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1 Theoretical Background

The aim of the present notes is to provide a short (but sufficiently complete) introduction
into the field of quasielastic neutron scattering (QENS).
In order to prepare yourself for the experiment to be done on the cold neutron time–
of–flight spectrometer FOCUS at the Swiss Spallation Source SINQ, you find within the
following text several questions in red letters. We assume these questions to be answered
in written form a prior to the experiment. Without an appropriate preparation
of the experiment and without having the necessary background we will not
allow you to perform the experiment![1]

The basic equations we need to relate several quantities in this practical are the following
ones :

E =
~2k2

2mN

(1.1)

k =
2π

λ
(1.2)

The following table gives an overview about the different types of neutrons :

energy [ meV ]
cold 0.1–10
thermal 10–100
hot 100–500
epithermal ≥ 500

Table 1. Neutron energy scales.

Q1: Given the values in Tab.1, calculate the corresponding wavelengths. The energy in
meV of a neutron with wavelength λ, given in Å can be expressed in the following way:
E = 81.81/λ2. Show that this relation is true.

Quasielastic neutron scattering is due to stochastic (= non–periodic) motions of particles
(= atoms, molecules, etc.). This type of neutron scattering results in a broadening of
the elastic line, centered around zero energy transfer. Inelastic neutron scattering can be
observed in the case of periodic dynamical processes.

Q2: Which processes lead to inelastic scattering? What is the advantage (or disadvantage)
of using neutrons to investigate condensed matter?
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2 Scattering lengths & cross sections

The interaction of the neutron with the nucleus of an atom can be described by the
so–called Fermi pseudo–potential :

V (~r) =
2π~2

mN

∑
l

blδ(~r − ~Rl) (2.1)

where bl is the scattering length.

The scattering lengths of isotopes are distributed in a random manner across the periodic
table. We define the mean scattering length by the following expression :

〈b〉 =
∑
k

ckbk (2.2)

ck and bk denote the abundance and the scattering length of the kth element, forming the
sample under investigation. With the quantity defined by Eq. 2.2, we define further the
coherent scattering cross section: σcoh = 4π〈b〉2. Since the scattering lengths of isotopes
are different, there appears the so–called isotope incoherence :

σinc = 4π
(
〈b2〉 − 〈b〉2

)
(2.3)

with 〈b2〉 =
∑

k ckb
2
k. σinc describes thus the fluctuations of the scattering length due to

isotope disorder. The sum of σinc and σcoh gives the total scattering cross–section σscatt
1.

Q3: Assume a square lattice with N×N sites. M < N2 sites are occupied by atoms which
have coherent scattering length only. Show that in this case we get also an incoherent
contribution, due to the fact that some sites on the lattice are not occupied. How does
this contribution depend on the number of filled/empty lattice sites? Sketch σinc as a
function of the number of empty sites!

For nuclei with nuclear spin I 6= 0 there appears an additional scattering contribution, if
the scattering length depends on the relative orientation of neutron (spin 1/2) and nuclear
spin.

Q4: What is the number p+/p− of "up"/"down"-spins for a nuclear spin I?

In the literature we find the terms incoherent and coherent scattering lengths. These
quantities, often denoted as b and bi, respectively, are related to the scattering lengths b+

and b− via :
1cross-section ⇒ effective area presented by each scatterer
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b =
I + 1

2I + 1
b+ +

I

2I + 1
b− (2.4)

bi =

√
I(I + 1)

2I + 1
(b+ − b−) (2.5)

Q5: Give an expression for b± as function of b,bi and I. Using the values given in the
following table, calculate the coherent and incoherent scattering cross-section of 1H and
2H, respectively, and explain how one can benefit from these results!

atom b+ [ fm ] b− [ fm ] I
1H 10.82 -47.42 1/2
2H = D 9.53 0.975 1

Table 2. Scattering length of hydrogen and deuterium.

Q6: In the case of Ar, all three isotopes have I=0, and therefore σinc(spin) = 0, however
σinc(isotope) 6= 0. Calculate the incoherent scattering cross-section, using the follow-
ing values for the coherent scattering length (abundance) σ(36Ar) = 24.9 fm (0.3336%),
σ(38Ar) = 3.5 fm (0.0629%) and σ(40Ar) = 1.84 fm (99.6035%).

