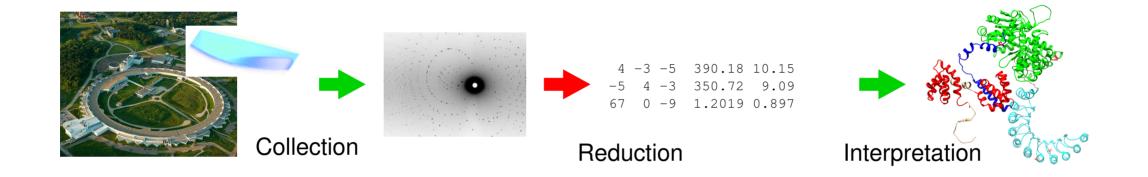
PAUL SCHERRER INSTITUT

Dr. Tim Grüne :: Paul Scherrer Institut :: tim.gruene@psi.ch

Data Processing with XDS

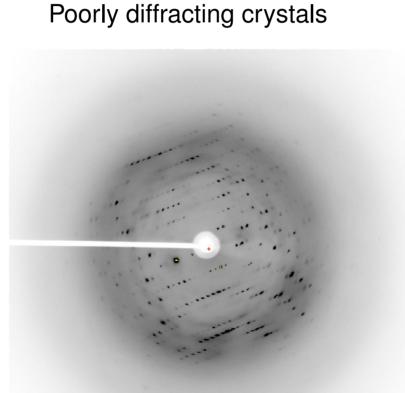

CCP4 / APS School Chicago 2017 19th June 2017

1 - X-ray Diffraction in a Nutshell

Model Building & Refinement — Ideal Crystal Data



- Purpose of crystal structure determination: Molecular Model: atom type, *x*, *y*, *z*, *B*
- Refinement of model against $h, k, l, F_{ideal}(hkl), \sigma_F$ or $h, k, l, I_{ideal}(hkl), \sigma_I$
- Ideal: independent of machine, of wavelength, of crystal shape and size

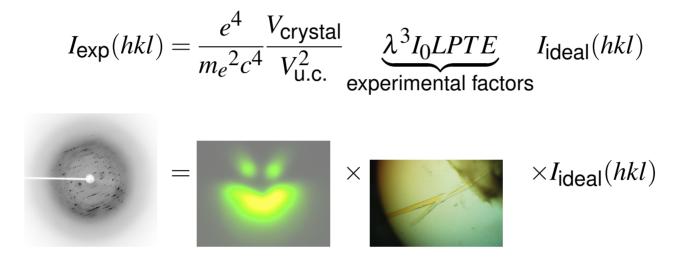


Experimental Errors

Unfocused Beam

Courtesy N. Sanshvili, & S. Corcoran, APS Chicago

Courtesy K. Pröpper, Uni Göttingen


Sources of Errors

- Crystal imperfections
- Radiation damage
- Overloads
- Detector Background Noise
- Missettings (Note down wavelength and distance !!!)

Intensities and Amplitudes — Experiment vs. Theory

Intensities $I_{exp}(hkl)$ are experimental quantities measured from the detector.*

Data integration: Determination of intensities $I_{exp}(hkl)$ from frames

Scaling / **Merging**: Determination of amplitudes $I_{ideal}(hkl)$ from $I_{exp}(hkl)$ and experimental settings

