banner.jpg

Laboratory for Macromolecules and Bioimaging LSB

Mission

Excellence from source to detector / excellence in life and materials science
We are at the forefront of method and instrumentation developments to render otherwise inaccessible information accessible via X-ray based techniques. In collaborations with Swiss and international scientists we employ these strengths for state-of-the-art research with focus on life and materials science. We are competent partners for academic and industrial users.

Highlights

22. February 2017

20170222 1000 structures PXIII teaser.png

1000 Structures solved at X06DA-PXIII

The macromolecular crystallography beamline X06DA-PXIII has reached 1,000 structures in the Protein Data Bank (PDB) on February 22, 2017.

20. October 2016

JF.png

First protein structure solved using the JUNGFRAU detector!

JUNGFRAU is a charge-integrating, two-dimensional pixel detector developed at the Paul Scherrer Institut for use at free-electron lasers, in particular SwissFEL, and synchrotron light sources. On the 10th October, the first protein crystallography experiment using the JUNGFRAU detector, was performed at the beamline X06SA (PXI) of the Swiss Light Source by the members of the Protein Crystallography and Detectors groups at PSI.

12 August 2016

T2R-TTL.jpg

Call for expressions of interest: Beamline partners at the SLS for PX II and PX III

We invite companies and institutions to secure access to the beamlines X10SA/PX II and X06DA/PX III through a long term contract.

30 June 2016

A P gotthard.png

Single shot grating interferometry demonstrated using direct conversion detection

Researchers at the Paul Scherrer Institute's Swiss Light Source in Villigen, Switzerland, have developed an X-ray grating interferometry setup which does not require an analyzer grating, by directly detecting the fringes generated by the phase grating with a high resolution detector. The 25um pitch GOTTHARD microstrip detector utilizes a direct conversion sensor in which the charge generated from a single absorbed photon is collected by more than one channel. Therefore it is possible to interpolate to achieve a position resolution finer than the strip pitch. The micron-level resolution delivered by the detector together with the appropriate algorithm to analyze the recorded fringe allows the differential phase signal to be retrieved. The interferometer's flux efficiency is increased by a factor of 2 compared to a standard Talbot-Lau interferometer by avoiding the use of the analyzer grating, which will lead to faster acquisition times and a potential dose reduction.

6 May 2016

teaser picture

Experiment in a hovering droplet

Media Releases Research Using Synchrotron Light Biology Human Health

At the PSI, the exact structure of proteins is deciphered in the standard way, with X-rays. Now two PSI researchers have used a clever trick to advance this method further: Instead of pinning down the proteins, they are studying them within a levitating drop of liquid.

4 May 2016

fedtnetvaerk.jpg

How does food look like on the nanoscale?

The answer to this question could save food industry a lot of money and reduce food waste caused by faulty production. Researchers from the University of Copenhagen and the Paul Scherrer Institut have obtained a 3D image of food on the nanoscale using ptychographic X-ray computed tomography. This work paves the way towards a more detailed knowledge of the structure of complex food systems.

30 March 2016

20160330 SLS Highlight.jpg

Watching lithium move in battery materials

In order to understand limitations in current battery materials and systematically engineer better ones, it is helpful to be able to directly visualize the lithium dynamics in materials during battery charge and discharge. Researchers at ETH Zurich and Paul Scherrer Institute have demonstrated a way to do this.
All LSB news and highlights