3 Neutron Scattering

sample'Ei,'ki'

Ef,'kf'

2θ'

Figure 1. Schematic scattering experiment. Neutrons with initial energy Ei and momentum
~~ki interact with a sample. Due to the interaction a detector, located in the direction given by
2θ = ^(~ki,~kf ), detects neutrons with final energy Ef and momentum ~~kf

.
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The basic scattering experiment setup is shown in Fig.1. In the experiment we can
measure the energy-transfer E = ~ω ≡ Ei − Ef and the scattering angle ~Q ≡ ~ki − ~kf . A
detector located on the surface of a sphere (with a given fixed radius) around the sample,
measures a count rate I that is proportional to so-called double-differential cross-section:

d2σ

dΩdEf
∝ ki
kf

[σcohScoh(Q,ω) + σincSinc(Q,ω)] (3.1)

The double-differential cross-section is proportional to the number of neutrons scattered
into the solid angle dΩ per second with final energies between Ef and Ef + dEf .

Q7: Show that

Q(E,Ei, φ) =

√
2mn

~2
[
2Ei

(
1− cos(φ)

√
1− E/Ei

)
− E

]
with φ ≡ 2θ. Make a figure showing Q(E,Ei, φ) for some selected values of φ!

4 Van Hove correlation function

The so–called van Hove correlation function G(~r, t) is defined as :

G(~r, t) =
~

(2π)3

∫
d3Qdωe−i(

~Q·~r−ωt)S( ~Q, ω) (4.1)

or the dynamic structure factor can be expressed in terms of this correlation function :

S( ~Q, t) =
1

2π~

∫
d3rdtei(

~Q·~rr−ωt)G(~r, t) (4.2)

The quantity G(~r, t)d3r is the conditional probability that, given a particle was at time t =

0 at the origin ~r = 0, any particle is found at time t at the position ~r in a volume element
d3r. Furthermore one defines (in the same manner like Eq.4.1) the correlation function
Gs(~r, t). The meaning of this function is the following : Gs(~r, t)d3r is the conditional
probability that, given a particle was at time t = 0 at the origin ~r = 0, the same particle
is found at time t at the position ~r in a volume element d3r.
Another important function is the so-called intermediate scattering function. These func-
tions are dimensionless quantities; intermediate scattering functions are related to the
dynamic structure factors via Fourier transforms:

S( ~Q, ω) =
1

2π~

∞∫
−∞

dtI( ~Q, t)e−iωt (4.3)
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Si( ~Q, ω) =
1

2π~

∞∫
−∞

dtIs( ~Q, t)e−iωt (4.4)

These quantities are what we measure in our experiments (cf. Eq.3.1 !). In the case the
sample under investigation contains mainly incoherent scatterer, we measure Si( ~Q, ω).

Q8: What are the dimensions of S( ~Q, ω) and G(~r, t)?

5 Quasielastic Neutron Scattering (QENS)

The method of quasielastic neutron scattering investigates scattering processes involving
small amounts of energy transfers around zero energy transfer. The physical processes
behind these scattering events are stochastic in nature: diffusion processes, jump diffusion
etc.

5.1 Long–range diffusion, self–diffusion

In this section we deal with the long–range self–diffusion of tagged particles (atoms or
molecules). The self–part of the van Hove correlation function, Gs(~r, t), obeys the follow-
ing equation :

∂tGs(~r, t) = Ds∇2Gs(~r, t) (5.1)

If we treat the diffusion process as if all diffusing particles start at the origin at time zero,
the solution reads :

Gs(~r, t) =
1

(4πDs|t|)3/2
exp{− r2

4Ds|t|
} (5.2)

Q9: What boundary condition does this assumption imply? Why is this treatment cor-
rect? Using the result in Eq.5.2, you can calculate the self–part of the intermediate
correlation function, Is(Q, t), and the self–part of the dynamic structure factor, Ss(Q,ω).
Sketch the width of Ss(Q,ω) as function of Q and Q2, respectively.
The case of a simple restricted diffusion can be described by Is(Q, t) = e−t/τ + Ic, with
Ic = const. Calculate and sketch the corresponding dynamic structure factor Ss(Q,ω)!

5.2 Jump diffusion

On a microscopic scale, we expect deviations from the formulas calculated in Sec. 5.1.
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Q10: Give an explanation why we expect deviations!

