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Abstract

In this laboratory work we will study the vortex lattice (VL) of a type-II supercon-
ductor using Small Angle Neutron Scattering (SANS). The sample is a single crystal of
Nb, an element with a superconducting critical temperature, Tc = 9.3 K and lower and
upper critical fields of Hc1 = 0.18T and Hc2 = 0.4T, respectively. For external magnetic
fields between Hc1 and Hc2 the superconductor is in the so-called intermediate state. In
this state the magnetic field partially penetrates the material in the form of individual
vortex lines that form a regular lattice, the vortex lattice (VL). This VL properties
depend upon the microscopic superconducting state, and can be probed directly using
the SANS technique. In this experiment we will study the behaviour of the VL as a
function of the magnetic field.

1 Introduction

1.1 Superconductivity

A superconductor is a material that (i) conducts electrical current with no resistance
(“perfect conductivity”) and (ii) expels magnetic fields from its interior (“Meissner effect”).
The property of perfect conductivity, or ‘superconductivity’, was first discovered in 1911
by the Dutch physicist Heike Kamerlingh Onnes. He observed that when a pure sample of
elemental Hg was cooled below a critical temperature Tc of 4.2 K, the electrical resistance
dropped suddenly to zero. In addition, to perfect conductivity and the Meissner effect, in
the superconducting state no heat, sound or any other form of energy can be released from
the material below Tc. The transition between the normal metal and superconducting states
corresponds to a thermodynamic phase transition which can be observed as an anomaly in
the thermal variation of the specific heat - see Figure 1 (a). As shown in Figure 1 (b) up
to now, the superconducting transition occurs only at extremely low temperatures, well
below room temperature. The discovery of a superconductor with Tc in the range of room
temperature is a holy grail of modern Condensed Matter physics.

Figure 1: (a) Theoretical thermal variation of resistivity and heat capacity for the transition
between the normal metal and superconducting states. (b) Time evolution over the last
century of superconductivity in terms of discovered materials and critical temperatures.
Both images from Ref. [1].

Of the known superconductors, there are two classes, type-I and type-II, which are
distinguished experimentally according to their behaviour under an applied magnetic field.
Figure 2 shows the ideal bulk magnetisation curves for both types, and the intrinsically
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Figure 2: The magnetisation vs applied field curves for (a) a type-I superconductor and
(b) a type-II superconductor. In a type II superconductor, and for an applied magnetic
field above HC1, the magnetic field penetrates the material in the form of vortex lines.

different behaviour. In type-I superconductors the magnetisation curve is characterised by
the full Meissner effect, whereby there is an almost complete expulsion of internal fields
from the bulk of the superconductor, except a penetration of the field into the surface over
a characteristic length λL, called the London penetration depth. As B = µ0(M +H), and
B = 0 inside the bulk, the magnetisation follows M = −H. On increasing the field above a
critical value Hc, the system undergoes a first-order transition into the normal state, where
upon the superconducting state is destroyed.

Type-II superconductors possess two critical fields, the lower critical field, HC1 and
the upper critical field, HC2. Below HC1, the sample exhibits the full Meissner state and
behaves as if it were a type-I material. However, above HC1 the system becomes unstable to
the admission of magnetic flux into the bulk and the magnetisation increases continuously
as more flux enters the bulk on increasing the field. The magnetisation then becomes zero
on passing through HC2, typically undergoing a second-order transition into the normal
state. The region between HC1 and HC2 is a distinct thermodynamic phase referred to as
‘the mixed state,’ wherein the VL exists.

The distinction between type-I and type-II superconductors is understood within the
framework of Ginzburg–Landau (GL) theory [2]. This theory includes two key length-scales,
the superconducting coherence length ξ (closely related to the amplitude of the GL super-
conducting order parameter |Ψ|), and λL. Generally for type-II superconductors, ξ < λL,
and there is a negative interfacial energy between superconducting and normal regions. Here
the system can minimise its energy by maximising the number of normal - superconduct-
ing interfaces, i.e. maximising the number of vortices (subject to limitations imposed by
sample geometry and quantum mechanics). In contrast, for type-I superconductors where
generally ξ > λL, the system is more stable with a minimal number of interfaces in the
form of a single superconducting domain, i.e. no flux penetration and no vortex formation.
The GL parameter κ = λL/ξ is a useful parameter to identify if a superconductor is type-I
or type-II. Strictly, superconductors with κ < 1/

√
2 ∼ 0.707 are type-I, while those with

κ > 1/
√
2 are type-II [2].

