallel beam
- Objective lens: sets effective detector distance to backfocal plane = diffraction mode
- C3 not present in all microscopes

Lenses cause distortions.

2 - Motivation

"Failed" Crystallisation Drops viewed through TEM

Stevenson,..., Calero, PNAS (2014) 111, 8470–8475 / Calero, ..., Snell, Acta Cryst (2014) F70, 993–1008 "Our work [...] shows that [nanocrystals] are commonly observed in crystallization drops [...]"

Crystalline Disorder — a Matter of Size?

K Dalle, T Gruene, S Dechert, S Demeshko, and F Meyer, A weakly coupled biologically relevant $Cu_2^{II}(\mu - \eta^1 : \eta^1 - O_2)$ cis-peroxo adduct that binds side-on to additional metal ions JACS (2014), 136, 462–46

Nanocrystals

Novartis I: $\emptyset = 1,700nm = 1.7\mu m$

Novartis II: $\emptyset = 500nm = 0.5\mu m$

Thermolysin: $\approx 2 \times 1 \times$ very thin μm^3 Solvent reduces contrast

3 - Electron Diffraction Instrumentation

Medipix / Timepix Detector Family

- first hybrid pixel detector for electrons (cf. Pilatus / Eiger)
- no read—out noise
- high dynamic range
- fast read-out: non-stop sample rotation ("shutterless data collection")
- 512x512 and 1024x1024 pixel cameras installed in Basel (and Pisa (Prof. Mauro Gemmi) and Stockholm (Prof. Sven Hovmöller))

Diffraction image from a MFI type zeolite: black = 0 counts red \geq 1 (carbon scatter + crystal signal) count

Eiger Chip

- 256x256 pixel test chip with 200keV instrument
- pilot for improving phosphor to higher energies \geq 300 keV
- higher read-out (up to 8kHz), much lower dead time
- Next: Jungfrau and Mönch with Si, GaAs, or CdTe

Electron diffraction (from an inorganic compound) on a 256x256 Eiger chip

The Rotation Method

- Material Science: diffraction from oriented crystals
- Rotation Method: random orientation
- Standard ("Universal") data collection mode for organic and macromolecular crystallography
- First (?) applications in electron crystallography:
 - Prof. Ute Kolb, Mainz AD3DT, step motion (\approx 2011)
 - Dr. Wei Wan, Stockholm RED, beam precession + sample rotation (\approx 2013)
 - Prof. Jan Pieter Abrahams first diffraction pattern from 3D protein crystals (2011)
 - Dr. Tamir Gonen first 3D crystal structure in PDB (3J4G, 2013)
- Currently: No connection between goniometer and detector: "manual" rotation leads to very inaccurate oscillation width
- Benefit from well advance integration/ scaling programs (XDS, DIALS, SAINT, evalCCD)

4 - Example Structures

Pharmaceutical I: Visualisation of Hydrogen Atoms

H-atom positions can be refined against electron diffraction data CCDC: IRELOH, Dai et al., Eur. J. Org. Chem (2010), 6928-6937

- Field of view: $3\mu m$
- Crystal: $1.6\mu m \times 400nm$

- $d_{\min} < 0.8$ Å
- $I/\sigma_I(0.91 0.81\text{\AA}) : 1.8$
- *P*2₁2₁2₁: 85% completeness with 3 crystals
- a=8.06Å b=10.00Å c=17.73Å

- Refinement of hydrogen atom positions with mild restraints (SADI))
- 1334 reflections, 195 parameters, 156 restraints (RIGU)
- $R1 = 15.5\%, R_{\text{complete}} = 18.5\%$

Pharmaceutical II: Differentiation of Atom Types

Data quality: recognition of atom types, C vs. O vs. N etc. (CCDC: EPICZA)

- Field of view: $3\mu m$
- Crystal: 400nm diameter

- $d_{\min} = 0.80$ Å
- $I/\sigma_I(0.90 0.80\text{\AA}) : 2.5$
- $P2_12_12_1$: 92% completeness with 6 crystals ($d_{min} > 0.84$ Å : 96%)

- Direct methods: only 1 wrong atom type
- Visualisation of hydrogen atoms
- 1806 refl., 258 param., 267 restraints
- $R1 = 18.5\%, R_{\text{complete}} = 21.9\%$

Thermolysin (sample courtesy Ilme Schlichting)

- Spacegroup *P*6₁22
- Unit Cell 94.3 94.3 130.4 $90^{\circ}~90^{\circ}~120^{\circ}$
- $d_{\min} = 3.5$ Å
- 72.4% completeness
- MR with 3DNZ poly Alanine: TFZ=26.4, LLG=433
- Buccaneer: side chain extension 315/316
- Refmac5: R1/"Rfree" = 28.0% / 29.9% (4N5P w/o water)

Lysozyme

	Single crystal	Merged data	
Data integration	·		
Space group	P2 ₁ 2 ₁ 2		
Unit cell dimensions			
a, b, c (Å)	104.56, 68.05, 32.05		
α, β, γ (°)	90.0, 90.0, 90.0		
Number of crystals	1	6	
Resolution (Å)	32.05-2.50 (2.57-2.50)	57.04-2.50 (2.57-2.50)	
R _{merge} (%)	31.7 (107.3)	35.7 (113.2)	
Ι/σΙ	2.92 (1.10)	2.87 (1.10)	
Completeness (%)	41.0 (40.5)	69.0 (51.3)	
Reflections	9518 (817)	25148 (1373)	
Unique reflections	3445 (236) 5808 (299)		
Redundancy	2.76 (3.46) 4.33 (4.59)		
Refinement			
R1 (%)	25.90	23.54	
$R_{complete}$ (%) [4]	32.49	27.21	
$< B> (Å^2)$	33.08	36.49	
RmsZ bonds	0.779	0.765	
RmsZ angles	0.974	0.911	

After MR: difference density for bulky side

chains

- 1. MR (Phaser) from poly Ala **monomer** determines space group *P*2₁2₁2 (TFZ=19.8, LLG=335.3)
- 2. Side chain completion with Buccaneer all except 27 atoms
- 3. Refinement with refmac5

5 - Electron Crystallogaphy in CCP4

- 1. Data processing: DIALS (with D. Waterman)
- 2. Scaling: Aimless
- 3. MR: Phaser / Molrep
- 4. Autobuilding: Buccaneer
- 5. Refinement: Refmac5
 - SOURCE ELECTRON MB
 - MAPC FREE EXLCUDE
- 6. Model Building: Coot

6 - Summary: Electron Crystallography for non-Material Scientists

Sample Prep	Instrumentation	Proessing	Analysis
 + from Powder - from Solution - Data sets / day 	++ Detector* - Rot ⁿ Axis* - Lenses - Crystal Orient ⁿ *	 + Integration - Param. Stability +/- Scaling 	 ++ Direct Methods + Molec. Repl. + Refinement - Potential Repr.
* Current project at LBR	/ PSI		

7 - Acknowledgements

- Prof. J. P. Abrahams, Dr. E. van Genderen, M. Clabbers, Dr. T. Blum, C. Borsa, J. Heidler (group members at PSI / C-CINA, Basel)
- Novartis (Compounds)
- Dr. I. Nederlof, ASI (Medipix / Timepix)
- Dr. B. Schmitt, PSI Detector group
- Prof. K. Diederichs (XDS)
- Dr. W. Kabsch (XDS)
- Dr. D. Waterman (DIALS)
- Dr. Ilme Schlichting (samples of Thermolysin, Thaumatin, Lysozyme)
- Prof. J. van Bokhoven, ETH Zürich
- Prof. S. Hovmöller, University Stockholem