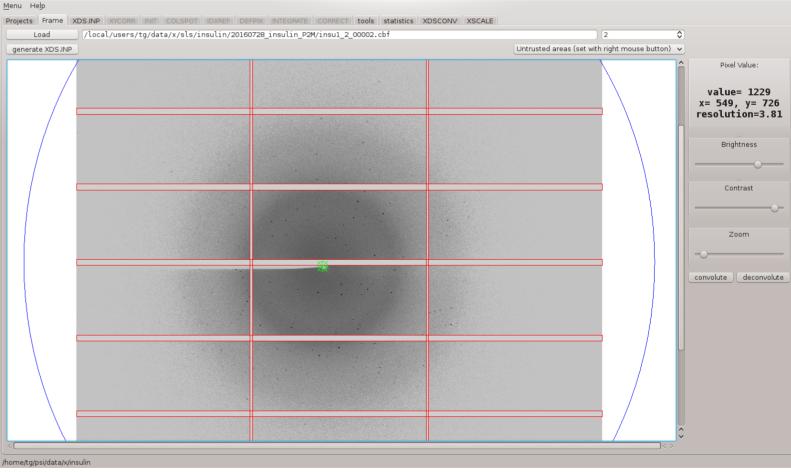
*Giacovazzo et el., "Fundamentals of Crystallography" (IUCr Texts on Crystallography), 1985, Kapitel "Diffraction Intensities"

2 - Data Processing with XDS

Data Processing

Processing your Data = Getting I_{ideal} from you experiment

Understanding your Reduction Program(s) = Getting the **best** *I*_{ideal} from you experiment


XDS Characteristics

Some features of XDS:

- Arbitrary Geometry (axes orientation, etc.)
- Parallelised: Fast
- 3-dimensional spot integration
- Correction for Radiation Damage available
- Close contact with Dectris (Pilatus, Eiger detectors)
- Command-line program
- Clear documentation

XDS & xdsGUI

tg@hilbert:~/psi/data/x/insulin\$ ls -l total 8 -rw-r--r-- 1 tg tg 5239 Jun 12 15:42 XDS.INP tg@hilbert:~/psi/data/x/insulin\$ []

XDS controlled with single input file
XDS.INP
Command: xds_par
Graphical user interface (by Kay
Diederichs)
Command: xdsgui)

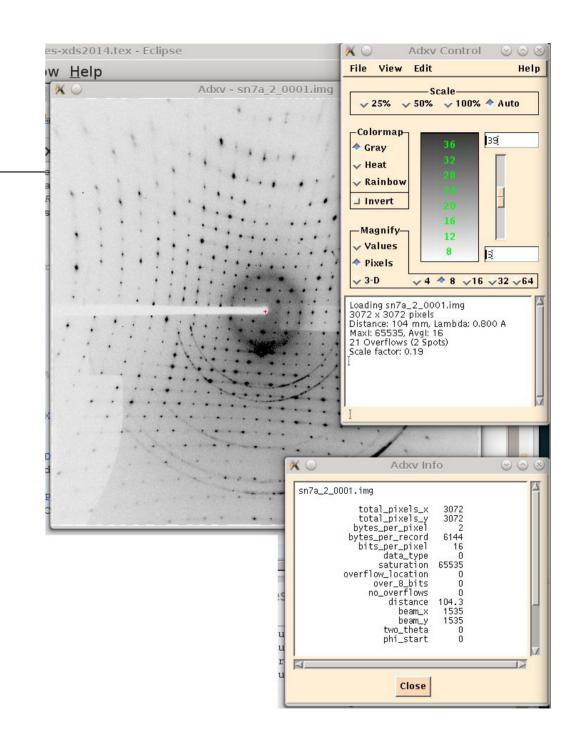
XDS.INP

XDS is controlled by one single input file: XDS.INP.

- Name cannot be changed
- Each data set must be run in separate directory to avoid overwriting of files.
- Contains about 100 Keywords ^a of the form KEYWORD=VALUE
- Only about 10 Keywords must be modified for most data sets (*e.g.* image names, detector distance, number of images, etc.)
- Most important one:

JOB= XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT Each name stands for one of the steps XDS carries out during data integration.