The original theoretical work in the 1950s of A.A. Abrikosov was the first to show that
the VL could be expected to exist in type-II superconductors [3]. For this insight he was
awarded the Nobel prize in 2003, and vortices are often called ‘Abrikosov’ vortices in his
honour.
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1.2 The Vortex Lattice

The vortices in a type-II superconductor are quasi one-dimensional objects that can
be visualised as lines of flux aligned with the direction of the applied magnetic field. The
term ‘vortex’ refers to the vortical flow of spontaneous supercurrent that flows around the
vortex core, and shields the rest of the superconducting state from the magnetic flux - see
the black arrows Fig. 3(a). In the ideal case, vortices interact repulsively and arrange into
a close-packed triangular VL. In real materials, this ordering scenario can be altered by
either material inhomogeneities that pin the vortex lines, thermal fluctuations close to Tc

that cause the VL to ‘melt’, or intrinsically anisotropic properties of the superconductor
itself. Thus by studying the VL structure and coordination, insights into the physics of the
host material can be obtained.

Figure 3: (a) A top view of a triangular VL with applied field into the page (arrows
indicate directions of the superflow). The colour scale denotes the relative amplitude of
the flux density; a darker blue indicates a higher magnetic flux density. (b) A schematic
picture of a single vortex, with the dependencies of internal field and GL order parameter
magnitude on distance from the vortex core. Characteristic length-scales ξ and λL are also
noted.

Conveniently, quantum mechanics dictates each vortex line in any type-II superconduc-
tor to carry exactly one magnetic flux quantum Φ0 = h/(2e) = 2.067 · 10−15 Wb. This also
corresponds to the total flux in each VL unit cell. By increasing the applied magnetic field,
the vortex density increases and scales proportionally with the applied magnetic field. It
can shown that the minimum distance d between VL planes is given by:

d =

√
Φ0

B
σ, (1)

where B is the internal field (usually taken to be same as the applied field), Φ0 is the flux
quantum and σ = sinβ is a dimensional constant that depends on the VL coordination. For
a triangular VL, β = 60◦ and σ =

√
3/2, while for a square VL β = 90◦ and σ = 1. Table 1

shows some calculated d values for a perfectly triangular VL as a function of internal field,
B.

Importantly for what follows, the scattering of neutrons by the VL is elastic and de-
scribed by Bragg’s Law:

λn = 2dsin(θ), (2)

3



Table 1: Shortest distance between planes for a perfectly triangular VL.

B
(T )

d
(Å)

0.2 946
0.3 772
0.4 669

where λn is the neutron wavelength, d is the plane-spacing of the VL (given in Table 1) and
θ is the Bragg angle.

2 Neutron Scattering

The most prominent scattering techniques in material research use photons, electrons or
neutrons. Owing to the different properties of the scattered particle, i.e. charge, spin, mass
and energy, one often selects a combination of the complementary scattering techniques to
obtain a complete understanding of the investigated problem.

The neutron was discovered in the UK by J. Chadwick in 1932, while the first high-flux
neutron diffraction experiments were performed and developed in the USA by E.O. Wollan
and C. Shull in 1945-1946. Each of these activities were recognised with Nobel prizes in
1935 and 1994, respectively. The properties of the neutron make them very suitable for
Condensed Matter research: as shown in Table 2 they are electrically neutral, and hence
they penetrate matter more deeply than electrically charged particles of comparable kinetic
energy. Being uncharged makes neutrons a valuable probe, since not only do they easily
penetrate the bulk of the investigated material, but also bulky experimental equipment,
e.g., cryostats, magnets or pressure cells. This advantage also has a downside; the weak
interaction between the neutrons and the nuclei of the scatterer leads to a low number of
scattering events. Therefore, relatively high incident neutron fluxes and long counting times
are unavoidable, for example, when compared with x-ray scattering.

