PAUL SCHERRER INSTITUT

Dr. Tim Grüne :: Paul Scherrer Institut :: tim.gruene@psi.ch

Macromolecular Electron Crystallography

Bioinformatics and X–Ray Structural Analysis — Universität Konstanz 13th February 2017

<u>1 - Outline</u>

- 1. Structure Determination with Crystallography
- 2. Electron Diffraction
- 3. Radiation Damage
- 4. Dynamic Scattering
- 5. Examples: Lysozyme & Thermolysin

2 - Structure Determination by Single Crystal Diffraction

- Diffraction spots: interaction between wave and crystal
- Experimental result: **Position** and **Intensity** for each spot

Spot Position

• Spots positions according to Laue Conditions and orientation of Unit Cell:

$$(\vec{S}_o - \vec{S}_i).\vec{a} = h$$

and $(\vec{S}_o - \vec{S}_i).\vec{b} = k$
and $(\vec{S}_o - \vec{S}_i).\vec{c} = l$

- Monochhromatic wave: $\vec{S} = (S_o S_i)$ can be calculated from experimental geometry
- Spot position \Leftrightarrow Crystal lattice, independent from radiation type

Spot Intensity

- Spots intensity depends on physics of interaction
 - **X–rays** interact with electrons, crystallographic map corresponds to electron density (number of electron per Volum, e^-/A^3).

Electrons interact with electrostatic potential from electrons + nuclues ($\varphi(\vec{r})$)

Neutrons interact with nucleus *via* weak interaction, and magnetic moment. Map units = ?

• Spot intensity \Leftrightarrow Unit cell content: where are the atoms, what type of atoms are they

From Data Collection to Structure Refinement

- Structure determination: atom coordinates refined against idealized amplitudes $|F_{ideal}(hkl)|$
- Relationship amplitudes and intensities: $|F_{ideal}(hkl)|^2 \propto I_{ideal}(hkl)$
- Detector signal = experimental intensity $I_{exp}(hkl)$

Step	Data Integration	Data Scaling	Refinement
Concept	Frames $\rightarrow I_{exp}(hkl)$	$I_{exp}(hkl) \rightarrow I_{ideal}(hkl)$	Match atom coordinates to $I_{ideal}(hkl)$
Requirement	Signal vs. background	Error Model	$(x, y, z) \leftrightarrow \rho(x, y, z) \leftrightarrow F(hkl)$

Data Processing and Scaling

Integration Extraction of *I*_{exp} from detector: intensity counts after background subtraction — largely **independent** from radiation source

Scaling Conversion from *I*_{exp} to *I*_{ideal}: reduction of experimental errors, crystal shape, detector properties, ... — **depends** on type of radiation

For X–rays*:

$$I_{\exp}(hkl) = \frac{e^4}{m_e^2 c^4} \underbrace{\frac{\lambda^3 V_{\text{crystal}}}_{V_{\text{unit cell}}}I_0 LPTE}_{\text{exp. Parameter}} I_{\text{ideal}}(hkl)$$

*C. Giacovazzo, *Fundamentals of Crystallography*, Oxford University Press

Differences between Types of Radiation

 $\mathsf{Detector} \to I_{\mathsf{ideal}}(hkl)$

 $\Leftarrow \text{Refinement} \Rightarrow$

 $|F_{\mathsf{calc}}(hkl)| \leftarrow \mathsf{Model}$

Two theories for structure factor calculation from atom coordinates:

kinematic scattering	dynamic scattering
only one scattering event	multiple scattering events
valid for X-rays, neutrons	valid for electrons
$ F_{\text{ideal}}(hkl) \propto \sqrt{I_{\text{ideal}}(hkl)}$	
calculation via form factors	
$F(hkl) = \sum_{\text{atoms j}} f_j(\theta) e^{-2\pi i hx + ky + lz}$	

Types of Radiation — X-rays

- 1. most advanced (pipelines from data collection to structure refinement)
- 2. typical wavelength: $\lambda = 0.8 1.9$ Å
- 3. standard structure determination
- 4. PDB (Protein Data Base):
 - 113,000 X-ray structures
 - 112 neutron structures
 - 57 electron structures (mostly 2D crystals and false positives)

Types of Radiation — neutrons

- 1. (virtually) no radiation damage
- 2. requires large crystals (≥ 1 mm³)
- 3. visualisation of hydrogen atoms
- 4. adjacent elements (e.g. K^+ vs. Cl^- , Zn^{2+} vs. Cu^+)
- 5. structure determination from radiation sensitive samples (Photosystem II)