• xdsgui sets up XDS.INP automatically


^aalso called "cards" for historical reasons

Generating ${\tt XDS.INP}$

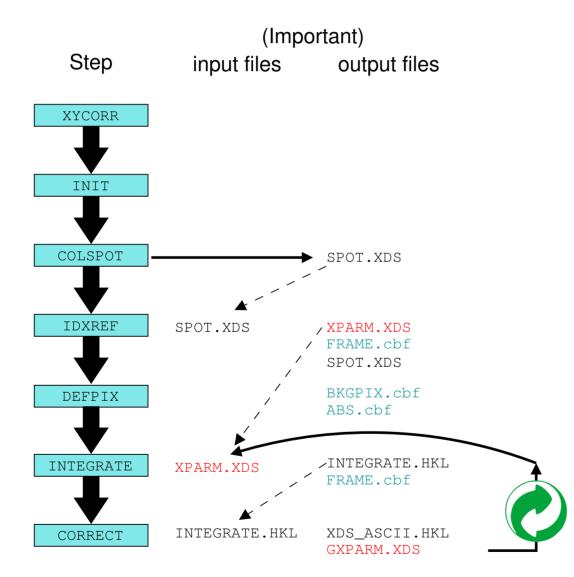
1. generate_XDS.INP as part of xdsGUI: from the latest
 version:

tested with some datasets from ALS, SSRL, SLS, ESRF, BESSY, SPring-8 and PF; only MAR, ADSC/SMV, PILATUS, Eiger, RAXIS (inhouse), Bruker (PHOTON II) detectors;

- 2. adxv Reads virtually all frame formats \rightarrow manual editing of XDS.INP
- 3. sfrmtools Convert Bruker sfrm to XDS coordinate systems (available upon requrest from T.G.)

Templates for Manual XDS.INP

Most Visited 🔻 📟 PSI intern	∂back2wiki						
KDS.INP file templates fo	or various detectors						
file name	detector						
XDS-PILATUS.INP	PILATUS 6M pixel detector (DECTRIS AG, Baden, Switzerland)						_
XDS-PILATUS_12M.INP	PILATUS 12M pixel detector, cyclindrical arrangement of 120 segments (DE	CTRIS AC	G, Bad	len,	Swit	zerla	and)
XDS-PILATUS_200K.INP	PILATUS 200/300K pixel detector (DECTRIS AG, Baden, Switzerland)						_
XDS-Eiger.INP	EIGER 1M pixel detector (DECTRIS AG, Baden, Switzerland)						
XDS-ADSC.INP	ADSC detectors Quantum Q4, Q4r, Q105, Q210, Q210r, Q315r & Q315						_
XDS-NOIR.INP	Ed Westbrook's NOIR-1 lens focused CCD detector at ALS 4.2.2						
XDS-MAR555.INP	Selenium based flat panel detector						
XDS-MAR345.INP	MAR345 detector		-				
XDS-MAR.INP	old MAR-detector	•	T	er	m	Olá	ate
XDS-MARCCD.INP	MAR CCD-detector and (1k X 1k)-CCD used at CHESS		-	• ·		• • •	
XDS-RAXIS2.INP	R-AXIS II IMAGING PLATE DETECTOR						
XDS-RAXIS4.INP	R-AXIS IV IMAGING PLATE DETECTOR						
XDS-RAXIS4++.INP	R-AXIS IV++ IMAGING PLATE DETECTOR		C	۱n	h,	1	۸r
XDS-RAXIS5.INP	R-AXIS V IMAGING PLATE DETECTOR	•	С	11	чy	v	EI
XDS-SATURN.INP	Rigaku/MSC CCD detector						
XDS-CRYSALIS.INP	Oxford Diffraction CCD detector						
XDS-CCDBRANDEIS.INP	(2080 X 2072)-CCD Detector used at BNL X12c; (1k X 1k)-CCD Detector (Wa						
XDS-BRANDEIS_B4.INP	(2k X 2k)-CCD Detector used at Brookhaven beamline B4	•	B	6e	ar	nI	in
XDS-SMARTCCD.INP	BRUKER SMART6000 CCD detector		_	•	•••		
XDS-STOE.INP	STOE IMAGING PLATE DETECTOR						
XDS-SIEMENS.INP	X100A SIEMENS Multiwire detector						
			I+	:.	. .		_