Table 2: Physical Properties of the neutron

mass mn 1.674110−27 kg

charge 0
spin 1/2
magnetic dipole moment µ −1.913µN

free neutron life time τ 881.5 s

de Broglie wavelength λ h
mnv

kinetic energy E mnv2

2 = mn
2 (hλ)

2

Free neutrons can be produced by either fission in nuclear reactors, or spallation at
accelerator-based sources, and then moderated to the required energy. A portion of the
neutrons produced can be directed to the sample of interest using neutron guides, which
use ‘supermirrors’ and the principle of total reflection for the neutron. The energy of
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neutrons with a wavelength of order interatomic distances matches very well the typical
energies of lattice and spin excitations in solids. This makes neutron scattering particularly
suitable for investigations of static structures and dynamic processes in Condensed Matter.

Crucially, neutrons carry a spin S = 1/2 and a significant magnetic moment. The inter-
action between the neutron magnetic moment and local field variations inside a solid can
cause the neutrons to both scatter elastically and inelastically. This makes them insightful
probes of ordered magnetic structures and excitations, and importantly for us here, the
local internal field variation due to the VL in type-II superconductors.

Table 3: Wavelength, frequency, velocity, and energy relationship for neutrons

Quantity Relationship Value at 2 meV

Energy [meV] = 2.072k2[Å−1] 2 meV
Wavelength λ[Å] = 9.044√

(E[meV ])
6.4 [Å]

Wave vector k[Å−1] = 2π

λ[Å]
0.982 Å−1

Frequency ν[THz] = 0.2418E[meV ] 0.484 THz
Wavenumber ν[cm−1] = ν[Hz]/(2.9981010cm/s) 16.1 cm−1

Velocity v[Km/s] = 0.632k[ Å−1] 0.62 Km/s
Temperature T [K] = 11.605E[meV ] 23.2 K

2.1 Neutron Sources

The neutrons used in scattering experiments can be obtained from a nuclear reactor,
like the high flux reactors at Oak Ridge National Laboratory (ORNL) at Oak Ridge in the
USA, and at the Institute Laue-Langevin (ILL) in Grenoble, France, or the FRM-II reactor
in Garching near Munich, Germany. Here the neutrons are produced by spontaneous fission
of 235U. Typically ‘thermal’ neutrons with a Maxwellian energy spectrum peaked around
320 K (λ ∼ 1.7 Å) are produced. By moderating these neutrons to temperatures in the
range 20 K to 40 K, ‘cold’ neutrons can be obtained with a spectrum peaked around λ ∼ 6
Å. Research reactors work in the same way as nuclear power stations but are designed so
that a high neutron flux can exit the moderator system for use in research.

There are also neutron spallation sources like Swiss spallation source, SINQ at PSI,
where neutrons are produced upon bombarding heavy nuclei (like U, W, Ta, Pb or Hg)
with high-energy protons. Here the bombardment by protons bring the target nuclei into an
excited state, such that neutrons ‘evaporate ’from the target. These neutrons are moderated
in the same way as in a reactor to obtain a thermal or cold spectrum of neutrons for
scattering experiments. Most spallation sources such as ISIS in the UK, or the Spallation
Neutron Source (SNS), at ORNL, USA, are pulsed sources, delivering intense pulses of
neutron radiation. SINQ is an exception to this since a near-continuous neutron beam is
produced. A new European Spallation Source (ESS) is being built in Lund, Sweden. It will
become operational in 2019 and it is expected to be the new flagship European neutron
science facility.
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2.2 Reciprocal space and scattering diagram

The laws of momentum and energy conservation governing all scattering experiments
are:

Q = kf − ki,

|Q| = k2
i + k2

f − 2|ki||kf |cos(θs),
h̄ω = Ei − Ef

Here the magnitude of the neutron wave vector is k = 2πλ, where λ is the neutron wave-
length, while its momentum transfer Q. Subscripts i, f refer to the incident and final
(scattered) neutron state. The angle between the incident and final beams is 2θs and the
energy transferred to the sample is h̄ω. Due to the finite mass of the neutron, its dispersion
relation is

E =
h̄2k2

2mn

E[meV ] = 2.072k2[Å−1]

h̄ω =
h̄2k2

2mn
(ki2 − k2f )