PDB ID 2ZOI: D/H exchange in β -strand (Gruene *et al*, J. Appl. Cryst. 47 (2014), 462–466)

PAUL SCHERRER INSTITUT

Types of Radiation — electrons

- 1. strong interaction compared with X–rays: good for very small crystals ($\ll 1 \mu m$ thickness)
- 2. typical wavelength: 200keV = 0.0251Å
- 3. charge enables electron optics: imaging **and** diffraction
- 4. new phasing possibilities

Diffraction of nanocrystals

(van Genderen et al., Acta Cryst A72 (2016))

Inset: HIV to scale, courtesy Thomas Splettstoesser, en.wikipedia.org

<u>3 - Electron Diffraction</u>

The (seemingly) Empty Drop

Luft, Wolfley, Snell, Crystal Growth& Design (2011), 11, 651-663

Drops viewed through TEM

Stevenson,..., Calero, PNAS (2014) 111, 8470–8475 / Calero, ..., Snell, Acta Cryst (2014) F70, 993–1008

Nanocrystals

Novartis I: $\emptyset = 1,700nm = 1.7\mu m$

Novartis II: $\emptyset = 500nm = 0.5\mu m$

Thermolysin: $\approx 2 \times 1 \times$ very thin μm^3 Solvent reduces contrast

How small is "nano"?

typical protein crystal size for X-rays

typical protein crystal size for electrons, 100x140x1,700 nm³

tubs of water vs. $10\mu l$

Applications for 3D Electron Crystallography

- You cannot get bigger crystals
 - Membrane Proteins
 - Protein needle crystals
 - Organic / Pharmaceutics: often only powder available
- Inorganic Applications
 - Catalyst chemistry: structure determination at "original size"
- Crystal Disorder

Effects of Crystal Volume on Diffraction Data

Reducing crystal volume reduces the resolution by (at least) two effects:

- 1. $I(hkl) \propto V_{crystal}$: 1/10 volume = 1/10 intensity
- 2. Henderson / Garman limit: maximum dose per volume before resolution is halved: 1/10 volume = 1/10 dose before radiation damage destroys crystal

From (1): In order to record the same quality diffraction pattern from a 10 times smaller crystal requires 10 times more intense beam.

From (1)+(2): This makes the crystal die 100 times faster

<u>4 - Instruments for Electron Diffraction</u>

Medipix / Timepix Detector Family

- hybrid pixel detector for electrons (cf. Pilatus / Eiger)
- no read-out noise
- high dynamic range
- fast read-out: non-stop sample rotation ("shutterless data collection")
- 512x512 and 1024x1024 pixel cameras installed in Basel (and Pisa (Prof. Mauro Gemmi) and Stockholm (Prof. Sven Hovmöller))

Diffraction image from a MFI type zeolite: black = 0 counts red \geq 1 (carbon scatter + crystal signal) count

Eiger Chip

- Developed at PSI
- 256x256 pixel test chip with 200keV instrument
- pilot for improving phosphor to higher energies \geq 300 keV
- fast read-out (up to 8kHz), very low dead time
- Next: Jungfrau and Mönch with *Si*, *GaAs*, or *CdTe*

Electron diffraction (from an inorganic compound) on a 256x256 Eiger chip

Electron Microscopes

The Lens System

- Lenses C1–C3 shape beam
- Crystallography: Parallel beam
- Objective lens: sets effective detector distance to backfocal plane = diffraction mode
- C3 not present in all microscopes

Lenses cause distortions.

Modern Instruments lack C3 Lens

- Without C3–lens
- Beam describes an arc
- Sample height must be well positioned

Electron Microscope: Imaging Mode

Electron Microscope: Imaging Mode

Universität Konstanz

Electron Microscope: Diffraction Mode

Electron Microscope: Diffraction Mode

Image at Backfocal Plane = ||Fouriertransform of object||

If object = crystal:

diffraction spots according to Laue condition

Backfocal Plane Rays of **equal direction** focus on detector

Types of Distortions

Capitani, Oleynikov, Hovmöller, Mellini, A practical method to detect and correct for lens distortion in the TEM Ultramicroscopy (2006), 106, 66–74