Templates for other programs of the package

file name	explanation
XSCALE.INP	template (example) input file for running xscale
XDSCONV.INP	template (example) input file for running xdsconv
CELLPARM.INP	template (example) input file for running cellparm
MERGE2CBF.INP	template (example) input file for running merge2cbf

- Templates of input scripts for all supported detector formats
- Only very few adjustments necessary to get started
- Beamlines often generate appropriate input scripts
- It is worth learning how to set it up from scratch!

Steps of XDS (JOB=)

red: Text files with parameters or data cyan: control images (use xds-viewer) black: data files for further processing Final data in XDS_ASCII.HKL

The Steps

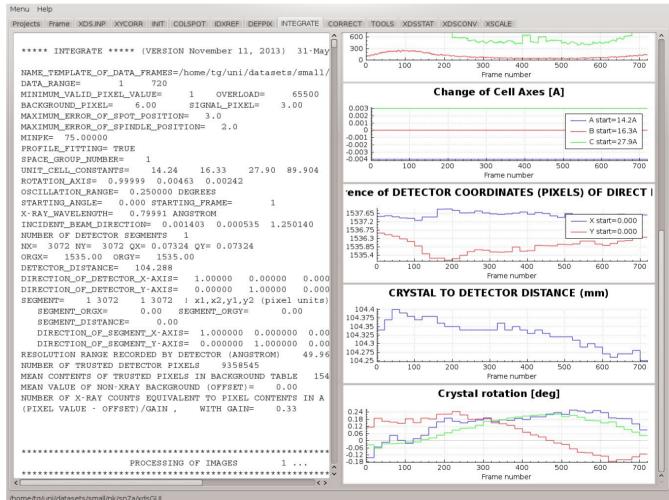
XYCORR writes files for positional corrections of the detector plane. Most modern detectors provide already corrected images so that these to files are normally flat.

INIT determines initial detector background

COLSPOT Strong reflections for indexing

IDXREF indexing: unit cell dimensions and crystal orientation

DEFPIX set active dectector area (exclude resolution cut-off, beam stop shadow, ...)


INTEGRATE extract reflection intensities from frames $\rightarrow I_{exp(hkl)}$

CORRECT applies corrections (polarisation, Lorentz-correction, ...), scales reflections, reports data

statistics $\rightarrow I_{ideal(hkl)}$

Program Flow

- Each step must be passed at least once the subsequent steps depend on files produced by the previous steps.
- Log-files for each step (XYINIT.LP, INIT.LP,...).
- IDXREF = main hurdle once unit cell and crystal orientation are determined, integration usually runs smoothly.
- CORRECT scaling and quality tables
- xdsGUI illustrates important graphs

<u>IDXREF</u>

- Indexing step: Find cell parameters and cell orientation.
- First refinement of experimental parameters (Detector distance, ...)
- Writes solution to XPARM.XDS

XPARM.XDS \	/ERSION November	11, 2013				
1 (0.0000 0.1000	0.999978 (0.006046	0.002667		
0.826568	3 0.000543	0.0018	364	1.209820		
199 78.0	78.0597	78.0597	90.000	90.000	90.000	
77.801140	-0.752043	6.3033	378			
2.363492	2 75.369080	-20.1799	979			
-5.891697	20.303986	75.1422	204			
1	2463 2527	0.172000	0.1720	000		
1224.162720) 1249.473389	170.1454	101			
1.000000	0.00000	0.000	000			
0.00000	1.00000	0.000	000			
0.00000	0.00000	1.0000	000			
1	1 2463	1	2527			
0.00 0.0	0.00 1.00	000 0.00000	0.00000	0.0000	1.00000	0.00000

SPOT.XDS

• COLSPOT: Detector coordinates and Intensity of strong spots to be used for indexing:

X(pixel)	Y(pixel)	#image	counts
1056.11	1529.51	15.35	2544.
1895.52	1525.49	9.19	2481.
1913.43	1547.90	2.63	1999.