In any scattering experiment one measures the incident (i) and and final (f) neutron beams,
and deduces any energy or momentum transfer between the neutron and the sample. For
elastic neutron scattering |ki| = |kf |. To understand better the elastic scattering process,
Fig. 4 (a) shows a simple reciprocal lattice for a two-dimensional crystalline solid where
each point corresponds to a reciprocal lattice point. The circle is a 2D representation of
the diffraction sphere (‘Ewald’ sphere) which describes allowed elastic scattering processes.
This circle has a radius k, and its origin is termed the ‘origin of diffraction’. The incoming
and outgoing neutron wave vectors originate from this point. Wave vector ki connects the
origin of diffraction to the origin of reciprocal space (also a reciprocal lattice point), while
kf connects the origin of diffraction to the reciprocal lattice point of interest. When the
ends of ki and kf span a cord of the diffraction circle, the length of the cord is Q, and
diffraction intensity can be observed experimentally. Different directions of kf are reached
experimentally by rotating the sample and/or detector so that this ‘Bragg condition’ is
satisfied.

Fig. 4 (b) shows the case for neutron diffraction from the VL, which itself forms a 2D
reciprocal lattice in the plane perpendicular to the applied magnetic field. Here the Ewald
sphere is shown in grey, and the incoming wave vector (denoted k) is parallel to the direction
of the field. In the diagram, the reciprocal lattice (or the sample) has been rotated by an
angle of ω, such that the Ewald sphere touches two points of the reciprocal lattice at k
and k’. Here momentum conservation is satisfied and a Bragg spot can be observed on the
detector. Without the reciprocal lattice rotation, the Ewald sphere touches the reciprocal
lattice at only one point (the origin of reciprocal space), and momentum conservation is
not satisfied, and no diffraction peaks are observed.

At the diffraction condition [Fig. 4 (b)], the angle between k and k’ is given by 2θ, which
is of the order of 1 ◦. Since the detector is fixed in space, we rotate (or ‘rock’) the sample
and magnet together over a small angular range, i.e. we scan for Bragg spots by rocking
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Figure 4: (a) A diffraction diagram using Ewald sphere (circle) construction. (b) Schematic
of the Ewald Sphere for neutron diffraction from a VL in a type-II superconductor. The
reciprocal VL points are shown by blue spheres, and it has been rotated by an angle ω such
that the Bragg diffraction condition is satisfied.

scans. Since we always detect scattering at angles less than 3◦, we justify the nomenclature
of small angle scattering. Such diffraction signals at low angles cannot be detected with
conventional neutron diffraction instruments that are usually designed to measure Bragg
peaks at scattering angles above 10◦.

2.3 Scattering from the vortex lattice

Due to the intrinsic magnetic dipole moment of the neutron, it may interact with
spatially-varying local magnetic fields B(r) due to the VL inside a type-II superconductor.
The scattering potential is simply given by

V = −γµNB(r) (3)

where γ = 1.91 is a dimensionless constant, µN is the nuclear magneton and B(r) is the field
distribution of the VL. For an applied field aligned with the nominal z-direction, B = (0,
0, B), as expected for the ideal VL, and the elastic differential cross-section for magnetic
scattering becomes

dσ

dΩ
=

(
mn

2πh̄2

)2

γ2µ2
N

∣∣∣∣∫ B(r)exp(iq · r)dr
∣∣∣∣2 S(q) (4)

where mn is the neutron mass, and S(q) is the structure factor which describes that the
neutrons are scattered by a periodic potential of a 2D lattice. We have also introduced
q = k− k′ with q being the scattering vector. Since the reciprocal VL can be described
in terms of a primitive basis, individual scattering vectors are labelled qh,k, with indices h
and k. Note that any reciprocal VL can be constructed using just two basis vectors that
can be denoted q1,0 and q0,1.
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The final expression for the integrated intensity I(qh,k) of a VL Bragg spot of order h, k
can be written as:

I(qh,k) = 2πV ϕn

(γ
4

)2 λ2
n

Φ2
0qh,kcos(ζ)

|F (qh,k)|2 (5)

where ϕn is the neutron flux per unit area, V is the illuminated volume of the sample, λn

is the neutron wavelength and cos(ζ) is the Lorentz-factor. The angle ζ is that which lies
between the reciprocal lattice vector and the direction normal to the rotation axis. F (qh,k)
is the so-called VL form factor, defined as the 2D Fourier transform of the field-distribution
for the VL unit cell (the modulus quantity in Equation (4)). By determining the quantity
I(qh,k) experimentally, we can obtain the quantity |F (qh,k)| which can then be compared
with model expectations for the internal field-distribution of the VL.