Pincushion Barrel Spiral Elliptical

- one-to-one distortions: every pixel maps back onto undistorted grid
- causes of distortion:
 - 1. lenses
 - 2. imperfect detector surface

Crystal Glasses

- The garnet Andradite, $Ca_3Fe_2^{3+}(SiO_4)_3$, radiation hard
- 2 grids courtesy Sven Hovmöller's group (Stockholm)
- Space group $Ia\bar{3}d$, a = 12.06314(1)Å (ICSD No. 187908)

(Wikipedia)

- 1. Collect and process data set from garnet
- 2. Predict spot positions
- 3. Calculate per-spot deviation: correction tables
- 4. Use X/Y correction tables for target sample
- Readily available with XDS
- Unit cell dimensions must be comparable

Corrected

Preliminary Results

Use correction tables from crystal 1 during integration of crystal 2.

Uncorrected

X–Shifts Δx

P1 cell 12.0811 11.9496 11.8249 89.986 90.481 89.780 12.0665 12.1757 12.0574 90.048 90.026 90.065

5 - Experimental Considerations

- Ewald sphere or "plane"
- dynamic scattering
- Instrumental limitations

X-rays: The Ewald Sphere

Curvature of the Ewald sphere gauges the diffraction geometry

Electrons: The Ewald "Plane"

- Typical X–ray wavelength $\lambda_X = 1$ Å
- Typical e^- wavelength $\lambda_e = 0.025$ Å
- Radius of Ewald sphere 40x greater
- Ewald sphere nearly flat

Electrons: The Ewald "Plane"

- typical wavelength with X-rays: 1Å
- typical wavelength with electrons: 0.025Å
- opening angle of highest resolution reflections $\approx 1^\circ$
- Ewald sphere virtually flat
- Without curvature: impossible to refine both detector distance and cell

Electrons: The Ewald "Plane"

- Detector distance and unit cell parameters are strongly related
- Wrongly set distance can lead to incorrect bond lengths
- Distance refinement with X-ray data routine
- Distance refinement with electron data = unstable
- good: Distance calibration from powder sample
- better: Distance calibration from chemical bond lengths

Fix

Close

Distance Calibration

• Bragg's law: $\lambda = 2d \sin \theta$; d, λ are known

Elliptical Distortion introduces Errors

• Bragg's law: $\lambda = 2d \sin \theta$; d, λ are known

Image courtesy M. Clabbers

Dynamic Scattering

- Kinematic Theory of Diffraction: Every photon / electron / neutron scatters once in the crystal
- $|F_{\text{ideal}}(hkl)| \propto \sqrt{I_{\exp}(hkl)}$
- Dynamic Scattering: Multiple Scattering events occur
- Electron Diffraction: Multiple Scattering occurs even with nanocrystals

Dynamic Scattering

Multiple (Dual) Scattering

- Outgoing ray \vec{S}_o^1 acts as incoming ray for reflection \vec{S}_o^2 .
- Re-reflection with 10% probability at 50 nm path length

Multiple (Dual) Scattering

Multiple (Dual) Scattering

- Re-reflection more likely for thicker crystal(path)
- Percentage similar for all reflections on frame ($2\theta \approx 0$)
- 10% of strong reflection affects weak reflection
- Therefore: Measured intensities "shifted" from strong to weak
- Low resolution reflection under-, high resolution reflections overestimated
- Covered during refinement by reduced B-factor: electron diffraction includes map-sharpening

Dynamic Scattering for Organic Crystals

- Presence in Macromolecular Diffraction data currently discussed in literature
- Some claim it is negligible
- Experimental evidence equivocal
- Treatment (scaling / refinement) should be improved

Other Instrumental limitations

- Electron Microscopes not designed for accurate sample rotation
- Rotation axis not linked to Camera read-out
- Lense system rotates (diffraction) image: rotation axis unknown
- Sample holder not desiged for 180° rotation

6 - Example Structures

Pharmaceutical I: Visualisation of Hydrogen Atoms

H-atom positions can be refined against electron diffraction data CCDC: IRELOH, Dai et al., Eur. J. Org. Chem (2010), 6928-6937

- Field of view: $3\mu m$
- Crystal: $1.6\mu m \times 400nm$

- $d_{\min} < 0.8$ Å
- $I/\sigma_I(0.91 0.81\text{\AA}) : 1.8$
- *P*2₁2₁2₁: 85% completeness with 3 crystals
- a=8.06Å b=10.00Å c=17.73Å