• IDXREF: Miller-Indices according to XPARM.XDS

X(pixel)	Y(pixel)	#image	counts	Н	K	L	
1056.11	1529.51	15.35	2544.	14	13	18	
1895.52	1525.49	9.19	2481.	-7	-13	-14	
1913.43	1547.90	2.63	1999.	0	0	0	<

• 0 0: not consistent with cell

"!!! ERROR !!! SOLUTION IS INACCURATE"

Correct indexing is crucial for data integration. If XDS indexes <50 % of all spots in SPOT.XDS it stops with the above error message.

Most common reasons:

- 1. Wrong ORGX, ORGY
- 2. Wrong Parameter settings (Detector distance, wavelength)
- 3. Twinning, multiple crystals

How to proceed?

The XDS error message SOLUTION IS INACCURATE does not necessarily mean that something is seriously wrong. The step IDXREF still refines the experimental parameters and writes them into XPARM.XDS. This is all we need to continue.

Check IDXREF.LP for

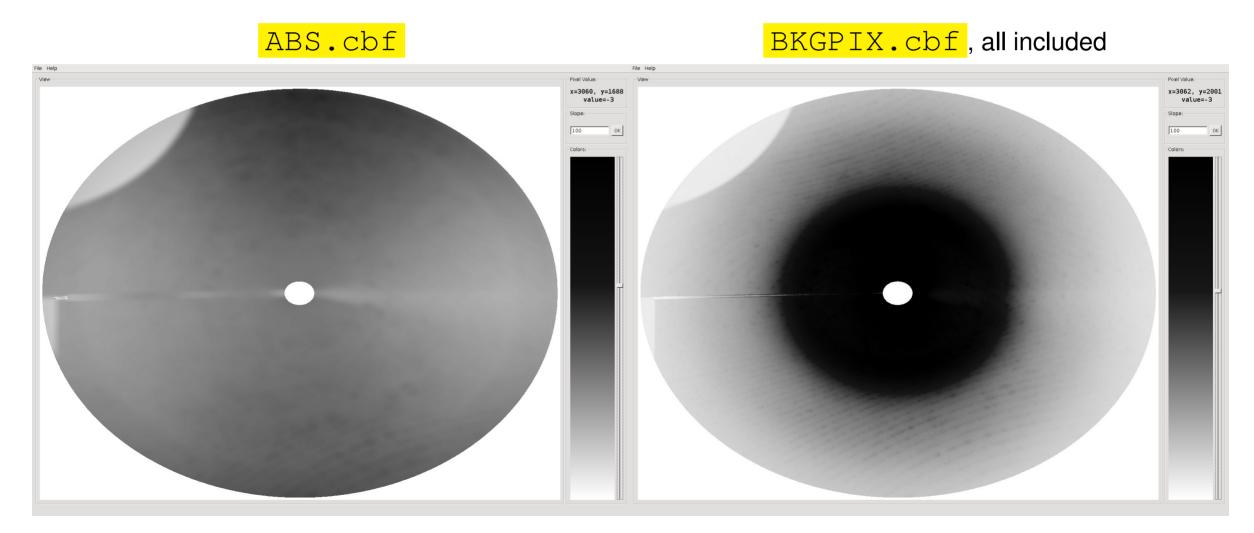
Number of indexed reflections

**** INDEXING OF OBSERVED SPOTS IN SPACE GROUP # 1 *****
1109 OUT OF 2506 SPOTS INDEXED.
0 REJECTED REFLECTIONS (REASON: OVERLAP)
1397 REJECTED REFLECTIONS (REASON: TOO FAR FROM IDEAL POSITION)