A commonly used model for |F (qh,k)| is the so-called (modified) London model [8]:

F (qh,k) =
⟨B⟩exp(−0.44q2h,kξ

2)

1 + q2h,kλ
2
L

. (6)

Here B is the applied magnetic field, and qh,k is the field dependent reciprocal lattice vector.
By measuring the magnetic field dependence of of the VL form factor, it is possible to extract
important superconducting properties of Nb: the London penetration depth λL and and
the Ginzburg-Landau coherence length ξ.

2.4 Rocking-curve measurements

As mentioned in Section 2.2, as in any diffraction experiment the key information ob-
tained from SANS measurements on the VL is obtained from rocking-curve measurements.
Formally this requires rotating the sample and thus a reciprocal lattice vector through the
Bragg condition at the detector, and recording the diffracted intensity as a function of ro-
tation (rocking) angle. Due to the small angles involved, it is important to carefully align
the sample with respect to both the magnetic field and neutron beam before rotating the
reciprocal lattice.

To perform a rocking scan, you must choose a range of angles over which to rotate
the reciprocal lattice and measure the diffracted intensity. Typically this range has the
expected Bragg angle at the midpoint. Ideally the angular range should take into account
the anticipated angular width of the rocking curve as might be expected from resolution
considerations, and be wide enough so that at the widest scanned angles the observed
intensity falls to the background level.

In SANS experiments, there are two activities required to record the rocking curve of
a Bragg spot. The first is clearly to perform the measurement of the VL scattering, while
the second is to perform background measurements with no VL established in the sample
(above Tc(H), or after zero-field cooling). The background data are then subtracted from
‘foreground’ data (where the VL is present), leaving just the diffracted signal from the VL.

3 SANS Spectrometer

A classical SANS instrument has a pinhole geometry, as shown in Fig. 5. A polychro-
matic, ‘white’neutron beam is guided to the instrument from the neutron source, and a
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Figure 5: A schematic diagram of a typical SANS instrument. In the usual pinhole ge-
ometry, the length of the collimator section is approximately equal to the distance between
the sample and the area multidetector. Each distance can be up to 18 m on the SANS-I
instrument. Shorter distances are used as the momentum transfer increases.

monochromatic beam is generated by selecting a narrow range of wavelengths with a me-
chanical neutron velocity selector. Typically, the FWHM of the wavelength distribution of
the monochromatic beam is 10% of its peak position. The beam profile is then controlled
using pinholes placed in a collimation section of the instrument before it is incident on the
sample. Scattered neutrons are counted with an area sensitive detector located at some
variable distance from the sample. Usually, the flight path from sample to detector has
the same length as the collimation section, as this configuration gives the optimal compro-
mise for beam intensity and resolution. A typical SANS detector is a 3He detector with
an area ∼ 1 m2 and 128 x 128 pixels. The pixelated detector provides a spatial resolution
that allows the determination of the scattering angle 2θ of the counted neutrons and the
corresponding momentum transfer q = (4π/λn)sin(θ/2). The SANS setup outlined above
is typical for continuous neutron sources. Modern SANS instruments offer different sample
environments for experiments under tailored conditions with e.g. controlled temperature,
applied pressure, electric or magnetic fields, or controlled humidity.

4 Data Reduction and Analysis

To analyze the VL signal observed on the detector, data measured in the superconduct-
ing phase (foreground) have data taken above TC (background) subtracted, whereby each
dataset is measured for identical conditions of the instrument, such as incident neutron
wavelength λn, collimation, detector distance, slits and the same rocking angles. To obtain
reproducible results, the intensity data are normalized to a standard counting monitor.