The diffusion process can be successfully described by so–called jump diffusion models
(for more details see [2] and references therein).
Singwi and Sjölander proposed an exponential distribution of jump lengths, resulting in
the following half width at half maximum (hwhm) :

Γ(Q) =
~DQ2

1 +DQ2τ0
(5.3)

Q11: Sketch the relation 5.3 in an appropriate graph. Investigate the behaviour of Eq.5.3
for Q −→∞ and Q −→ 0+. Show that Γ(Q) ∝ Q2 for small values of Q.

6 Rotational dynamics

Here we consider the isotropic rotational diffusion. The idea is to describe the reorientation
of a particle to be realized due to small–angle random rotations. The orientation of the
particle is then given by an orientation vector ~Ω = (φ, θ). The probability P (~Ω, t) to find
the particle at time t with an orientation ~Ω obeys the same partial differential equation
as in the long–range diffusion :

Figure 2. Diffusion on the surface of a sphere with radius one. The red line is the path of the
vector of orientation in the time interval [0, t].

∂tP (~Ω, t) = DR∇2P (~Ω, t). (6.1)
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This equation (with appropriate boundary conditions) leads to the following intermediate
scattering function :

IRs (Q, t) =
∞∑
l=0

(2l + 1)j2l (QR)e−DRl(l+1)t (6.2)

The dynamic structure function reads :

SRs (Q,ω) = j20(QR)δ(~ω) +
∞∑
l=1

(2l + 1)j2l (QR)
1

π

~DRl(l + 1)

(DRl(l + 1))2 + (~ω)2
(6.3)

where jl(x) denotes the spherical Bessel function of order l.

7 The elastic incoherent structure factor

The first term in Eq.6.3 contributes only at E = 0, i.e. this is a purely elastic contribution.
In order to explain the EISF, we start with the statement, that in general the van Hove
correlation function can be written as :

G(~r, t) = Gs(~r,∞) + G̃s(~r, t) (7.1)

The first term in Eq.7.1 is the long–time limit of the van Hove correlation function.
If the particles under investigation explore a volume that is large in comparison to the
interatomic distances, then this term vanishes identically. If however the particle’s motion
is restricted to some finite volume, Gs(~r,∞) has a finite value. In analogy, we can split
the dynamic structure factor into two terms :

Sinc(~r, t) = Sel
inc( ~Q) + Sinel

inc ( ~Q, ω) (7.2)

The first term is a purely elastic contribution, while the second one is inelastic in nature.
The elastic line can be considered as resulting from the diffraction of the neutron on the
infinite time distribution in space of the nuclei belonging to the scattering species over
a finite volume by its motion. In this sense on gets information on the structure from
incoherent scattering and this is the physical reason to introduce the so–called elastic
incoherent structure factor.

8 Separation of motions

We now want to take into account two types of dynamical processes: translation (T) and
rotation (R). In order to do so we write

~r(t) = ~rT(t) + ~rR(t) (8.1)

Inserting this expression into the general equation that defines the intermediate scattering
function (〈· · · 〉 denotes a thermal average)
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I(Q, t) =
〈
e−i

~Q·~r(0)ei
~Q·~r(t)

〉
(8.2)

leads to the relation

I(Q, t) = IT(Q, t) · IR(Q, t). (8.3)

Q12: Perform every single step to get this final result. What is the assumption that has to
be made ? How does the corresponding relation read for the scattering function S(Q,ω)

(in energy space) ?

9 Experimental aspects

9.1 Time-of-flight (tof) experiment

Fig.3 shows the distance–tof diagram of a typical tof neutron scattering experiment. Neu-
trons with a dedicated wavelength λ start at the monochromator M and arrive after a
certain flightpath the sample located at position S. Due to interactions with the sample
under investigation, some neutron gain energy (~ω > 0), while other neutrons lose energy
(~ω < 0).

lossgain
~ω = 0

~ω < 0~ω > 0

timeM

S

D

Figure 3. Time-of-flight vs distance, two frames are shown. M denotes the monochromator,
S is the sample and D represents the position of the detectors. Neutrons coming from the
monochromator interact with the sample and eventually loos or gain energy. The thick black
lines represent time intervals for which no neutrons arrive at the monochromator. Each triangle
shown is also called frame.

Q13: Explain Fig.3! What does the term frame-overlap mean?
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Figure 4. The FOCUS setup.

Q14: Explain the role of the different components displayed in Fig.4.