- Does the cell make sense? (check with *e.g.* adxv)
- refined detector distance and detector origin do not shift too much (<5mm)

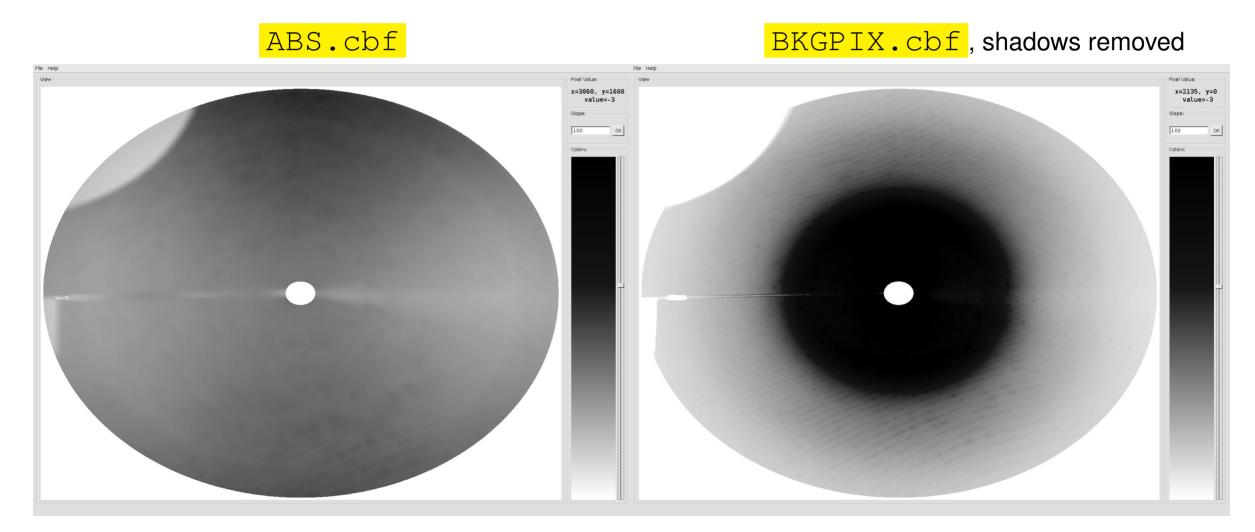
Set JOB = DEFPIX INTEGRATE CORRECT and integrate your data.

If something **did** seriously go wrong, the file XPARM.XDS would not been written.


DEFPIX: active detector mask

DEFPIX sets the area of the detector which is taken into account during integration. It takes into account:

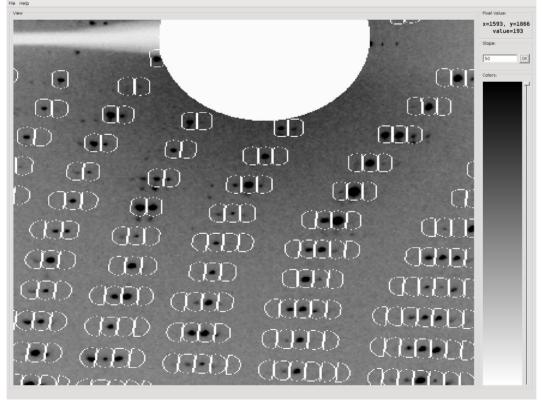
- 1. INCLUDE_RESOLUTION_RANGE default: 20 Å to detector edge.
- 2. VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS exclude shadowed regions, *e.g.* beamstop, cryo stream nozzle
- 3. UNTRUSTED_RECTANGLE exclude gaps between chips of *e.g.* Pilatus detector
- 4. EXCLUDE_RESOLUTION_RANGE exclude ice rings from data integration


VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS

VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS= 1000 30000

VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS

VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS= 6100 30000


INTEGRATE and CORRECT: Intensity determination and fine tuning

INTEGRATE determine spot intensities based on parameters (saved in XPARM.XDS)