- Refinement of hydrogen atom positions with mild restraints (SADI))
- 1334 reflections, 195 parameters, 156 restraints (RIGU)
- $R1 = 15.5\%, R_{\text{complete}} = 18.5\%$

Pharmaceutical II: Differentiation of Atom Types

Data quality: recognition of atom types, C vs. O vs. N etc. (CCDC: EPICZA)

- Field of view: $3\mu m$
- Crystal: 400nm diameter

- $d_{\min} = 0.80$ Å
- $I/\sigma_I(0.90 0.80\text{\AA}) : 2.5$
- $P2_12_12_1$: 92% completeness with 6 crystals ($d_{min} > 0.84$ Å : 96%)

- Direct methods: only 1 wrong atom type
- Visualisation of hydrogen atoms
- 1806 refl., 258 param., 267 restraints
- $R1 = 18.5\%, R_{\text{complete}} = 21.9\%$

Thermolysin (sample courtesy Ilme Schlichting)

- Spacegroup *P*6₁22
- Unit Cell 94.3 94.3 130.4 $90^{\circ}~90^{\circ}~120^{\circ}$
- $d_{\min} = 3.5 \text{\AA}$
- 72.4% completeness
- MR with 3DNZ poly Alanine: TFZ=26.4, LLG=433
- Buccaneer: side chain extension 315/316
- Refmac5: R1/"Rfree" = 28.0% / 29.9% (4N5P w/o water)

Lysozyme

	Single crystal	Merged data	
Data integration			
Space group	P2 ₁ 2 ₁ 2		
Unit cell dimensions			
a, b, c (Å)	104.56, 68.05, 32.05		
α, β, γ (°)	90.0, 90.0, 90.0		
Number of crystals	1	6	
Resolution (Å)	32.05-2.50 (2.57-2.50)	57.04-2.50 (2.57-2.50)	
$R_{merge}(\%)$	31.7 (107.3)	35.7 (113.2)	
Ι/σΙ	2.92 (1.10)	2.87 (1.10)	
Completeness (%)	41.0 (40.5)	69.0 (51.3)	
Reflections	9518 (817)	25148 (1373)	
Unique reflections	3445 (236)	5808 (299)	
Redundancy	2.76 (3.46)	4.33 (4.59)	
Refinement			
R1 (%)	25.90	23.54	
R _{complete} (%) [4]	32.49	27.21	
$\langle B \rangle (A^2)$	33.08	36.49	
RmsZ bonds	0.779	0.765	
RmsZ angles	0.974	0.911	

After MR: difference density for bulky side

chains

- 1. MR (Phaser) from poly Ala **monomer** determines space group *P*2₁2₁2 (TFZ=19.8, LLG=335.3)
- 2. Side chain completion with Buccaneer all except 27 atoms
- 3. Refinement with refmac5

7 - Electron Crystallogaphy in CCP4

- 1. Data processing: DIALS (with D. Waterman)
- 2. Scaling: Aimless
- 3. MR: Phaser / Molrep
- 4. Autobuilding: Buccaneer
- 5. Refinement: Refmac5
 - SOURCE ELECTRON MB
 - MAPC FREE EXLCUDE
- 6. Model Building: Coot

8 - Summary: Electron Crystallography for non-Material Scientists

Sample Prep	Instrumentation	Proessing	Analysis		
 + from Powder - from Solution - Data sets / day 	++ Detector* - Rot ⁿ Axis* - Lenses - Crystal Orient ⁿ *	+ Integration - Param. Stability +/- Scaling	 ++ Direct Methods + Molec. Repl. + Refinement - Potential Repr. 		
* Current project at LBR / PSI					

9 - Acknowledgements

- Prof. J. P. Abrahams, Dr. E. van Genderen, M. Clabbers, Dr. T. Blum, C. Borsa, J. Heidler (group members at PSI / C-CINA, Basel)
- Novartis (Compounds)
- Dr. I. Nederlof, ASI (Medipix / Timepix)
- Dr. B. Schmitt, PSI Detector group
- Prof. K. Diederichs (XDS)
- Dr. W. Kabsch (XDS)
- Dr. D. Waterman (DIALS)
- Dr. Ilme Schlichting (samples of Thermolysin, Thaumatin, Lysozyme)
- Prof. J. van Bokhoven, ETH Zürich
- Prof. S. Hovmöller, University Stockholem