Fast data visualization and analysis can be carried out using the GRASP software
developed by C.D. Dewhurst at the ILL [7]. The software is developed within a Matlab
environment, and as such it can handle the two-dimensional and pixelated multidetector
data recorded by the SANS instrument. The user interface includes a window that allows
a view of the distribution of the diffracted intensity across the multidetector at a certain
rotation angle of the reciprocal lattice. It is also possible to sum the measurements at
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(a)

(b)

Figure 6: (a) Image capture of the front-end of the GRASP software (version 5.09). SANS
data over multiple rocking curves is loaded, showing all the first-order Bragg spots in a
single image. A sector box is defined on the detector over area occupied by the upper right
Bragg spot. (b) Image capture of a rocking curve plot output by the GRASP software,
and fit with a suitable lineshape function. The horizontal axis is in units of degrees of
rotation angle of the reciprocal lattice about the vertical axis, where zero corresponds to
the straight through position. The vertical axis is in units of total counts within the sector
box per standard monitor.

many rotation angles together into just one image, providing a picture of the diffracted
intensity over an entire rocking curve. By similarly summing over multiple rocking curves,
it is possible to deduce the VL coordination by showing all of the first-order Bragg spots in
just one image.

To perform the data analysis one uses the GRASP front panel. One may, for instance,
add SANS foreground data summed over numerous rocking curves. The corresponding
background data can also be properly subtracted leaving angle-dependent VL rocking scan
data that are properly normalized. Statistical noise that occurs close to the beam stop can
be easily masked.

In Fig. 6a we show an image capture of the front-end of the GRASP software. SANS
data over multiple rocking curves is loaded, showing all the first-order Bragg spots in a
single image. A sector box is defined on the detector over area occupied by the upper
right Bragg spot. In Fig. 6 we show an image capture of a rocking curve plot output by
the GRASP software, and fit with a suitable lineshape function. The horizontal axis is in
units of degrees of rotation angle of the reciprocal lattice about the vertical axis, where zero
corresponds to the straight through position. The vertical axis is in units of total counts
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within the sector box per standard monitor. From the fit of the data we obtain I(qh,k),
and then the quantity |F (qh,k)| can be determined.

5 Experimental Procedure

1. Before the experiment, estimate the reciprocal lattice vectors (q1,0 and q0,1) for a
perfect hexagonal VL and for various applied fields, between 0.18 and 0.4T.

2. For the same fields determine the scattering angles 2θ between the incident and final
neutron beam.

3. You will be given a Nb single crystalline sample. Measure its dimensions and mass.
The sample will be surrounded by Cd that will determine the illuminated area.

4. Mount the Nb sample in a sample holder, insert it into the cryo-magnet (MA11) and
start cooling the system.

5. Use a neutron camera to verify that the sample is in position (i.e., at the centre of
the neutron beam).

6. Configure the instrument correctly and adjust the beam stop, which is intended to
block the direct beam to protect the detector.

7. Measure the position and transmission of the direct beam by placing an attenuator
in the beam and removing the beamstop.

8. Cool the system to 10 K, above Tc, and perform rocking scans as background mea-
surements.

9. Apply fields between 0.18 and 0.4 T and in each case each field cool through Tc down
to the lowest temperature, 1.8 K.

10. Perform foreground measurements (the same scans as in the background).

11. Use GRASP to make sets of foreground - background signals. Sum all the data (with
the background subtracted) and measure the opening angles between the Bragg spots
to determine the symmetry of the reciprocal VL.

12. Use GRASP to make plots of intensity vs. rocking angle. Determine the position and
width of the Bragg peaks, and fit with a lineshape to obtain I(qh,k).

13. If time: From the integrated intensity data calculate the form factor as a function of
applied field.

14. If time: Fit the form factor data with the modified London model and extract both the
low temperature estimates for the London penetration depth of Nb and the Ginzburg-
Landau coherence length. From these results determine the κ parameter for Nb. The
typical value of κ for Nb varies with sample purity, but is usually ∼ 0.71. How does
your value compare? Why might there be a discrepancy?
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More information of the instrument is available at our web page
http://www.psi.ch/sinq/sansi/sans-i
The description of the program running the experiment, SICS, is described at
http://www.psi.ch/sinq/sansi/manuals.
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