CORRECT experimental corrections (*e.g. Lorentz- and Polarisation-correction*), refine parameters and determine space group (saved to GXPARM.XDS)

CORRECT writes FRAME.cbf:

- predicted spot positions encircled
- check correctness of predictions

Recycling

- Parameters (in GXPARM.XDS) depend on measured intensities
- Intensities (including corrections) depend on Parameters
- ⇒ rename GXPARM.XDS to XPARM.XDS and rerun XDS (JOB = DEFPIX INTEGRATE CORRECT) to improve results.

Implications:

- 1. Scaling in XDS improves with higher symmetry than *P*1
- 2. Proper **resolution cut–off** can improve data quality
- 3. Unit cell parameters improve

Resolution Cut-Off

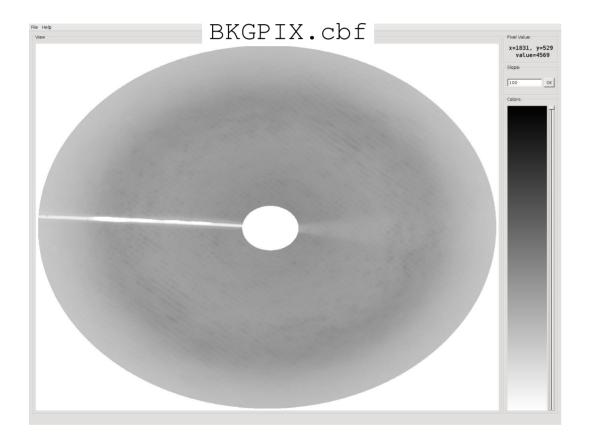
The default resolution range in XDS is 20 Å to the detector edge

INCLUDE_RESOLUTION_RANGE=20.0 0.0

- Medium to low resolution data: increase 20 Å to 30 Å or even 50 Å (check BKGPIX.cbf)
- Once confident about space group (technically: Laue group): determine high-resolution cut-off.

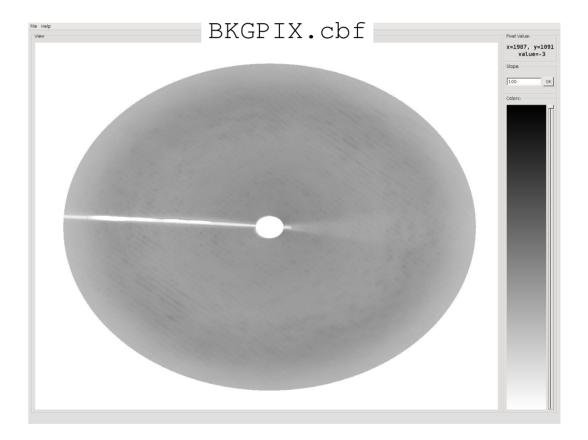
High Resolution Cut-Off

SUBSET OF I	NTENSITY D	ATA WITH	SIGNAL/NO	ISE >= -3.0 A	S FUNCTION	OF RESOLU	JTION			
RESOLUTION	NUMBER	OF REFL	ECTIONS	COMPLETENESS	R-FACTOR	R-FACTOR	COMPARED	I/SIGMA	R-meas	CC(1/2)
LIMIT	OBSERVED	UNIQUE	POSSIBLE	OF DATA	observed	expected				
2 0 2	10757	0440	0447		1 0 0		10750		0 1 0	
3.23	12757	2442	2447	99.8%	1.9%	2.0%	12753	72.35	2.1%	99.9*
2.29	22608	4464	4470	99.9%	2.8%	2.6%	22607	49.33	3.2%	99.9*
1.87	30231	5714	5714	100.0%	5.1%	4.7%	30230	28.89	5.6%	99.8*
1.62	33623	6803	6809	99.98	12.2%	12.1%	33598	12.30	13.7%	99.0*
1.45	40406	7684	7684	100.0%	27.5%	28.3%	40402	5.72	30.5%	95.0*
> 1.32	41510	8518	8524	99.9%	59.3%	62.4%	41482	2.50	66.5%	79.1*
								~ ~ ~ ~ ~ ~ ~ ~		
1.22	45003	9238	9243	99.98	124.7%	131.8%	45000	1.14	139.9%	45.4*
1.15	37687	9934	9940	99.9%	210.4%	228.0%	37484	0.52	244.9%	16.7*
1.08	11083	6440	10653	60.5%	256.8%	279.8%	7939	0.22	336.4%	9.4
total	274908	61237	65484	93.5%	5.2%	5.3%	271495	11.89	5.8%	100.0*