9.2 Data reduction

The term Data reduction refers to the transformation of the tof-data, i.e. intensities as
function of 2θ and tof, into intensities as function of Q and E, i.e. Int(Q,E). The data
reduction will be done using the program package DAVE[3]. Further details on how to
use the data reduction tool can be found on the FOCUS homepage2; in the links manuals
and 20 minutes manual you find some (hopefully) useful pdf documents concerning data
reduction and the operation of FOCUS in general.

9.3 Data analysis

Please download the DAVE–package from http://www.ncnr.nist.gov/dave/! Make
sure that you download the Latest Development Version for your system (Windows, Unix
or Apple). The package is free and we will need it to perform the data reduction and data
analysis.

2http://spectroscopy.web.psi.ch/focus/
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10 Report

We assume that the results that have been obtained during your experiment will be
summarized in a (written) report, together with your answers to the questions in the
present manual. This report should be written in a style that is very similar to a scientific
paper. Please describe the experiment in a way that non–experts in the field can read and
understand the paper! The report should be divided into Title, Authors, Abstract and so
on. It is very helpful to have a look into a current scientific paper.
Please let me know if you have ideas and comments that help to refine the
manual!!

A Data reduction

The data reduction and analysis will be performed using the software package DAVE3.
Data reduction means we have to transform our data from time–of–flight and 2Θ into
energy and Q domain.

Figure 5. Comparison of time–of–flight data from the empty sample container (red) and the
container filled with water (black). The time on the horizontal axis is given in µs and the counts
plotted on the vertical axis represent the summed (all detectors and angles) intensity.

3The software is available for FREE for Mac OS, Windows and Unix; you find all information you
need on the webpage see http://www.ncnr.nist.gov/dave/
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What do you observe in Fig.1? Note down and discuss your observations!

Steps to reduce the measured raw data (some further instructions will be provided in
additional files!):

• normalize to monitor

• energy dependent detector efficiency

• ± 1 meV, ∆E = 5.1 µeV (≈ 1/10 of resolution)

• Qin : (0.45 – 1.25) Å−1 → Qout : (0.5 – 1.2) Å−1; ∆Q = 0.1 Å−1, 8 Q–groups

• for sample and vanadium data (energy and Q–binning)

B Data analysis

Use the following expression to fit the reduced data:

Io(Q) · (ST(Q,E)⊗ SR(Q,E)) + a+ bE (B.1)

with

ST(Q,E) = L(Γ, E) =
1

π
· Γ

Γ2 + (E − E0)2
, (B.2)

SR(Q,E) = j2o(QR) · δ(E) +
∞∑
k=1

(2k + 1)j2k(QR)
1

π

k(k + 1)~/6τR
(k(k + 1)~/6τR)2 + (E − E0)2

(B.3)

and the experimentally determined resolution function R(Q,E).

The final scattering function reads (without an explicit background):

S(Q,E) = j20(QR)L(ΓT , E)+3j21(QR)L(ΓT+
~

3τR
, E)+5j22(QR)L(ΓT+

~
τR
, E)+· · · (B.4)

with R = 0.98 Å, the rotational radius of the water molecule; with jk(x) we denote the
spherical Bessel-function of the first kind.

Start your fits using simply one Lorentzian function and a linear background. Are these
two functions enough to describe the data? If so, how can you explain this finding? If
not, how many Lorentzian functions do you need to describe the data?

The linewidth (hwhm) ΓT depends on Q via
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ΓT (Q) =
~DsQ

2

1 +DsQ2τ0
(B.5)

with ~ = 6.582× 10−10 µeV · s (Planck’s constant divided by 2π), the self–diffusion coef-
ficient Ds (× 10−10 m2/s) and the residence time τ0 (ps).

Use this equation to determine the temperature dependence of the self–
diffusion coefficient Ds. Plot Ds(T) as function of 1000/K in a log(y)-lin(x)
plot! How can this dependency described? What happens for Q→ 0 and for
large Q?

To fit Ds(T ) we will use the following two expressions:

Ds(T ) = D0 · exp

[
− EA
kBT

]
(B.6)

the so called Arrhenius law, with k−1B = 11.6045 K/meV. The second expression reads

Ds(T ) = D0 · exp

[
− A

T − T0

]
; (B.7)

this is the so called Vogel–Fulcher–Tammann law (VFT).

Use both expressions and determine EA, A and T0, respectively. Plot your
results (Ds(T) vs T and Ds(T) vs 1000/T) What’s the better description for
your data? What’s the role of the parameters EA and T0?
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