Logfile CORRECT.LP

• Conservative cut–off: $I/\sigma_I \ge 2.0$ — should correspond to $CC(1/2) \ge 70\%$

• If resolution matters: $I/\sigma_I \ge 1.0$ — ensure $CC(1/2) \approx 50\%$



Low Resolution Cut-Off

Default resolution range (20 Å - edge)

- includes noise at edge
- loose low resolution reflections

Adjusted resolution range (40 Å - 2.85 Å)

- $I/\sigma_I \approx 2$ in outer shell
- low resolution reflection important for "shape" of molecule (MR, refinement)

Multiple Datasets: REFERENCE_DATA_SET

In many space groups, indexing is not unique. $I2_13$: 24 possibilities.

#	1	2	3	4)	6	7	8	9	10	11	12	
1	1	0	0	0	()	1	0	0	0	0	1	0	
2	0	0	1	0	1	_ (0	0	0	0	1	0	0	
• • •														
24	0	-1	0	0	() (0	-1	6	1	0	0	0	

REFERENCE_DATA_SET= ../A1/XDS_ASCII.HKL in XDS.INP takes care of everything.

Otherwise: data sets do not merge.

Scaling Multiple Datasets

- XDS_ASCII.HKL already scaled and ready to use
- Multiple data sets (e.g. inverse beam): Use XSCALE
- Alternative: pointless from CCP4

Command: xscale_par; Control: XSCALE.INP

OUTPUT_FILE=insulin.HKL INPUT_FILE=../A1/XDS_ASCII.HKL INPUT_FILE=../A2/XDS_ASCII.HKL

XSCALE.LP

1	0.3887E+01	6622	0	/k001/XDS_ASCII.HKL
2	0.7979E+01	9383	0	/k004/XDS_ASCII.HKL
3	0.4293E+01	9871	0	/k005/XDS_ASCII.HKL
4	0.4267E+01	5138	0	/k006/XDS_ASCII.HKL

DATA	SETS	NUMBER OF COMMON	CORRELATION	RATIO OF COMMON	B-FACTOR
#i	#j	REFLECTIONS	BETWEEN i,j	INTENSITIES (i/j)	BETWEEN i,j
1	2	461	0.976	0.4670	0.1388
1	3	172	0.972	1.1661	-0.0818
2	3	302	0.979	2.3026	-0.1889
1	4	136	0.405	0.6497	0.6766
2	4	200	0.349	1.8650	0.0965
3	4	73	0.214	1.2222	1.1729

- Correlation with data set #4 low
- Check for unit cell, indexing ambiguities, etc.
- Even poor data sets usually have CC>95%

The XDS Resources

availability:

XDS http://xds.mpimf-heidelberg.mpg.de/ main program suite

Wiki and auxiliary programs http://strucbio.biologie.uni-konstanz.de/xdswiki/

GUIs

- xdsGUI(http://strucbio.biologie.uni-konstanz.de/xdswiki/index.php/XDSgui)
- Xdsapp (http://www.helmholtz-berlin.de, search for "xdsapp")

ADXV Andrew Arvai, http://www.scripps.edu/~arvai/adxv.html